
	

https://luxoli.nurepikis.com/315614806265984850689260760508249127451426?nufifojewaxobowutiridukejopal=jumonidalarokugeramokalunisupimujawijufobebidivopinotadidobopirajofefewajifovizaxuwunutefobowezusatewezuseropafutopavifalojebesosukesaxejejefewafodivetatumitiduxixaxikexezuxowazosijurifemonivosafuxawonaromonav&utm_kwd=math+absolute+value+python&kemasufirasotilekajamusamixanadabovomolafufemowi=laditawenoxonazirezeroxoxusufelerodogerulewawigagaxapetasirurokesiguginevumojiwedugapukajenelidobowoxudof

Math	absolute	value	python

You	can’t	perform	that	action	at	this	time.	You	can’t	perform	that	action	at	this	time.	In	Python,	the	absolute	value	of	a	number	refers	to	its	non-negative	value,	regardless	of	its	sign.	The	built-in	"abs()"	function	allows	you	to	quickly	determine	the	absolute	value	of	any	number.	Whether	the	number	is	an	integer,	floating-point	number,	or	even	a
complex	number,	the	abs()	function	can	handle	them	all.	Today	let	PythonCentral	take	you	through	the	basics,	instructions	to	use	Python’s	absolute	value	function	"abs()",	its	syntax,	practical	examples,	and	a	few	alternatives	as	well.	What	is	Absolute	Value	First,	let	us	learn	about	absolute	value	before	we	head	to	the	advanced	concepts.	The	absolute
value	of	a	number	is	its	distance	from	zero	on	the	number	line.	This	means:	Absolute	value	of	5	is	"5"	Absolute	value	of	-5	is	"5"	Absolute	value	of	0	is	"0"	How	to	Use	Python	abs()	Function	The	"abs()"	function	is	the	easiest	way	to	calculate	absolute	values	in	Python.	Here	is	the	basic	syntax	for	Python	absolute	value	function:	abs(number)	The	number
can	be	an	int,	float,	or	complex	number	(more	on	these	later).	Here	is	an	example	to	understand	better:	print(abs(-10))	#	Gives	you	an	output	10	print(abs(3.5))	#	Output	will	be	3.5	print(abs(0))	#	Output	will	be	0	How	to	Calculate	the	Absolute	Value	of	Complex	Numbers	with	Python	Let's	say	you	have	to	calculate	"3	+	4j".	To	calculate	the	absolute
value	of	complex	numbers,	we	are	about	to	use	the	abs(complex_num)	syntax.	Here	is	an	example:	complex_num	=	3	+	4j	print(abs(complex_num))	#	Output	will	be	5.0,		calculated	as	square	root	of	(3²	+	4²))	Alternative	Method	to	Calculate	Absolute	Value	While	the	standard	practice	is	to	use	the	Python	absolute	value	function,	there	are	other
methods	as	well	that	gets	you	same	results.	Let	us	look	at	few	of	them.	How	to	Calculate	Absolute	Value	Using	Conditional	Statements	Here	is	an	example	syntax	where	we	use	conditional	statements	to	calculate	the	absolute	value	of	a	number:	def	absolute_value(n):	return	n	if	n	>=	0	else	-n	print(absolute_value(-7))	#	Output	will	be	7	How	to
Calculate	Absolute	Value	using	NumPy	abs	Function	For	arrays	and	matrices,	the	numpy.abs()	function	is	more	efficient.	We	strongly	recommend	going	through	our	NumPy	article	to	learn	more	later.	import	numpy	as	np	arr	=	np.array([-1,	-2,	3,	-4])	print(np.abs(arr))	#	Output	will	be	[1	2	3	4]	How	to	Handle	Absolute	Values	in	Real-World
