
	

https://kuloxoru.maxudijuz.com/185090537435209996506308953639162711113720?dipisemilugizilotakudigixezegigidupasumapujirabetadufivokagejexulokexisodezafubu=zisofuvoriritowolovinobupuwimufavufavozurigaletafufuxalesijovosoworulogoparesisajuzotaxubilalobegirizolatubejajosobukigabiwapofuvibelatupukojudirafavorewezodoneruronewutowukofamogebaxifovidajodowakopege&utm_kwd=monolith+to+microservices+evolutionary+patterns+to+transform+your+monolith+pdf+github&reriwimepanerusuvuxozibeviwutulexofavodaseferagopimibe=fuwirajofewajofuwowemekizanojumozotixuvagixopofamexovapoweborofewafimowinexevasigasixadaguvalotikujeriperowiwabujivuwibogizazizadesasiwoxedor






























Book	notes	on	"Monolith	to	Microservices"	by	Sam	Newman	These	are	my	notes	on	Monolith	to	Microservices	by	Sam	Newman.Practical	and	useful	book	on	the	subject.Key	Insights	Microservices	are	independently	deployable	services	modeled	around	a	business	domain.	Don’t	focus	on	size	but:	How	many	microservices	can	you	handle.	How	to	define
boundaries	to	get	the	most	out	of	the	microservices,	without	everything	becoming	a	horrible	coupled	mess.	Modular	monolith	still	have	the	challenge	of	a	monolith	DB.	DDD:	Aggregate:	self-contained	unit	that	have	a	life	cycle	around	them.	Bounded	context	(BC)	+	Aggregate	==	unit	of	cohesion.	The	aggregate	is	a	self-contained	state	machine	that
focuses	on	a	single	domain	concept	in	our	system,	with	the	BC	representing	a	collection	of	associated	aggregates,	with	an	explicit	interface	to	the	wider	world.	Microservices	are	not	the	goal.	What	are	you	going	to	achieve	that	you	cannot	with	your	current	architecture?	Have	you	considered	alternatives	to	using	microservices?	How	will	you	know	if
the	transition	is	working?	Reuse	it	not	an	outcome.	When	not	to	use	microservices:	Unclear	domain.	Startups.	Customer	installed	and	managed	software.	Dr	John	Kotter’s	eight-step	process	for	implementing	org	change	(from	Leading	Change):	Establish	a	sense	of	urgency.	Creating	the	Guiding	Coalition.	Developing	a	Vision	and	Strategy.
Communicating	the	change	vision.	Empowering	employees	for	broad-based	action.	Generating	short-team	wins.	Consolidating	gains	and	producing	more	change.	Anchoring	new	approaches	in	the	culture.	Small	changes,	little	steps.	The	biggest	the	bet	and	bigger	the	accompanying	fanfare,	the	harder	is	to	pull	out	when	it	is	going	wrong.	Pattern:
Change	Data	Capture	(CDC):	Use	when	there	is	no	other	option.	Pattern:	Database-as-a-Service	interface.	When	you	are	relying	on	network	analysis	to	determine	who	is	using	your	database,	you	are	in	trouble.	Split	the	DB	first	or	the	code?	Static	reference	data:	Duplicate,	dedicated	schema,	static	library.	Data	service:	only	when	creating
microservices	is	cheap.	BPM	tools:	issue	is	that	they	are	non-dev	tools	that	end	up	being	used	by	devs.	The	more	coupling,	the	earlier	the	pains	will	manifest:	2-10	services:	Breaking	changes.	Reporting.	10-50:	Ownership	at	scale.	Developer	experience.	Running	too	many	things.	50+:	Loads	of	teams.	Global	vs	local	optimization.	Orphaned	services.	In
all:	Robustness	and	resilience.	Monitoring	and	troubleshooting.	End-to-end	testing.	Solutions:	No	cross	team	tests.	Consumer-driven	contracts.	Use	automated	release	remediation	and	progressive	delivery	in	addition	to	end-to-end	tests.	Without	strong	code	ownership	(one	and	only	one	team	can	change	service,	other	teams	can	do	pull	requests	to
propose	changes)	a	microservices’	architecture	will	grow	into	a	distributed	monolith.	Microservices	are	independently	deployable	services	modeled	around	a	business	domain.	Start	with	the	technology	that	you	know.	Don’t	focus	on	size	but:	How	many	microservices	can	you	handle.	How	to	define	boundaries	to	get	the	most	out	of	the	microservices,
without	everything	becoming	a	horrible	coupled	mess.	Modular	monolith	still	have	the	challenge	of	a	monolith	DB.	Other	monoliths:	Distributed	monolith.	Third-party	black-box	systems,	both	on	premise	and	SaaS.	Coupling	types:	Types.	Implementation	coupling.	Temporal	coupling	(in	the	sense	of	sync	calls).	Deployment	coupling	(release	trains).
Domain	coupling.	DDD:	Aggregate:	self-contained	unit	that	have	a	life	cycle	around	them.	Bounded	context	(BC):	Hide	implementation	and	internal	details.	BC	+	Aggregate	==	unit	of	cohesion.	The	Aggregate	is	a	self-contained	state	machine	that	focuses	on	a	single	domain	concept	in	our	system,	with	the	BC	representing	a	collection	of	associated
aggregates,	again	with	an	explicit	interface	to	the	wider	world.	Start	by	targeting	services	that	encompass	entire	BC.	You	can	split	them	further	latter,	hiding	this	decision.	Microservices	are	not	the	goal.	Key	questions:	What	are	you	going	to	achieve	that	you	cannot	with	your	current	architecture?	Have	you	considered	alternatives	to	using
microservices?	How	will	you	know	if	the	transition	is	working?	Reuse	it	not	an	outcome.	Limit	the	scope	of	expected	outcomes.	Possible	whys:	Improve	team	autonomy,	alternatives:	Modular	monoliths.	Assign	responsibilities	based	on	functional	grounds.	Self-servicing.	Reduce	time	to	market,	alternatives:	Value	stream	mapping	to	identify	bottlenecks.
Scale	cost-effectively	for	load,	alternatives:	Vertical	or	horizontal	scaling.	Improve	robustness:	Being	able	to	react	to	expected	variations.	Alternatives:	Running	multiple	copies	of	your	monolith.	Use	more	reliable	SW/HW.	Automate	manual	processes.	Scale	number	of	developers,	alternatives:	Modular	monolith	(but	less).	Embrace	new	technology,
alternatives:	When	not	to	use	microservices:	Unclear	domain:	Getting	services	wrong	can	be	expensive	due	to	large	number	of	cross-service	changes	and	overly	coupled	components.	Startups.	Customer	installed	and	managed	software:	Due	to	increased	operational	complexity.	Dr	John	Kotter’s	eight-step	process	for	implementing	org	change	(from
Leading	Change):	Establish	a	sense	of	urgency.	Creating	the	Guiding	Coalition:	Try	to	bring	somebody	from	“the	business”.	Developing	a	Vision	and	Strategy:	Vision:	realistic	yet	aspirational.	Commitment	to	vision	is	important,	but	overly	commitment	to	strategy	can	be	dangerous	Communicating	the	change	vision:	Face	to	face	+	broadcast.
