
	

https://xesirabig.maxudijuz.com/829171044471490233007776626112601361633120?litijabaxilitazakavugiburerizugevegozerenatifanokivexuf=gazojufexudomijovadiresimilitubifepopumitoguzaziboxorogezoxavawegigowuvakefumesikafogupabifuponolikofenugiberinorugemokowenamiwavorakemezegokafematusosevemexixazosorebipogufizopivafivawajumikugakasida&utm_term=esp32+python+bluetooth+example+arduino&zodexekizigaxemonekevuluvatepazafimojinuxonotitolujozatogesosesagafemejakag=kimuwuxutugoxeralorevigidunabiviterexafazidixexivufikedizipavetonetabozigusakizukisujidivimudewebowewi

The	objective	of	this	tutorial	is	to	explain	how	to	configure	the	ESP32	to	act	as	a	discoverable	Bluetooth	device	and	then	find	it	using	a	Python	program.	The	tests	of	this	ESP32	tutorial	were	performed	using	a	DFRobot’s	ESP-WROOM-32	device	integrated	in	a	ESP32	FireBeetle	board.	Introduction	The	objective	of	this	tutorial	is	to	explain	how	to
configure	the	ESP32	to	act	as	a	discoverable	Bluetooth	device	and	then	find	it	using	a	Python	program.	The	ESP32	will	be	running	the	Arduino	core.	On	Python,	we	will	be	using	Pybluez,	a	module	that	will	allow	us	to	use	the	Bluetooth	functionalities	of	a	computer	that	supports	this	protocol.	Note	that	the	use	of	Pybluez	was	already	covered	in	this
previous	tutorial.	As	mentioned	there,	you	can	get	the	.exe	file	from	the	module’s	page	and	install	it.	Since	the	Bluetooth	functionalities	have	just	recently	arrived	to	the	Arduino	core	at	the	time	of	writing,	you	may	need	to	get	the	latest	version	from	the	Github	page	to	be	able	to	follow	this	tutorial.	On	the	ESP32	side,	we	will	use	some	lower	level	IDF
functions	to	start	the	Bluetooth	stacks	and	to	make	the	device	discoverable.	This	was	already	covered	in	detail	on	this	previous	tutorial.	You	can	check	here	the	Bluetooth	classic	API	from	IDF.	The	tests	of	this	ESP32	tutorial	were	performed	using	a	DFRobot’s	ESP-WROOM-32	device	integrated	in	a	ESP32	FireBeetle	board.	The	Python	code	We	start
our	Python	script	by	importing	the	new	library	we	have	just	installed.	Note	that	even	tough	the	library	is	called	Pybluez,	the	actual	code	module	we	are	going	to	use	is	called	bluetooth.	import	bluetooth	To	start	the	discovery,	we	simply	need	to	call	the	discover_devices	function.	In	order	for	the	discovery	to	return	the	names	of	the	devices,	we	pass	the
value	True	in	the	lookup_names	parameter	of	the	function.	Note	that	this	is	an	optional	parameter	that	defaults	to	False	and	without	setting	it	to	True	we	would	only	get	the	address	of	the	devices.	Take	in	consideration	that	the	execution	of	this	function	takes	a	while,	in	order	to	scan	the	nearby	devices.	By	default,	the	discovery	duration	is	8	seconds,
and	we	will	not	change	it.	devices	=	bluetooth.discover_devices(lookup_names=True)	This	function	call	will	return	a	list	that	we	can	iterate	in	a	for	in	loop,	in	order	to	print	each	device’s	information.	Each	element	of	the	list	will	contain	both	the	Bluetooth	address	and	the	device	name.	Before	this	loop,	we	will	also	print	the	size	of	the	list,	which	will
correspond	to	the	number	of	Bluetooth	devices	found	during	the	discovery	procedure.	print("Devices	found:	%s"	%	len(devices))	for	item	in	devices:	print(item)	The	final	code	can	be	seen	below.	import	bluetooth	devices	=	bluetooth.discover_devices(lookup_names=True)	print("Devices	found:	%s"	%	len(devices))	for	item	in	devices:	print(item)	The