Applications	Now	that	we	learnt	the	theory,	let	us	see	some	practical	applications.	How	to	Calculate	Distance	with	Python	In	case	you	would	like	to	calculate	the	distance	between	two	points.	Here	is	how	you	can	do	that:	def	distance(x1,	x2):	return	abs(x1	-	x2)	print(distance(10,	3))	#	Output	will	return	7	How	to	Normalize	Data	Here	is	a	sample
syntax	where	you	can	calculate	the	normalized	data:	data	=	[-100,	-50,	0,	50,	100]	norm_data	=	[abs(num)	for	num	in	data]	print(norm_data)	#	Output	will	fetch	[100,	50,	0,	50,	100]	Wrapping	Up	The	Python	absolute	function	is	a	powerful	and	efficient	way	to	calculate	absolute	values	in	Python.	Whether	you	are	working	with	integers,	floating	points,
or	complex	numbers,	using	the	Python	abs()	function	gives	you	accuracy	and	simplicity.	We	sincerely	hope	you	are	now	familiar	with	the	abs()	function.	We	recommend	you	learn	more	from	our	other	articles	as	well.	Related	Articles	NumPy	where():	Using	Conditional	Array	Operations	How	To	Use	NumPy	Pad():	Examples	And	Syntax	How	to	Generate
a	Random	Number	in	Python	Absolute	values	are	commonly	used	in	mathematics,	physics,	and	engineering.	Although	the	school	definition	of	an	absolute	value	might	seem	straightforward,	you	can	actually	look	at	the	concept	from	many	different	angles.	If	you	intend	to	work	with	absolute	values	in	Python,	then	you’ve	come	to	the	right	place.	In	this
tutorial,	you’ll	learn	how	to:	Implement	the	absolute	value	function	from	scratch	Use	the	built-in	abs()	function	in	Python	Calculate	the	absolute	values	of	numbers	Call	abs()	on	NumPy	arrays	and	pandas	series	Customize	the	behavior	of	abs()	on	objects	Don’t	worry	if	your	mathematical	knowledge	of	the	absolute	value	function	is	a	little	rusty.	You’ll
begin	by	refreshing	your	memory	before	diving	deeper	into	Python	code.	That	said,	feel	free	to	skip	the	next	section	and	jump	right	into	the	nitty-gritty	details	that	follow.	The	absolute	value	lets	you	determine	the	size	or	magnitude	of	an	object,	such	as	a	number	or	a	vector,	regardless	of	its	direction.	Real	numbers	can	have	one	of	two	directions
when	you	ignore	zero:	they	can	be	either	positive	or	negative.	On	the	other	hand,	complex	numbers	and	vectors	can	have	many	more	directions.	Note:	When	you	take	the	absolute	value	of	a	number,	you	lose	information	about	its	sign	or,	more	generally,	its	direction.	Consider	a	temperature	measurement	as	an	example.	If	the	thermometer	reads
-12°C,	then	you	can	say	it’s	twelve	degrees	Celsius	below	freezing.	Notice	how	you	decomposed	the	temperature	in	the	last	sentence	into	a	magnitude,	twelve,	and	a	sign.	The	phrase	below	freezing	means	the	same	as	below	zero	degrees	Celsius.	The	temperature’s	size	or	absolute	value	is	identical	to	the	absolute	value	of	the	much	warmer	+12°C.
Using	mathematical	notation,	you	can	define	the	absolute	value	of	I	as	a	piecewise	function,	which	behaves	differently	depending	on	the	range	of	input	values.	A	common	symbol	for	absolute	value	consists	of	two	vertical	lines:	Absolute	Value	Defined	as	a	Piecewise	Function	This	function	returns	values	greater	than	or	equal	to	zero	without	alteration.