Empowering	employees	for	broad-based	action:	Bandwidth	change:	increase	capacity	or	reduce	load.	Generating	short-team	wins.	Consolidating	gains	and	producing	more	change:	Anchoring	new	approaches	in	the	culture:	Communicate	successes	and	failures.	Small	changes,	little	steps.	Whiteboard	is	where	the	cost	of	change	and	the	cost	of	mistake
is	the	lowest.	Where	to	start?	Identify	BC	and	their	relationships:	Just	enough	DDD	to	get	started.	Maybe	use	Event	Storming	Relationship	show	how	easy/difficult	should	be	to	extract	that	BC	(warn:	code	may	disagree).	Plot	BC	in:	Is	the	transition	working?	Regular	checkpoints.	Agenda:	Restate	what	you	are	trying	to	achieve.	Does	it	still	make	sense?
Review	quantitative	metrics.	Ask	for	qualitative	feedback:	Happier	in	BVSSH.	Decide	if	any	change	is	needed.	Avoid	the	skunk	cost	fallacy:	The	biggest	the	bet	and	bigger	the	accompanying	fanfare,	the	harder	is	to	pull	out	when	it	is	going	wrong.	You	have	more	options	if	you	can	change	the	monolith.	Best	if	you	can	copy	(not	move)	existing	code.
Consider	refactoring	into	modular	monolith	first.	Pattern:	Stranger	Fig	Application:	Steps:	Identify	what	to	migrate.	Copy	to	microservice.	Reroute	calls	to	new	microservice.	Safe	to	rollback	routing.	There	must	be	a	clear	way	to	redirect	the	calls	to	the	new	service.	In	case	of	HTTP,	a	reverse	HTTP	proxy	in	front	of	the	monolith.	Consider	Ngnix	+	Lua
if	need	something	custom.	If	custom	logic	is	very	complex	(like	changing	protocol	from	SOAP	to	gRPC),	consider:	Avoid	putting	the	logic	in	the	proxy,	as	it	is	a	shared	service	between	teams.	Implement	it	in	the	microservice.	Use	service	mesh.	In	message	systems,	the	proxy	consumes	the	monolith	queue	and	does	a	content-based	routing	to	two
queues:	new	monolith	queue	and	microservices	one.	While	migrating,	avoid	any	functionality	change.	Pattern:	UI	Composition:	UI	to	call	new	microservice.	Widget	or	page	level.	Mobile	apps	are	monoliths,	unless	you	can	make	changes	without	resubmitting	them.	Micro-frontend.	Pattern:	Branch	by	Abstraction:	Steps:	Create	abstraction	for	the
functionality	to	be	replaced.	Change	clients	to	use	new	abstraction.	Create	new	implementation	that	uses	the	new	microservice.	Switch	over	the	new	implementation.	Cleanup.	Verify	branch	by	abstraction:	If	call	to	new	implementation	fails,	call	the	old	implementation.	Pattern:	Parallel	Run:	In	strangler	and	branch	by	abstraction,	call	both
implementation	and	compare	results.	Can	check	also	performance.	N-version	programming:	Implement	functionality	in	several	different	ways,	and	do	a	parallel	run,	choosing	the	“correct”	(quorum)	one.	For	fault	tolerance	and	to	avoid	bugs.	Verification	techniques:	Use	spy	in	microservices	to	record	what	will	do,	but	without	doing	it.	When	duplicated
side-effects	are	not	ok.	Github	scientist.	Not	trivial,	use	just	when	there	is	a	high	risk.	Pattern:	Decorating	Collaborator:	When	cannot	or	don’t	want	to	change	monolith.	Proxy	works	as	a	decorator	that	calls	new	microservice	in	addition	to	old	monolith.	Pattern:	Change	Data	Capture	(CDC):	React	to	changes	happened	in	the	data	store.	Typical
implementations:	DB	triggers:	Transaction	log	poll.	Batch	delta	copier:	Process	that	on	a	regular	schedule	scans	the	DB	to	find	what	data	has	changed	since	last	run.	Use	when	there	is	no	other	option.	Shared	DB:	It	is	ok	with:	Read-only	static	reference	data	that	is	stable	and	has	a	clear	owner.	Pattern:	Database-as-a-Service	interface.	Pattern:
Database	view:	Less	coupling	than	shared	DB.	When	you	are	relying	on	network	analysis	to	determine	who	is	using	your	database,	you	are	in	trouble.	Useful	only	for	read-only.	Pattern:	Database	wrapping	service:	Move	database	dependencies	to	service	dependencies.	When	is	too	hard	pulling	the	schema	apart.	More	flexible	than	DB	view.	Can	take
writes.	Stepping	stone,	buys	you	time.	Pattern:	Database-as-a-Service	interface:	Create	a	specific	and	dedicated	DB	to	be	accessed	externally.	Mapping	engine	options:	CDC.	Batch	process.	Build	from	an	event	log.	Transferring	Ownership:	Pattern:	Aggregate	exposing	monolith:	Monolith	expose	a	proper	aggregate	API.	When	a	newly	extracted
microservice	still	needs	data	owned	by	the	monolith.	Maybe	a	future	microservice.	Pattern:	Change	data	ownership:	When	monolith	still	depends	on	newly	extracted	microservice	data.	Ideally	monolith	should	call	new	service	API:	Copying	the	data	back	to	the	monolith	DB	as	an	alternative.	Data	synchronization:	Pattern:	Synchronize	data	in
application:	Steps:	Bulk	synchronize	data:	If	monolith	was	kept	online,	implement	CDC	to	copy	data	since	snapshot	created.	Synchronize	on	write,	read	from	old	schema.	Synchronize	on	write,	read	from	new	schema.	Decommission	old	schema.	Pattern:	Tracer	write:	Same	as	synchronize	data	in	app,	but	one	table	at	a	time	(instead	of	the	whole
bundled	context)	using	the	new	microservice	API.	Split	the	DB	first	or	the	code?	DB	first:	Easy,	little	short-term	benefit.	When	concerned	about	performance	or	data	consistency.	Pattern:	repository	per	BC:	First	step	to	understand	dependencies.	Pattern:	database	per	BC:	Bet	for	future	split.	Recommend	for	greenfield.	Code	first:	Most	common.	Short-
term	improvements.	Pattern:	Monolith	as	data	access	layer:	Same	pattern	as	“aggregate	exposing	monolith”.	Pattern:	Multischema	storage:	New	microservice	uses	new	schema	for	new	functionality/data,	old	schema	for	existing	data.	DB	and	code	at	the	same	time:	Schema	separation	examples:	Pattern:	Split	table:	When	table	is	owned	by	2	or	more
BC.	Lose	referential	integrity.	Will	need	to	chose	the	owner	of	the	data.	Pattern:	Move	foreign-key	relationship	to	code:	Increase	latency:	from	1	join	query	to	1	select	+	n	service	calls.	Data	consistency,	deletion	options:	Check	with	all	services	before	deleting:	More	coupling,	reverse	dependency.	Don’t	use.	Handle	404/410	gracefully	in	dependant
service.	Don’t	allow	deletion:	Soft	delete/tombstone	record.	Static	reference	data:	Duplicate:	As	it	changes	infrequently	maybe	ok.	For	large	volume	of	data.	Background	process	to	update	it.	Dedicated	schema:	No	duplication,	always	up	to	date.	Allows	for	cross-schema	joins.	Static	library:	Data	service:	When	creating	a	new	microservice	is	cheap.