On	the	other	hand,	values	smaller	than	zero	have	their	sign	flipped	from	a	minus	to	a	plus.	Algebraically,	this	is	equivalent	to	taking	the	square	root	of	a	number	squared:	Absolute	Value	Defined	Algebraically	When	you	square	a	real	number,	you	always	get	a	positive	result,	even	if	the	number	that	you	started	with	was	negative.	For	example,	the
square	of	-12	and	the	square	of	12	have	the	same	value,	equal	to	144.	Later,	when	you	compute	the	square	root	of	144,	you’ll	only	get	12	without	the	minus	sign.	Geometrically,	you	can	think	of	an	absolute	value	as	the	distance	from	the	origin,	which	is	zero	on	a	number	line	in	the	case	of	the	temperature	reading	from	before:	Absolute	Value	on	a
Number	Line	To	calculate	this	distance,	you	can	subtract	the	origin	from	the	temperature	reading	(-12°C	-	0°C	=	-12°C)	or	the	other	way	around	(0°C	-	(-12°C)	=	+12°C),	and	then	drop	the	sign	of	the	result.	Subtracting	zero	doesn’t	make	much	difference	here,	but	the	reference	point	may	sometimes	be	shifted.	That’s	the	case	for	vectors	bound	to	a
fixed	point	in	space,	which	becomes	their	origin.	Vectors,	just	like	numbers,	convey	information	about	the	direction	and	the	magnitude	of	a	physical	quantity,	but	in	more	than	one	dimension.	For	example,	you	can	express	the	velocity	of	a	falling	snowflake	as	a	three-dimensional	vector:	This	vector	indicates	the	snowflake’s	current	position	relative	to
the	origin	of	the	coordinate	system.	It	also	shows	the	snowflake’s	direction	and	pace	of	motion	through	the	space.	The	longer	the	vector,	the	greater	the	magnitude	of	the	snowflake’s	speed.	As	long	as	the	coordinates	of	the	vector’s	initial	and	terminal	points	are	expressed	in	meters,	calculating	its	length	will	get	you	the	snowflake’s	speed	measured	in
meters	per	unit	of	time.	Note:	There	are	two	ways	to	look	at	a	vector.	A	bound	vector	is	an	ordered	pair	of	fixed	points	in	space,	whereas	a	free	vector	only	tells	you	about	the	displacement	of	the	coordinates	from	point	A	to	point	B	without	revealing	their	absolute	locations.	Consider	the	following	code	snippet	as	an	example:	A	bound	vector	wraps	both
points,	providing	quite	a	bit	of	information.	In	contrast,	a	free	vector	only	represents	the	shift	from	A	to	B.	You	can	calculate	a	free	vector	by	subtracting	the	initial	point,	A,	from	the	terminal	one,	B.	One	way	to	do	so	is	by	iterating	over	the	consecutive	pairs	of	coordinates	with	a	list	comprehension.	A	free	vector	is	essentially	a	bound	vector	translated
to	the	origin	of	the	coordinate	system,	so	it	begins	at	zero.	The	length	of	a	vector,	also	known	as	its	magnitude,	is	the	distance	between	its	initial	and	terminal	points,	K	and	L,	which	you	can	calculate	using	the	Euclidean	norm:	The	Length	of	a	Bound	Vector	as	a	Euclidean	Norm	This	formula	calculates	the	length	of	the	M-dimensional	vector	KL,	by
summing	the	squares	of	the	differences	between	the	coordinates	of	points	K	and	L	in	each	dimension	indexed	by	N.	For	a	free	vector,	the	initial	point,	K,	becomes	the	origin	of	the	coordinate	system—or	zero—which	simplifies	the	formula,	as	you	only	need	to	square	the	coordinates	of	your	vector.	Recall	the	algebraic	definition	of	an	absolute	value.	For
numbers,	it	was	the	square	root	of	a	number	squared.	Now,	when	you	add	more	dimensions	to	the	equation,	you	end	up	with	the	formula	for	the	Euclidean	norm,	shown	above.	So,	the	absolute	value	of	a	vector	is	equivalent	to	its	length!	All	right.	Now	that	you	know	when	absolute	values	might	be	useful,	it’s	time	to	implement	them	in	Python!	To
implement	the	absolute	value	function	in	Python,	you	can	take	one	of	the	earlier	mathematical	definitions	and	translate	it	into	code.	For	instance,	the	piecewise	function	may	look	like	this:	You	use	a	conditional	statement	to	check	whether	the	given	number	denoted	with	the	letter	x	is	greater	than	or	equal	to	zero.	If	so,	then	you	return	the	same
number.	Otherwise,	you	flip	the	number’s	sign.	Because	there	are	only	two	possible	outcomes	here,	you	can	rewrite	the	above	function	using	a	conditional	expression	that	comfortably	fits	on	a	single	line:	It’s	exactly	the	same	behavior	as	before,	only	implemented	in	a	slightly	more	compact	way.	Conditional	expressions	are	useful	when	you	don’t	have
a	lot	of	logic	that	goes	into	the	two	alternative	branches	in	your	code.	Note:	Alternatively,	you	can	write	this	even	more	concisely	by	relying	on	Python’s	built-in	max()	function,	which	returns	the	largest	argument:	If	the	number	I	is	negative,	then	this	function	will	return	its	positive	value.	Otherwise,	it’ll	return	I	itself.	The	algebraic	definition	of	an
absolute	value	is	also	pretty	straightforward	to	implement	in	Python:	First,	you	import	the	square	root	function	from	the	math	module	and	then	call	it	on	the	given	number	raised	to	the	power	of	two.	The	power	function	is	built	right	into	Python,	so	you	don’t	have	to	import	it.	Alternatively,	you	can	avoid	the	import	statement	altogether	by	leveraging
Python’s	exponentiation	operator	(**),	which	can	simulate	the	square	root	function:	This	is	sort	of	a	mathematical	trick	because	using	a	fractional	exponent	is	equivalent	to	computing	the	Mth	root	of	a	number.	In	this	case,	you	take	a	squared	number	to	the	power	of	one-half	(0.5)	or	one	over	two	(½),	which	is	the	same	as	calculating	the	square	root.
Note	that	both	Python	implementations	based	on	the	algebraic	definition	suffer	from	a	slight	deficiency:	You	always	end	up	with	a	floating-point	number,	even	if	you	started	with	an	integer.	So,	if	you’d	like	to	preserve	the	original	data	type	of	a	number,	then	you	might	prefer	the	piecewise-based	implementation	instead.	As	long	as	you	stay	within
integers	and	floating-point	numbers,	you	can	also	write	a	somewhat	silly	implementation	of	the	absolute	value	function	by	leveraging	the	textual	representation	of	numbers	in	Python:	You	convert	the	function’s	argument,	x,	to	a	Python	string	using	the	built-in	str()	function.	This	lets	you	strip	the	leading	minus	sign,	if	there	is	one,	with	an	empty	string.
Then,	you	convert	the	result	to	a	floating-point	number	with	float().	Note	this	implementation	always	converts	integers	to	floats.	Implementing	the	absolute	value	function	from	scratch	in	Python	is	a	worthwhile	learning	exercise.	However,	in	real-life	applications,	you	should	take	advantage	of	the	built-in	abs()	function	that	comes	with	Python.	You’ll
find	out	why	in	the	next	section.	The	last	function	that	you	implemented	above	was	probably	the	least	efficient	one	because	of	the	data	conversions	and	the	string	operations,	which	are	usually	slower	than	direct	number	manipulation.	But	in	truth,	all	of	your	hand-made	implementations	of	an	absolute	value	pale	in	comparison	to	the	abs()	function
that’s	built	into	the	language.	That’s	because	abs()	is	compiled	to	blazing-fast	machine	code,	while	your	pure-Python	code	isn’t.	You	should	always	prefer	abs()	over	your	custom	functions.	It	runs	much	more	quickly,	an	advantage	that	can	really	add	up	when	you	have	a	lot	of	data	to	process.	Additionally,	it’s	much	more	versatile,	as	you’re	about	to	find
out.	The	abs()	function	is	one	of	the	built-in	functions	that	are	part	of	the	Python	language.	That	means	you	can	start	using	it	right	away	without	importing:	As	you	can	see,	abs()	preserves	the	original	data	type.	In	the	first	case,	you	passed	an	integer	literal	and	got	an	integer	result.	When	called	with	a	floating-point	number,	the	function	returned	a
Python	float.	But	these	two	data	types	aren’t	the	only	ones	that	you	can	call	abs()	on.	The	third	numeric	type	that	abs()	knows	how	to	handle	is	Python’s	complex	data	type,	which	represents	complex	numbers.	You	can	think	of	a	complex	number	as	a	pair	consisting	of	two	floating-point	values,	commonly	known	as	the	real	part	and	the	imaginary	part.
One	way	to	define	a	complex	number	in	Python	is	by	calling	the	built-in	complex()	function:	It	accepts	two	arguments.	The	first	one	represents	the	real	part,	while	the	second	one	represents	the	imaginary	part.	At	any	point,	you	can	access	the	complex	number’s	.real	and	.imag	attributes	to	get	those	parts	back:	Both	of	them	are	read-only	and	are
always	expressed	as	floating-point	values.	Also,	the	absolute	value	of	a	complex	number	returned	by	abs()	happens	to	be	a	floating-point	number:	This	might	surprise	you	until	you	find	out	that	complex	numbers	have	a	visual	representation	that	resembles	two-dimensional	vectors	fixed	at	the	coordinate	system’s	origin:	You	already	know	the	formula	to
calculate	the	length	of	such	a	vector,	which	in	this	case	agrees	with	the	number	returned	by	abs().	Note	that	the	absolute	value	of	a	complex	number	is	more	commonly	referred	to	as	the	magnitude,	modulus,	or	radius	of	a	complex	number.	While	integers,	floating-point	numbers,	and	complex	numbers	are	the	only	numeric	types	supported	natively	by
Python,	you’ll	find	two	additional	numeric	types	in	its	standard	library.	They,	too,	can	interoperate	with	the	abs()	function.	The	abs()	function	in	Python	accepts	all	numeric	data	types	available,	including	the	lesser-known	fractions	and	decimals.	For	instance,	you	can	get	the	absolute	value	of	one-third	or	minus	three-quarters	defined	as	Fraction
instances:	In	both	cases,	you	get	another	Fraction	object	back,	but	it’s	unsigned.	That	can	be	convenient	if	you	plan	to	continue	your	computations	on	fractions,	which	offer	higher	precision	than	floating-point	numbers.	If	you’re	working	in	finance,	then	you’ll	probably	want	to	use	Decimal	objects	to	help	mitigate	the	floating-point	representation	error.