Maybe	can	emit	change	events.	Avoid	distributed	transactions.	Sagas:	Model	transactions	as	business	processes.	Specially	for	long	lived	transactions.	Rollback	with	compensating	transactions.	Two	implementations:	Orchestrated:	Central	coordinator.	Command	and	control.	Pro:	easier	to	understand.	Cons:	coupling.	Warn:	Anemic	microservices:
coordinator	having	too	much	logic	that	should	be	in	microservices.	Different	services	can	play	the	coordinator	role	for	different	flows.	BPM	tools:	issue	is	that	they	are	non-dev	tools	that	end	up	being	used	by	devs.	Camuda	and	Zeebe	are	targeted	to	microservices	developers.	Choreographed:	Distributed	responsibility.	Trust	but	verify.	Usually	event
based.	Pro:	decoupled.	Cons:	harder	to	understand	whole	flow.	Use	correlation	Id	to	build/know	the	state	of	the	saga:	Service	to	read	all	events	to	show	view.	More	detailed	in	“Building	microservices”	book.	Based	on	anecdotal	experience.	The	more	coupling,	the	earlier	the	pains	will	manifest:	2-10	services:	Breaking	changes.	Reporting.	10-50:
Ownership	at	scale.	Developer	experience.	Running	too	many	things.	50+:	Loads	of	teams.	Global	vs	local	optimization.	Orphaned	services.	In	all:	Robustness	and	resilience.	Monitoring	and	troubleshooting.	End-to-end	testing.	Ownership	at	scale:	Without	strong	code	ownership	(one	and	only	one	team	can	change	service,	other	teams	can	do	pull
requests	to	propose	changes)	a	microservices’	architecture	will	grow	into	a	distributed	monolith.	Breaking	changes:	Avoiding	accidental	breaking	changes:	Explicit	schema	to	avoid	structural	breakages.	Protolock	to	prohibit	incompatible	changes.	To	avoid	semantic	breakages:	testing.	Make	it	hard	to	change	a	service	contract:	Make	it	obvious,	no
magic,	or	generate	schemas	from	code.	Non-accidental:	Do	not	break,	but	accrete.	Give	consumers	time	to	migrate:	Run	two	versions	of	the	service.	Support	old	and	new	endpoints	in	the	service.	Be	more	relaxed	if	changes	are	within	a	team.	Reporting:	Build	a	reporting	specific	schema.	Monitoring	and	Troubleshooting:	Log	aggregation:	First	thing
to	do	when	implementing	microservices.	Tracing:	API	GW	or	service	mesh	to	generate	the	correlation	ID.	Test	in	production:	Towards	observability:	Distributed	Systems	Observability.	Local	developer	experience:	How	many	services	to	run	locally?	Solutions:	Stubs.	Point	to	instance	running	elsewhere.	One	remote	env	per	developer:	Slow	to	deploy	to
test	changes.	Cost.	Mix	local/remote:	Telepresence	for	Kubernetes.	Azure’s	cloud	functions.	Running	too	many	things:	Deployment,	configuration	and	management	of	instances	becomes	more	difficult.	Solution:	Kubernetes.	Function-as-a-Service	(preferred).	End-to-end	testing:	Even	slower	and	even	more	brittle.	Solutions:	No	cross	team	tests.
Consumer-driven	contracts:	Use	automated	release	remediation	and	progressive	delivery	in	addition	to	end-to-end	tests.	Global	vs	local	optimization:	Solving	the	same	problem	twice.	Divergent	tech	stack.	Solutions:	Cross-cutting	group	to	raise	awareness/make	tech	decisions.	Robustness	and	resilience:	Orphaned	Services:	In-house	service	registries
that	combines	service	discovery	+	code	repository	data.	Did	you	enjoy	it?	Follow	@DanLebrero	or	share!	Tagged	in	:	Architecture	book	notes	How	do	you	detangle	a	monolithic	system	and	migrate	it	to	a	microservice	architecture?	How	do	you	do	it	while	maintaining	business-as-usual?	As	a	companion	to	Sam	Newman’s	extremely	popular	Building
Microservices,	this	new	book	details	a	proven	method	for	transitioning	an	existing	monolithic	system	to	a	microservice	architecture.With	many	illustrative	examples,	insightful	migration	patterns,	and	a	bevy	of	practical	advice	to	transition	your	monolith	enterprise	into	a	microservice	operation,	this	practical	guide	covers	multiple	scenarios	and
strategies	for	a	successful	migration,	from	initial	planning	all	the	way	through	application	and	database	decomposition.	You’ll	learn	several	tried	and	tested	patterns	and	techniques	that	you	can	use	as	you	migrate	your	existing	architecture.Ideal	for	organizations	looking	to	transition	to	microservices,	rather	than	rebuildHelps	companies	determine
whether	to	migrate,	when	to	migrate,	and	where	to	beginAddresses	communication,	integration,	and	the	migration	of	legacy	systemsDiscusses	multiple	migration	patterns	and	where	they	applyProvides	database	migration	examples,	along	with	synchronization	strategiesExplores	application	decomposition,	including	several	architectural	refactoring
patternsDelves	into	details	of	database	decomposition,	including	the	impact	of	breaking	referential	and	transactional	integrity,	new	failure	modes,	and	more	Get	full	access	to	Monolith	to	Microservices	and	60K+	other	titles,	with	a	free	10-day	trial	of	O'Reilly.	There	are	also	live	events,	courses	curated	by	job	role,	and	more.	How	do	you	detangle	a
monolithic	system	and	migrate	it	to	a	microservice	architecture?	How	do	you	do	it	while	maintaining	business-as-usual?	As	a	companion	to	Sam	Newman’s	extremely	popular	Building	Microservices,	this	new	book	details	a	proven	method	for	transitioning	an	existing	monolithic	system	to	a	microservice	architecture.	With	many	illustrative	examples,
insightful	migration	patterns,	and	a	bevy	of	practical	advice	to	transition	your	monolith	enterprise	into	a	microservice	operation,	this	practical	guide	covers	multiple	scenarios	and	strategies	for	a	successful	migration,	from	initial	planning	all	the	way	through	application	and	database	decomposition.	You’ll	learn	several	tried	and	tested	patterns	and
techniques	that	you	can	use	as	you	migrate	your	existing	architecture.	Ideal	for	organizations	looking	to	transition	to	microservices,	rather	than	rebuild	Helps	companies	determine	whether	to	migrate,	when	to	migrate,	and	where	to	begin	Addresses	communication,	integration,	and	the	migration	of	legacy	systems	Discusses	multiple	migration
patterns	and	where	they	apply	Provides	database	migration	examples,	along	with	synchronization	strategies	Explores	application	decomposition,	including	several	architectural	refactoring	patterns	Delves	into	details	of	database	decomposition,	including	the	impact	of	breaking	referential	and	transactional	integrity,	new	failure	modes,	and	more	At
present,	there	are	plans	to	translate	the	book	into	Portuguese,	German,	and	Chinese	(simplified),	in	addition	to	creating	an	audio	book.	I'll	update	this	page	with	details	of	when	these	editions	are	available,	along	with	information	of	any	other	confirmed	translations.	Topics	Should	you	migrate	to	microservices,	and	if	you	should,	how	do	you	prioritise
where	to	start	How	do	you	incrementally	decompose	an	application	Discusses	multiple	migration	patterns	and	where	they	apply	Delves	into	details	of	database	decomposition,	including	the	impact	of	breaking	referential	and	transactional	integrity,	new	failure	modes,	and	more	The	growing	pains	you'll	experience	as	your	microservice	architecture
grows	Table	Of	Contents	What	Are	Microservices?	The	Monolith	On	Coupling	And	Cohesion	Just	Enough	Domain-Driven	Design	Understanding	The	Goal	Why	Might	You	Choose	Microservices?	When	Might	Microservices	Be	A	Bad	Idea?	Trade-offs	Taking	People	On	The	Journey	Changing	Organizations	Importance	Of	Incremental	Migration	Cost	Of
Change	Domain-Driven	Design	Reorganizing	Teams	How	Will	You	Know	If	It's	Working?	Pattern:	The	Shared	Database	Pattern:	Database	View	Pattern:	Database	Wrapping	Service	Pattern:	Database-as-a-Service	Interface	Transfering	Ownership	Data	Synchronization	Pattern:	Synchronize	Data	In	Application	Pattern:	Tracer	Write	Splitting	Apart	The
Database	Pattern:	Split	Table	Pattern:	Move	Foreign-Key	Relationship	To	Code	Transactions	Sagas	More	Services,	More	Pain	Breaking	Changes	Reporting	Monitoring	and	Troubleshooting	Local	Developer	Experience	Running	Too	Many	Things	End-to-end	Testing	Global	Verses	Local	Optimization	Robustness	and	Resiliency	Orphaned	Services	Jump	to
ratings	and	reviewsHow	do	you	detangle	a	monolithic	system	and	migrate	it	to	a	microservices	architecture?	How	do	you	do	it	while	maintaining	business-as-usual?	As	a	companion	to	Sam	Newman's	extremely	popular	Building	Microservices,	this	new	book	details	a	proven	method	for	transitioning	an	existing	monolithic	system	to	a	microservice
architecture.With	many	illustrative	examples,	insightful	migration	patterns,	and	a	bevy	of	practical	advice	to	transition	your	monolith	enterprise	into	a	microservice	operation,	this	practical	guide	covers	multiple	scenarios	and	strategies	for	a	successful	migration,	from	initial	planning	all	the	way	through	application	and	database	decomposition.	You'll
learn	several	tried	and	tested	patterns	and	techniques	that	you	can	use	as	you	migrate	your	existing	architecture.*Ideal	for	organizations	looking	to	transition	to	microservices,	rather	than	rebuild*Helps	companies	determine	whether	to	migrate,	when	to	migrate,	and	where	to	begin*Addresses	communication,	integration,	and	the	migration	of	legacy
systems*Discusses	multiple	migration	patterns	and	where	they	apply*Provides	database	migration	examples,	along	with	synchronization	strategies*Explores	application	decomposition,	including	several	architectural	refactoring	patterns*Delves	into	details	of	database	decomposition,	including	the	impact	of	breaking	referential	and	transactional
integrity,	new	failure	modes,	and	more	536	people	are	currently	readingDisplaying	1	-	30	of	98	reviewsNovember	26,	2019Sam	Newman	did	it	again.	He	has	written	a	very	good	book	on	microservices.The	one	which	is	technology-agnostic	&	in	the	same	time	-	very	practical.What	I	like	most	is	that	Sam	doesn't	try	to	avoid	answering	uncomfortable
questions	-	e.g.	what	to	do	when	we	have	queries	spanning	across	separate	storages.	Another	positive	fact	is	that	we're	not	getting	100th	description	of	what	is	CQRS	&	Eventsourcing.What	else?	There's	no	zealotry,	no	expressed	preferences	regarding	any	particular	tools	(except	Sam's	love	towards	FaaS	;>),	examples	presented	are	good	enough
(not	really	deeply	into	the	details,	but	on	a	sufficient	level).What	did	I	miss?	Some	more	explicit	statements	regarding	data	redundancy	(pragmatism	over	normalization),	helpful	conventions	(append-only	approach	&	immutability	of	selected	data	-	this	was	partially	covered	in	the	chapter	about	deletes).Strongly	recommended.	Short,	but	a	very	decent
book.P.S.	The	version	I've	got	was	sponsored	by	nginx	(2019.10)	-	it	may	differ	slightly	from	the	version	which	will	be	mass-printed.January	27,	2020Overall	I	found	this	book	to	be	an	excellent,	practical	guide	to	approaching	a	monolith	decomposition,	though	I	have	a	few	issues	with	it.	The	Good:-	Newman	starts	by	presenting	all	of	the	reasons	why
you	might	want	to	do	microservices	and	how	you	could	solve	them	WITHOUT	doing	microservices.	This	was	the	main	complaint	with	"Building	Microservices"	which	presents	microservices	without	being	too	critical	about	when	one	would	want	to	avoid	microservices.	-	There's	a	great	section	describing	how	one	might	help	their	organization	to	make	a
change	to	microservices.	This	section	builds	nicely	on	Newman's	second	chapter	of	"Building	Microservices",	"The	Evolutionary	Architect".	-	There	are	some	good	decomposition	patterns,	notably:	branch	by	abstraction	and	the	strangler	fig	pattern.	-	There	is	an	EXCELLENT	section	on	the	growing	pains	one	might	encounter	when	they	start	adopting
microservices.	I	found	this	section	to	be	particularly	useful	because	it's	leveraging	Newman's	considerable	experience	as	a	consultant,	in	which	he's	seen	lots	of	different	companies	adopt	microservices	and	encounter	problems.	-	Newman	focuses	on	core,	long-lived	aspects	of	migrations	instead	of	on	specific	technologies	(which	will	be	outdated	in	a
year),	with	just	enough	technology	examples	to	help	one	connect	concepts	to	real	world	examples.	The	Not	So	Good:-	The	actual	decomposition	recommendations	almost	entirely	ignore	the	issues	brought	up	in	the	"Growing	Pains"	chapter.	One	huge	issue	which	microservices	bring	up	is	that	network	calls	have	a	different	guarantee	than	databases:
they	may	fail,	they	aren't	transactional,	they	may	timeout,	etc.	This	causes	big	problems	with	two	proposals	in	the	book:	-	Dual	write	migrations	-	A	migration	strategy	in	which	one	writes	to	both	systems	using	rest	calls,	migrates	data,	and	then	changes	reads	to	the	new	source	of	truth.	The	big	issue	with	this	strategy	is	keeping	both	stores	consistent
since	calls	to	either	system	can	fail	or	timeout.	In	my	experience,	this	is	one	of	the	hardest	parts	of	migrations,	and	it's	barely	handled	as	written.	I	would	have	loved	to	see	more	examples	of	how	companies	handled	this,	from	Newman's	experience.	-	Orchestrated	Sagas	-	A	similar	issue	arises	in	Orchestrated	Sagas.	There	may	be	partial	failures	on
any	part	of	the	way	with	both	the	inbound	saga	and	the	"compensating	transaction".	The	book	suggests	using	choreographed	transactions	where	possible	but	doesn't	bring	up	this	danger	of	orchestrated	transactions.	I'm	wondering	if	it	would	have	been	better	to	restructure	the	book	to	first	present	the	unique	issues	which	microservice	architectures
encounter	and	then	present	decomposition	techniques	which	lead	to	architectures	which	are	resilient	to	these	issues.	-	The	decomposition	examples	given	are	pretty	straightforward.	This	is	probably	to	make	the	points	very	clear,	but	it	would	have	been	great	to	have	at	least	one	example	of	a	decomposition	which	was	tricky	or	which	wasn't	worth