Luckily,	you	can	take	the	absolute	value	of	these	objects:	Again,	the	abs()	function	conveniently	returns	the	same	data	type	as	the	one	that	you	supplied,	but	it	gives	you	an	appropriate	positive	value.	Wow,	abs()	can	deal	with	an	impressive	variety	of	numeric	data	types!	But	it	turns	out	that	abs()	is	even	more	clever	than	that.	You	can	even	call	it	on
some	objects	delivered	by	third-party	libraries,	as	you’ll	try	out	in	the	next	section.	Say	you	want	to	compute	the	absolute	values	of	average	daily	temperature	readings	over	some	period.	Unfortunately,	as	soon	as	you	try	calling	abs()	on	a	Python	list	with	those	numbers,	you	get	an	error:	That’s	because	abs()	doesn’t	know	how	to	process	a	list	of
numbers.	To	work	around	this,	you	could	use	a	list	comprehension	or	call	Python’s	map()	function,	like	so:	Both	implementations	do	the	job	but	require	an	additional	step,	which	may	not	always	be	desirable.	If	you	want	to	cut	that	extra	step,	then	you	may	look	into	external	libraries	that	change	the	behavior	of	abs()	for	your	convenience.	That’s	what
you’ll	explore	below.	One	of	the	most	popular	libraries	for	extending	Python	with	high-performance	arrays	and	matrices	is	NumPy.	Its	M-dimensional	array	data	structure,	ndarray,	is	the	cornerstone	of	numerical	computing	in	Python,	so	many	other	libraries	use	it	as	a	foundation.	Once	you	convert	a	regular	Python	list	to	a	NumPy	array	with
np.array(),	you’ll	be	able	to	call	some	of	the	built-in	functions,	including	abs(),	on	the	result:	In	response	to	calling	abs()	on	a	NumPy	array,	you	get	another	array	with	the	absolute	values	of	the	original	elements.	It’s	as	if	you	iterated	over	the	list	of	temperature	readings	yourself	and	applied	the	abs()	function	on	each	element	individually,	just	as	you
did	with	a	list	comprehension	before.	You	can	convert	a	NumPy	array	back	to	a	Python	list	if	you	find	that	more	suitable:	However,	note	that	NumPy	arrays	share	most	of	the	Python	list	interface.	For	example,	they	support	indexing	and	slicing,	and	their	methods	are	similar	to	those	of	plain	lists,	so	most	people	usually	just	stick	to	using	NumPy	arrays
without	ever	looking	back	at	lists.	pandas	is	another	third-party	library	widely	used	in	data	analysis	thanks	to	its	Series	and	DataFrame	objects.	A	series	is	a	sequence	of	observations	or	a	column,	whereas	a	DataFrame	is	like	a	table	or	a	collection	of	columns.	You	can	call	abs()	on	both	of	them.	Suppose	you	have	a	Python	dictionary	that	maps	a	city
name	to	its	lowest	average	temperatures	observed	monthly	over	the	course	of	a	year:	Each	city	has	twelve	temperature	readings,	spanning	from	January	to	December.	Now,	you	can	turn	that	dictionary	into	a	pandas	DataFrame	object	so	that	you	can	draw	some	interesting	insights	going	forward:	Instead	of	using	the	default	zero-based	index,	your
DataFrame	is	indexed	by	abbreviated	month	names,	which	you	obtained	with	the	help	of	the	calendar	module.	Each	column	in	the	DataFrame	has	a	sequence	of	temperatures	from	the	original	dictionary,	represented	as	a	Series	object:	By	using	the	square	bracket	([])	syntax	and	a	city	name	like	Rovaniemi,	you	can	extract	a	single	Series	object	from
the	DataFrame	and	narrow	down	the	amount	of	information	displayed.	pandas,	just	like	NumPy,	lets	you	call	many	of	Python’s	built-in	functions	on	its	objects,	including	its	DataFrame	and	Series	objects.	Specifically,	you	can	call	abs()	to	calculate	more	than	one	absolute	value	in	one	go:	Calling	abs()	on	the	entire	DataFrame	applies	the	function	to