decomposing	at	all.	Newman	mentions	that	such	examples	exist,	but	doesn't	do	any	further	examination.	Overall:	Overall,	a	very	practical	guide	to	migrating	from	a	monolith	to	microservices,	and	(importantly)	why	you	might	not	want	to.April	5,	2020One	word:	BORINGThe	book	is	basically	2~3	chapters	and	bunch	of	filler	chapters.If	you	have	some
experience	or	got	your	hands	dirty	already	with	microservices,	then	probably	the	majority	of	the	book	is	known	to	you,	the	material	you	read	and	watch	online	on	daily	basis	covers	the	majority	of	the	book.If	you	don't	have	any	experience	with	microservices	AND	you've	been	living	in	a	cave	to	avoid	online	material	about	microservices	then	it	might	be
a	good	book	for	you.June	12,	2020What	I	liked	a	most	in	the	book	is	that	is	short	and	dense.	It	have	everything	in	proper	amount	of	length,	giving	a	good	overview	of	the	problems,	and	provide	some	of	possible	solution	to	them	with	a	bit	of	“what	I	would	do”.Really	good	book.	June	26,	2020Practical	advice	on	how	to	move	to	Microservices.	It	also
discusses	the	reasons	you	would	want	to	migrate	your	app	to	a	Microservices	architectural	style	and	even	gives	alternatives	that	might	help	you	achieve	the	same	goal	without	migrating.	I	liked	the	realistic	examples,	trade-off	analysis.I	enjoyed	Chapter	4,	on	Decomposing	the	Database	the	most,	because	I	think	that's	probably	the	hardest	part	when
migrating	to	Microservices	(and	the	one	that	gets	the	least	amount	of	coverage	in	many	resources).	The	patterns	cover	problems	we've	all	seen	in	the	wild	and	the	solutions	are	pragmatic	and	useful.September	17,	2023Having	stable	interfaces	between	services	is	essential	if	we	want	independent	deployability.Quite	insightful	and	practical.	A	big	part
of	the	book	is	patterns	that	can	be	applied	when	transforming	from	a	monolith	to	microservices.	There	were	some	patterns	that	I	skimmed	through	faster	(mainly	because	I	had	good	familiarity	with	them	already),	but	it	didn't	take	away	from	my	overall	enjoyment.February	1,	2022I	confess	that	the	title	made	me	think	of	a	very	boring	and	strictly
tactical	book.	However	the	book	starts	with	a	strategic	view	of	microservices,	specifying	the	benefits	and	drawbacks	of	the	approach	regarding	large	escale	engineering	and	startups	as	well.	Later	on,	SN	covers	some	very	useful	patterns	when	it	comes	to	design	microservices	from	unstructured	monolithic	architectures.	Furthermore,	it	covers
precisely	the	challenges	of	tackling	databases	when	decoupling	your	monolithic	architecture.	Finally,	I	really	appreciated	the	sobered	and	mature	view	of	SN	considering	the	impacts	os	scaling	your	microservices	architecture	on	large	scale	software	engineering	taking	into	account	the	cognitive	load	that	some	organizations	might	face	if	they	are	too
much	permissive.	This	is	an	essential	book	for	architects	and	software	engineers	that	wish	to	improve	their	knowledge	on	possible	challenges	and	solutions	dealing	with	microservices.	In	my	point	of	view	this	book	is	paramount	for	technological	leaders	-	CTOs,	Chief	Architects	and	so	on	-	that	are	facing	a	technological	growth	and	intend	to	employ
some	evolutionary	software	architecture	strategy.	November	29,	2020A	nice	book	with	lots	of	recepies,	patterns	and	best	practices	for	breaking	monoliths	into	microservices.	Not	too	detailed	into	tech	stuff,	but	still	good	anough.May	10,	2020I	went	through	many	of	mentioned	problems	in	hard	way.	Anyway,	it	was	a	good	opportunity	to	stop	and
think.	I	like	that	this	book	does	not	push	microservices	for	everything.	Architectonic	hints	described	in	the	book	could	be	handy	for	any	modular	system.I	got	a	free	copy	via	nginxOctober	14,	2022July	16,	2021A	great	book	presenting	patterns	for	transforming	a	monolithic	system	into	a	microservice	architecture.	The	Sam	Newman’s	exposition	is	clear
(but	dense!),	very	pragmatic	and	grounded	in	reality,	reflecting	real-life	experience	in	countless	projects.	It	gives	me	a	lot	of	confidence	that	a	good	chunk	of	the	initial	chapters	is	spent	giving	you	reasons	not	to	choose	microservices:	all	the	pros	and	cons	are	evaluated,	and	alternatives	are	proposed.	This	type	of	architecture	is	not	for	everybody,
especially	not	for	startups.If	after	all	the	warnings	you’re	still	convinced	that	microservices	are	the	way	to	go,	the	author	proceeds	by	defining	basic	concepts	and	outlining	the	general	plan	for	a	successful	migration.	DDD	is	presented	as	an	invaluable	tool	for	identifying	service	boundaries,	and	several	other	aspects	are	also	explored:	cultural	changes,
team	satisfaction,	ownership,	etc.	because	technical	matters	are	not	the	only	subject	that	needs	to	be	considered.The	core	of	the	book	is	in	chapters	3	and	4,	which	present	a	catalog	of	high-level	patterns	for	splitting	a	monolith	both	from	the	service’s	perspective	and	from	the	database’s	perspective.	The	solutions	to	common	problems	are	explained	at
different	levels	of	detail:	some	involve	fiddling	with	networking	and	infrastructure,	others	modifying	service	code	via	refactoring,	and	others	propose	changes	in	the	database	or	its	tables	–	but	never	going	into	actual	implementation	details.Several	of	the	patterns	felt	familiar;	I’ve	probably	applied	them	in	some	capacity	without	knowing	they	existed
(but	I	wish	I	knew	them	before!)	I	was	very	satisfied	with	the	patterns	and	the	methodology,	it	encourages	incremental,	evolutionary	changes	in	architecture	while	offering	multiple	alternatives;	sometimes	the	author	shows	his	preference	for	one	over	the	other	but	he’s	emphatic	that	all	depends	on	the	context	of	each	problem.	For	a	an	example	of	the
plethora	of	options	available	for	each	situation,	take	a	look	at	the	discussion	of	how	to	split	reference	data	in	a	database.A	couple	of	the	patterns	present	somewhat	surprising	solutions,	I	really	liked	this	out-of-the-box	thinking,	away	from	dogmatisms	and	from	the	tyranny	of	batch	processing	and	monolithic	databases,	making	a	good	case	for	event-
based	microservice	architectures.	The	final	chapter	deals	with	practical	considerations	and	tips	when	the	number	of	services	starts	to	grow,	and	when	to	expect	the	problems	to	pop	up.	Interesting	stuff	to	have	in	mind.	Also	in	this	chapter	and	in	the	whole	book	in	general,	the	author	recommends	open	source	tools	for	different	needs,	I’ll	list	the	most
useful	for	my	own	future	reference:	change	data	capture	systems,	service	meshes,	GitHub	Scientist,	FlywayDB,	SchemaSpy,	ELK,	Jaeger,	pact.io.A	final	word	of	advice:	bear	in	mind	that	this	book	is	not	a	standalone	reference.	To	gain	a	good	understanding	of	the	details	of	implementing	a	microservice	architecture,	one	needs	to	also	read	“Building
Microservices”	by	the	same	author,	which	I	intend	to	do	–	the	perfect	companion	for	this	volume.	Needless	to	say,	I	highly	recommend	this	book	to	any	architect	considering	jumping	into	the	microservice	bandwagon,	but	doing	so	in	a	responsible	way.January	22,	2020A	great	thing	about	this	book	is	that	it	covers	a	lot	of	the	non-technical	prerequisites
that	need	to	be	considered	within	an	organization,	before	even	bothering	to	attempt	to	migrate	to	a	microservices	architecture.	Basic	questions	about	“why”	an	organization	would	even	want	to	do	that	are	not-so	common	sense,	but	essential.	Without	knowing	why	your	organization	wants	to	make	such	a	move	most	likely	condemns	the	“IT
department”	to	merely	creating	the	legacy	systems	of	tomorrow.There	is	also	coverage	of	methods	to	help	advocate	for	such	prerequisite	organizational	change,	which	is	probably	not	something	your	average	software	developer	is	familiar	with,	so	a	very	valuable	read	indeed.The	patterns	for	migrating	from	monoliths	to	microservices	in	Chapter	3
include	some	that	are	just	useful	pattens	in	any	system	migration	or	modification	context,	but	the	coverage	is	clear	and	reminded	me	of	the	times	when	I’d	employed	similar	techniques	myself.	As	is	the	case	with	design	patterns,	having	a	common	vocabulary	for	them	is	a	valuable	aspect.Chapter	four	covers	decomposition	of	your	classic	relational
database	schemas	into	more	microservices	friendly	granularity,	without	glossing	over	the	trade-offs	to	be	understood.The	last	chapter	overviews	some	types	of	issues	that	one	might	experience	during	an	incremental	journey	to	more	and	more	microservices	and	perhaps	a	growing	organization	(if	you	are	lucky	to	be	part	of	a	successful	one!)I	read	the
Building	Microservices	book	first,	but	found	this	one	useful	for	its	focus	on	migrating	from	a	monolith	/	shared	database	nightmare	to	microservices.	I’ll	certainly	take	care	to	pull	this	back	up	when	I’m	facing	some	kind	of	migration	issue,	for	inspiration	or	ideas	I	might	forget	in	the	meantime.	That	said,	if	you	can	properly	modularize	your	system(s)
then	you	might	be	better	to	not	even	think	about	microservices,	a	point	made	in	both	this	book	and	the	earlier	one.I	read	the	1st	edition	-	there’s	several	editing	/	typo	problems	throughout	(mostly	chapters	3	and	4	I	think),	but	not	so	bad	the	content	can’t	be	understood.March	2,	2021Um	apanhado	de	boas	práticas	e	exemplos	adquiridos	pelo	autor.	A
parte	técnica	é	bem	superficial,	mas	apresenta	boas	referênciasMarch	29,	2021This	book	has	some	good	advice	on	how	to	manage	an	application	or	database	migration	in	small	steps.	The	first	and	last	chapters	are	just	an	introduction	to	microservices	and	their	problems.	Nothing	new	especially	for	those	who	have	already	read	"Building
Microservices".The	second	chapter	helps	us	to	plan	the	migration	including	the	soft	skills	required.	But	more	interesting	than	that,	it	shows	us	that	depend	on	the	problems	we	are	trying	to	solve	there	are	some	easier	and	cheaper	alternatives	to	microservices	that	do	necessarily	involve	code.	For	example,	changing	the	organizational	structure	or	the
infrastructure.The	third	and	forth	chapters	talk	about	the	patterns.	This	should	be	the	most	important	part	of	the	book	but	I	didn't	like	how	the	patterns	were	organized.	Comparing	to	other	"patterns"	books	like	"Design	Patterns"	and	"Enterprise	Integration	Patterns",	this	book	is	much	more	disorganized.	One	of	the	most	valuable	thing	about	the
patterns	is	that	when	you	read	about	one	of	them,	you	can	also	have	a	good	overview	about	other	related	ones.	Here,	the	patterns	are	sometimes	compared	only	in	one	way.	For	example,	if	patterns	A	and	B	are	related	and	B	is	presented	last,	the	chapter	that	talks	about	B	will	compare	it	to	A	but	not	necessary	the	other	way	around.	That	way,	you	can
only	see	the	relationship	among	them	if	you	read	them	in	order.Besides	that,	some	patterns	seems	not	to	be	very	useful.	The	most	important	ones	are	listed	and	explained	in	this	talk	was	made	just	before	this	book	release:	think	it	is	something	between	3	and	4	stars.	I	will	rate	as	4	because	it	is	not	easy	to	find	material	about	it.architecture	enterprise-
architectureMarch	15,	2024"Monolith	to	Microservices"	is	a	highly	insightful	book	that	diligently	tackles	the	complex	process	of	transitioning	an	application	from	monolithic	architecture	to	microservices.	It	bridges	the	gap	between	theory	and	practice,	bringing	valuable	pragmatic	recommendations	to	the	table.The	book	excels	in	delineating	modern
architectural	patterns,	providing	an	updated	framework	for	individuals	grappling	with	contemporary	software	development	needs.	Not	only	does	it	discuss	the	'how-to'	extensively,	but	it	also	lays	emphasis	on	the	'why',	offering	readers	the	understanding	to	make	informed	decisions	rather	than	blindly	following	best	practices.A	key	strength	of	this
book	lies	in	its	balanced	view.	The	author	doesn't	merely	paint	an	idyllic	picture	of	microservices	but	delves	into	potential	pitfalls	and	challenges	too.	This	clear-eyed	perspective	extends	beyond	pure	technical	implications,	touching	on	organizational,	cultural,	and	operational	pitfalls	that	one	might	encounter	during	the	transition.This	feature	turns	the
book	into	more	than	just	a	technical	guide;	it	becomes	a	holistic	tool	for	organizations	seeking	to	navigate	the	rough	waters	of	infrastructure	transformation.	The	author's	articulate	style	blended	with	relatable	examples	and	practical	tips	aids	in	transforming	esoteric	concepts	into	comprehensible	knowledge.In	conclusion,	"Monolith	to	Microservices"
is	a	must-read	for	anyone	involved	in	or	looking	to	embark	on	the	journey	of	transitioning	from	a	monolithic	architecture	to	microservices.	It	is	woven	with	wisdom,	cautionary	tales,	and	helpful	strategies	that	will	guide	you	effectively	through	the	complexity	of	such	a	transformation.March	14,	2023This	book	is	gold.	I	wish	I	had	read	it	when	I	was
struggling	to	break	down	a	legacy	monolith	into	microservices.	A	lot	of	the	problems	I	faced	were	actually	covered	in	this	book,	and	even	if	I	couldn't	have	avoided	them,	I	would	have	been	better	prepared	for	them.	The	book	isn't	just	about	microservices,	but	it	also	covers	how	to	break	down	your	codebase	and	persistence	layer	to	make	them	more
modular.	It	even	helps	you	to	consider	whether	you	need	to	do	this	in	the	first	place	and	the	cost	of	doing	it.I	think	it	would	be	great	if	this	book	had	a	second	edition	with	more	practical	examples.	For	instance,	most	people	are	aware	that	to	decouple	and	migrate	part	of	your	database	to	a	new	microservice,	you	need	to	copy	the	data	and	start	using	it.