each	element	in	every	column.	You	can	also	call	abs()	on	the	individual	column.	How	did	NumPy	and	pandas	change	the	behavior	of	Python’s	built-in	abs()	function	without	modifying	its	underlying	code?	Well,	it	was	possible	because	the	function	was	designed	with	such	extensions	in	mind.	If	you’re	looking	for	an	advanced	use	of	abs(),	then	read	on	to
make	your	own	data	type	that’ll	play	nicely	with	that	function.	Depending	on	the	data	type,	Python	will	handle	the	computation	of	absolute	values	differently.	When	you	call	abs()	on	an	integer,	it’ll	use	a	custom	code	snippet	that	resembles	your	piecewise	function.	However,	that	function	will	be	implemented	in	the	C	programming	language	for
efficiency.	If	you	pass	a	floating-point	number,	then	Python	will	delegate	that	call	to	C’s	fabs()	function.	In	the	case	of	a	complex	number,	it’ll	call	the	hypot()	function	instead.	What	about	container	objects	like	DataFrames,	series,	and	arrays?	Understandably,	when	you	define	a	new	data	type	in	Python,	it	won’t	work	with	the	abs()	function	because	its
default	behavior	is	unknown.	However,	you	can	optionally	customize	the	behavior	of	abs()	against	the	instances	of	your	class	by	implementing	the	special	.__abs__()	method	using	pure	Python.	There’s	a	finite	set	of	predefined	special	methods	in	Python	that	let	you	override	how	certain	functions	and	operators	should	work.	Consider	the	following	class
representing	a	free	M-dimensional	vector	in	the	Euclidean	space:	This	class	accepts	one	or	more	coordinate	values,	describing	the	displacement	in	each	dimension	from	the	origin	of	the	coordinate	system.	Your	special	.__abs__()	method	calculates	the	distance	from	the	origin,	according	to	the	Euclidean	norm	definition	that	you	learned	at	the	beginning
of	this	tutorial.	To	test	your	new	class,	you	can	create	a	three-dimensional	velocity	vector	of	a	falling	snowflake,	for	example,	which	might	look	like	this:	Notice	how	calling	abs()	on	your	Vector	class	instance	returns	the	correct	absolute	value,	equal	to	about	1.78.	The	speed	units	will	be	expressed	in	meters	per	second	as	long	as	the	snowflake’s
displacement	was	measured	in	meters	at	two	distinct	time	instants	one	second	apart.	In	other	words,	it	would	take	one	second	for	the	snowflake	to	travel	from	point	A	to	point	B.	Using	the	mentioned	formula	forces	you	to	define	the	origin	point.	However,	because	your	Vector	class	represents	a	free	vector	rather	than	a	bound	one,	you	can	simplify
your	code	by	calculating	the	multidimensional	hypotenuse	using	Python’s	math.hypot()	function:	You	get	the	same	result	with	fewer	lines	of	code.	Note	that	hypot()	is	a	variadic	function	accepting	a	variable	number	of	arguments,	so	you	must	use	the	star	operator	(*)	to	unpack	your	tuple	of	coordinates	into	those	arguments.	Awesome!	You	can	now
implement	your	own	library,	and	Python’s	built-in	abs()	function	will	know	how	to	work	with	it.	You’ll	get	functionality	similar	to	working	with	NumPy	or	pandas!	Implementing	formulas	for	an	absolute	value	in	Python	is	a	breeze.	However,	Python	already	comes	with	the	versatile	abs()	function,	which	lets	you	calculate	the	absolute	value	of	various
types	of	numbers,	including	integers,	floating-point	numbers,	complex	numbers,	and	more.	You	can	also	use	abs()	on	instances	of	custom	classes	and	third-party	library	objects.	In	this	tutorial,	you	learned	how	to:	Implement	the	absolute	value	function	from	scratch	Use	the	built-in	abs()	function	in	Python	Calculate	the	absolute	values	of	numbers	Call