However,	it's	actually	more	challenging	to	do	than	we	realize,	especially	if	you	want	to	achieve	zero	downtime.	Simple	backup	and	restore,	along	with	some	synchronization	strategy,	may	not	be	enough.	It	can	be	a	real	challenge	to	avoid	a	maintenance	window	while	ensuring	that	the	data	is	consistent	between	both	databases	(consider	using	write-
ahead	log	for	synchronization	and	MD5	checksum	hash	function	for	testing).I'm	currently	reading	Software	Architecture:	The	Hard	Parts,	and	I	think	these	two	books	complement	each	other	pretty	well.March	3,	2021It's	so	hard	to	write	a	good	book	about	software	architecture.	I	think	you	have	two	options:	digging	deeply	into	the	technical	details	or
trying	to	be	technologicaly	agnostic	and	relying	only	on	"abstractions".	This	book	is	of	the	latter	type	-	word	"Docker"	is	used	only	once	and	word	"Kubernetess"	is	used	less	than	five	times	:)	And	this	is	a	really	good	book.What	I	liked:-	Simplicity.	All	the	patterns	short	and	well	explained.	Moreover,	we	always	have	a	context	of	usage	-	it's	easier	to	put
it	in	the	"real-life"	scenario.-	Pragmatism.	I	like	the	idea	of	slider	instead	of	button	for	description	of	making	changes.	Nothing	is	for	free	and	we	should	always	look	at	architecture	migration	in	this	way.What	I	didn't	like:-	The	shallowness	of	some	topics.	For	example,	the	phrase	"extract	your	services	based	on	bounded	contexts"	is	in	self	a	topic	for
multiple	books.	However,	I	understand	that	exploring	such	problems	in	this	book	would	increase	the	number	of	pages	dramatically	:)	I	accept	it.April	10,	2023El	libro	es	altamente	práctico	y	está	estructurado	en	seis	partes,	cada	una	enfocada	en	un	aspecto	diferente	de	la	migración	a	microservicios.	En	la	primera	parte,	Newman	presenta	una
introducción	general	sobre	las	arquitecturas	monolíticas	y	de	microservicios.	En	las	siguientes	partes,	se	enfoca	en	aspectos	específicos,	incluyendo	cómo	dividir	una	aplicación	monolítica	en	microservicios,	cómo	implementar	una	arquitectura	de	microservicios,	cómo	diseñar	y	mantener	bases	de	datos	distribuidas	y	cómo	manejar	problemas	como	la
monitorización	,	la	seguridad	y	los	errores.A	lo	largo	del	libro,	Newman	incorpora	numerosos	ejemplos	de	la	vida	real	de	su	experiencia	trabajando	en	diversos	proyectos	y	organizaciones.	Las	historias	sugieren	que	aunque	la	migración	de	una	arquitectura	monolítica	a	una	basada	en	microservicios	es	un	proceso	difícil,	el	resultado	final	puede	ser
positivo	al	mejorar	la	escalabilidad,	la	flexibilidad	y	la	agilidad	de	las	organizaciones.May	6,	2025Most	useful	concepts	were:-	Purpose	of	microservices	being:	independent	deployability;	modeling	of	business	domain	or	functionality,	rather	than	a	technology;	having	ownership	of	data.-	Information	hiding:	keep	boundaries	stable,	and	only	change	the
internals.-	Try	to	salvage	the	monolith	before	switching	to	microservices.	Split	the	monolith	into	modules	first.-	Strangler	Fig	pattern	for	migration.-	Branch	by	Abstraction	pattern	for	migration.-	Using	parallel	runs	(n-version	programming)	for	high-risk	migrations.-	Coping	patterns	to	avoid	splitting	the	existing	database	into	logically	separated
schemas	(e.g.	views;	database	wrapper	service;	database-as-a-service).-	Differences	between	the	monolith	exposing	a	data	API	endpoint	to	the	microservice	vs.	the	other	way	round.-	Tracer	write:	start	syncing	small	pieces	of	data	with	a	phased	switchover.	Until	complete	switchover,	the	databases	will	have	syncing	delay	but	with	the	goal	of	eventual
consistency.-	Long-lived	transactions	and	sagas.October	28,	2020Another	great	microservices	book	from	Sam	Newman.	I	felt	this	is	a	sequel	to	his	earlier	book,	Building	Microservices.	Sam	updated	some	concepts	from	recent	microservices	evolution	such	as	choreographed	vs	orchestrated	Sagas,	added	infrastructure	evolution	such	as	Kubernetes.	I
loved	the	depth	he	covered	the	monolith	database	refactoring	and	the	simple	but	elegant	solutions	he	proposed	using	schemas	and	views	in	existing	database	engine	for	refactoring.	I'm	a	fan	of	Sam's	pragmatic	approach	when	introducing	new	concepts	that	works	very	well	for	startups	and	big	corporations.	He	also	delved	in	to	details	about	the
organizational	aspects	of	microservices	and	the	distributed	systems	concerns	that	microservices	might	bring.	If	you	liked	reading	his	earlier	book	Building	Microservices,	then	this	is	a	highly	recommended	sequel	helping	in	implementing	that.April	7,	2021This	book	seems	to	be	a	step	1	if	an	organization	is	flirting	with	the	idea	of	moving	from	a
monolith	to	microservices.	I	like	the	fact	the	author	is	honest	about	evaluating	your	needs	before	allowing	yourself	to	be	swept	by	the	herd.	Since	I	am	a	part	of	an	organization	which	has	already	made	the	decision	to	switch	to	using	microservices	(and	rightly	so!!),	it's	interesting	to	know	that	some	issues	are	quite	widespread	regardless	of	which
organization	you	work	for	and	actually	see	them	in	front	of	myself.	The	author	has	identified	those	issues	and	has	given	solutions	which	are	actually	being	implemented	by	my	team	(eg:	Strangler	Fig,	Shims).	But	at	some	point,	one	might	realize	that	the	author	has	written	things	that	are	quite	obvious	and	seemed	repetitive	(parity	with	legacy
functionality,	end-to-end	integration	testing,	breaking	changes).	It	kind	of	became	a	drag	in	the	5th	chapter.March	17,	2023Really	great	book.It	does	not	concentrate	on	any	specific	technological	stack,	but	gives	very	good	advice	on	what	to	be	aware	of	when	moving	to	microservices,	what	problems	they	could	solve,	and	decide	whether	such	migration
is	the	right	step	for	you.Sam	is	not	"preachy"	about	microservices,	and	honestly	states	possible	problems,	and	cases	where	migration	won't	help	you.While	it's	impossible	to	give	advice	that	will	work	for	100%	of	people,	author	does	provide	a	wide	selection	of	options	for	migrations,	with	considerations	for	each	one,	so	that	one	can	compare	their
situation	with	"hypothetical"	one,	and	adapt	decision	for	their	case.If	you	have	a	monolith	currently,	or	thinking	about	migration,	or	you're	already	part	of	microservice	company,	but	want	to	know	more	about	challenges	of	microservice	architecture	-	this	will	be	a	great	read.August	18,	2020Pure	excellence	-	must	read	It	is	an	amazing	book.	It	covers
everything	from	start	to	end.	If	you	want	to	travel	the	road	of	Microservices.	It’s	structured	in	a	way	that	fits	the	mental	model	of	monolith	developers	but	to	evaluate	Microservices	architecture.	It’s	going	to	serve	a	glossary	of	what	to	do	&	what	not	to	do	when	doing	Microservices.	Starts	with	simple	3	questions,	during	the	journey	you	would	feel
yeah	it	feels	very	real.	But	without	single	line	of	code.	You	will	get	answers	along	the	way,	from	people	problems,	team	ownership,	tackling	database,	importance	of	DDD	and	suggestions	on	tool	one	has	to	learn	along	the	way.	Thanks	Sam	Newman	for	writing	such	an	amazing	book.	September	8,	2020A	very	well	written	book,	which	shows	in	every
page	the	experience	of	the	author	on	the	topic.	It	really	puts	into	perspective	the	huge	task	of	moving	to	microservices	from	a	monolith,	the	most	common	pitfalls,	and	provides	possible	solutions	to	them.	The	book	is	mostly	useful	as	a	reference	for	your	journey	of	moving	to	microservices,	it	is	not	an	absolute	proven	guide	of	not	failing,	but	more	a
collection	of	very	well	organized	experiences	that	will	help	you	avoid	most	common	problems	and	kind	of	guide	your	decision	making.	It	is	good	that	the	author	emphasizes	at	the	start	that	microservices	is	not	for	every	situation,	and	spends	some	time	explaining	how	you	can	figure	this	out	for	your	current	situation	before	you	start.August	25,	2021I
think	this	book	gives	a	great	overview	on	how	to	start	a	successful	Monolith	to	Microservices	transition.	The	part	that	I	liked	the	most	is	that	the	Technical	Project	Management	techniques	described	in	this	book	can	be	applied	to	any	large	technical	undertaking.Another	thing	that	I	really	appreciated	is	that	book	talks	about	how	Microservices	can't	be
a	silver	bullet	and	end	coal	by	themselves	and	how	to	identify	what	problem	they	can	solve	if	any.However,	to	actually	lead	the	process	of	splitting	the	monolith	before	reading	this	book	I	felt	the	reader	needs	to	have	a	good	understanding	of	Domain-Driven	Design.	The	book	covers	it	very	briefly.August	26,	2021This	book	was	illuminating	to	me	in
terms	of	laying	out	a	process	for	getting	from	a	to	z.	I'm	currently	in	the	middle	of	such	a	transition	in	my	work	as	a	software	engineer	and	I	learned	a	lot	about	the	why	and	the	how	of	to	do	so.	I	enjoyed	the	lack	of	real	code	examples	instead	the	book	focuses	on	describing	concepts	through	simple	diagrams.	The	work	of	breaking	apart	monoliths	is
not	obvious	and	there	are	a	lot	of	pitfalls	one	can	find	themselves	in	if	you	don't	have	the	experiences.	I	now	have	a	lot	more	clarity	on	what	the	right	approaches	are	in	a	wide	variety	of	situations.	The	book	is	also	quite	short	and	readable	which	made	it	easy	to	digest.November	6,	2021Definitely	a	book	every	software	engineer	must	read!	Newman
shows	how	complex	is	the	job	of	restructuring	a	monolithic	application	in	a	microservice	one,	where	you	can	fail	and	how	much.	Correctly	the	author	put	the	doubt	into	your	mind	if	it	is	the	correct	choice	for	you	to	follow	the	microservice	approach	or	not,	or	if	you	are	ready	for	that.	There	are	so	many	challenges	that	the	team	and	his	organisation
must	be	well	aligned	with	that	challenge!	Never	do	the	transformation	all	together,	but	design	and	follow	an	iterative	and	evolving	path.	Complex	software	will	become	even	more	complex	with	the	transformation,	and	only	a	strong	discipline	and	good	organization	will	make	you	successful!January	23,	2022Book	covers	various	patterns	that	teams	can
use	in	transforming	monoliths	to	microservices.	It	lists	out	and	has	high	level	details	on	what	could	be	possible	path	of	migrations	in	different	conditions.	Sam	has	also	given	his	personal	preferences	after	every	pattern.	For	a	team	that	has	started	to	ask	whether	to	migrate	to	Microservices	and	if	yes,	then	what	could	be	general	guidance,	this	is	a
good	work.	It	won't	take	long	to	read	it	end	to	end.	Key	takeaway	would	be	-	list	of	patterns	and	pros	and	cons	of	each	one	of	those.	You	can	then	start	your	in-depth	analysis	of	your	systems	by	keeping	all	of	this	information	at	the	forefront.	It	can	make	your	decision	making	exercise	more	objective.November	9,	2020Why	Sam	Newman	wrote	this
book?	(IMO)Because	as	Martin	Fowler	wrote,	"You	must	be	THIS	tall	to	use	microservices".When	should	I	move	to	microservice	architecture?What	are	the	pros	and	cons	of	microservice	architecture?Which	module	of	my	system	should	I	move	as	first?What	is	the	process	of	refactoring	to	microservices?What	are	the	best	practices	for	refactoring	to
microservices?	What	new	problems	will	occur	after	moving	to	microservice	architecture?This	book	will	help	you	grow	to	"THIS"	tall	by	answering	those	and	other	questions.March	24,	2021Honestly	in	the	past	years	I	have	read	a	lot	of	titles	about	microservices	architecture	but	this	one	turned	out	to	be	actually	useful	for	me	and	my	job.	For	the	last
two	years	I	was	desperately	trying	to	get	rid	of	monolithic	structured	applications	and	this	book	gave	me	the	best	approaches	to	do	that!	It	is	fairly	simple	but	really	practical	and	useful!	Congrats	to	Newman!	Although	there	were	many	thing	I	already	knew,	there	were	also	some	observations	and	simple	advices	that	can	definitely	change	your
workflow	whenever	you	are	facing	such	issues.Displaying	1	-	30	of	98	reviewsGet	help	and	learn	more	about	the	design.	Download	Monolith	to	Microservices:	Evolutionary	Patterns	to	Transform	Your	Monolith	PDF	How	do	you	detangle	a	monolithic	system	and	migrate	it	to	a	microservice	architecture?	How	do	you	do	it	while	maintaining	business-as-
usual?	As	a	companion	to	Sam	Newman’s	extremely	popular	Building	Microservices,	this	new	book	details	a	proven	method	for	transitioning	an	existing	monolithic	system	to	a	microservice	architecture.	With	many	illustrative	examples,	insightful	migration	patterns,	and	a	bevy	of	practical	advice	to	transition	your	monolith	enterprise	into	a
microservice	operation,	this	practical	guide	covers	multiple	scenarios	and	strategies	for	a	successful	migration,	from	initial	planning	all	the	way	through	application	and	database	decomposition.	You’ll	learn	several	tried	and	tested	patterns	and	techniques	that	you	can	use	as	you	migrate	your	existing	architecture.	•	Ideal	for	organizations	looking	to
transition	to	microservices,	rather	than	rebuild	•	Helps	companies	determine	whether	to	migrate,	when	to	migrate,	and	where	to	begin	•	Addresses	communication,	integration,	and	the	migration	of	legacy	systems	•	Discusses	multiple	migration	patterns	and	where	they	apply	•	Provides	database	migration	examples,	along	with	synchronization
strategies	•	Explores	application	decomposition,	including	several	architectural	refactoring	patterns	•	Delves	into	details	of	database	decomposition,	including	the	impact	of	breaking	referential	and	transactional	integrity,	new	failure	modes,	and	more...