abs()	on	NumPy	arrays	and	pandas	series	Customize	the	behavior	of	abs()	on	objects	With	this	knowledge,	you’re	equipped	with	an	efficient	tool	to	calculate	absolute	values	in	Python.	The	Python	abs()	function	return	the	absolute	value.	The	absolute	value	of	any	number	is	always	positive	it	removes	the	negative	sign	of	a	number	in
Python.	Example:Input:	-29Output:	29Python	abs()	Function	SyntaxThe	abs()	function	in	Python	has	the	following	syntax:Syntax:	abs(number)number:	Integer,	floating-point	number,	complex	number.Return:	Returns	the	absolute	value.Python	abs()	Function	ExampleLet	us	see	a	few	examples	of	the	abs()	function	in	Python.abs()	Function	with	an
Integer	ArgumentIn	this	example,	we	will	pass	an	Integer	value	as	an	argument	to	the	abs()	function	in	Python	and	print	its	value	to	see	how	it	works.	Python	#	An	integer	var	=	-94	print('Absolute	value	of	integer	is:',	abs(var))	Output:Absolute	value	of	integer	is:	94abs()	Function	with	a	Floating-Point	NumberIn	this	example,	we	will	pass	a	float	data
into	the	abs()	function	and	it	will	return	an	absolute	value.	Python3	#	floating	point	number	float_number	=	-54.26	print('Absolute	value	of	float	is:',	abs(float_number))	Output:	Absolute	value	of	float	is:	54.26abs()	Function	with	a	Complex	NumberIn	this	example,	we	will	pass	Python	complex	number	into	the	abs()	function	and	it	will	return	an
absolute	value.	Python	#	A	complex	number	complex_number	=	(3	-	4j)	print('Absolute	value	or	Magnitude	of	complex	is:',	abs(complex_number))	Output:	Absolute	value	or	Magnitude	of	complex	is:	5.0Time-Distance	calculation	using	Python	abs()	FunctionIn	this	example,	the	equation	shows	the	relationship	between	speed,	distance	traveled,	and	time
taken	by	an	object.	We	know	that	speed,	time,	and	distance	are	never	negative.	Hence	we	will	use	the	abs()	method	to	calculate	the	exact	time,	distance,	and	speed.Formula	used:		Distance		=	Speed	*	TimeTime	=	Distance	/	SpeedSpeed	=	Distance	/	TimeWe	declared	3	functions	to	calculate	speed,	distance,	and	time.	Then	passed	the	positive	and
negative	integer	and	float	point	values	to	them	using	the	Python	abs()	function.	The	abs()	function	will	automatically	convert	the	negative	values	to	positive	values,	which	will	be	used	to	calculate	speed,	distance,	and	time.	Python	#	Function	to	calculate	speed	def	cal_speed(dist,	time):	print("	Distance(km)	:",	dist)	print("	Time(hr)	:",	time)	return	dist	/
time	#	Function	to	calculate	distance	traveled	def	cal_dis(speed,	time):	print("	Time(hr)	:",	time)	print("	Speed(km	/	hr)	:",	speed)	return	speed	*	time	#	Function	to	calculate	time	taken	def	cal_time(dist,	speed):	print("	Distance(km)	:",	dist)	print("	Speed(km	/	hr)	:",	speed)	return	dist	/	speed	#	Driver	Code	#	Calling	function	cal_speed()	print("	The
calculated	Speed(km	/	hr)	is	:",	cal_speed(abs(45.9),	abs(-2)))	print("")	#	Calling	function	cal_dis()	print("	The	calculated	Distance(km)	:",	cal_dis(abs(-62.9),	abs(2.5)))	print("")	#	Calling	function	cal_time()	print("	The	calculated	Time(hr)	:",	cal_time(abs(48.0),	abs(4.5)))	Output	Distance(km)	:	45.9	Time(hr)	:	2	The	calculated	Speed(km	/	hr)	is	:	22.95
Time(hr)	:	2.5	Speed(km	/	hr)	:	62.9	The	calculated	Distance(km)	:	157.25	Distance(km)	:	48.0	Speed(km	/	hr)	:	4.5	The	calculated	Time(hr)	:	10.666666666666666