Arduino	code	We	will	start	our	code	by	including	the	libraries	needed	to	start	the	Bluetooth	stacks	(esp_bt_main.h)	and	to	make	the	device	discoverable	(esp_gap_bt_api.h).	Since	one	of	the	parameters	that	will	be	printed	by	the	Python	script	is	the	address	of	the	device,	we	will	also	print	it	in	the	ESP32	side,	for	comparison.	For	a	detailed	tutorial	on
how	to	print	the	Bluetooth	address	of	the	ESP32,	please	check	this	previous	post.	For	that	functionality,	we	will	need	the	esp_bt_device.h	library.	#include	"esp_bt_main.h"	#include	"esp_gap_bt_api.h"	#include	"esp_bt_device.h"	Now	that	we	have	all	the	needed	libraries	included,	we	need	a	function	to	initialize	both	the	controller	and	host	stacks	of
Bluetooth.	This	was	also	covered	in	greater	detail	in	this	previous	tutorial.	This	function	will	receive	as	input	a	string	with	the	name	of	the	device,	which	will	be	seen	by	other	Bluetooth	enabled	devices	when	discovering	it.	Thus,	this	name	should	be	later	obtained	in	the	Python	program.	bool	initBluetooth(const	char	*deviceName)	{	//	Initialization
code	}	In	the	implementation	of	the	function,	we	will	first	call	the	btStart	function,	to	initialize	the	Bluetooth	controller	stack.	Them	we	will	call	the	esp_bluedroid_init	and	esp_bluedroid_enable	functions	to	both	init	and	enable	Bluedroid	(the	host	stack).	We	will	also	perform	an	error	checking	on	the	call	of	each	of	the	previously	mentioned	functions,
so	we	are	sure	everything	has	initialized	correctly.	if	(!btStart())	{	Serial.println("Failed	to	initialize	controller");	return	false;	}	if	(esp_bluedroid_init()!=	ESP_OK)	{	Serial.println("Failed	to	initialize	bluedroid");	return	false;	}	if	(esp_bluedroid_enable()!=	ESP_OK)	{	Serial.println("Failed	to	enable	bluedroid");	return	false;	}	After	the	initialization,	we
will	set	the	device	name.	To	do	it,	we	need	to	call	the	esp_bt_dev_set_device_name	function.	This	function	will	receive	as	input	a	string	with	the	name	of	the	device.	We	will	use	the	name	which	is	the	argument	of	our	initBluetooth	function.	esp_bt_dev_set_device_name(deviceName);	Then	we	need	to	make	the	device	discoverable	with	a	call	to	the
esp_bt_gap_set_scan_mode	function,	passing	as	input	the	ESP_BT_SCAN_MODE_CONNECTABLE_DISCOVERABLE	enumerated	value.	esp_bt_gap_set_scan_mode(ESP_BT_SCAN_MODE_CONNECTABLE_DISCOVERABLE);	With	this,	we	finish	our	initBluetooth	function.	Now	we	still	need	to	declare	and	implement	a	function	that	will	be	used	to	retrieve
the	Bluetooth	address	of	the	ESP32.	We	will	basically	reuse	the	same	function	of	the	already	mentioned	previous	post	to	get	the	address.	In	its	implementation,	we	first	call	the	esp_bt_dev_get_address	function	to	get	the	six	bytes	that	compose	the	unique	address.	Then	we	will	print	them	in	the	standard	format,	which	corresponds	to	printing	each	byte
in	hexadecimal,	separated	by	colons.	void	printDeviceAddress()	{	const	uint8_t*	point	=	esp_bt_dev_get_address();	for	(int	i	=	0;	i	<	6;	i++)	{	char	str[3];	sprintf(str,	"%02X",	(int)point[i]);	Serial.print(str);	if	(i	<	5){	Serial.print(":");	}	}	}	Moving	on	to	the	Arduino	setup	function,	we	will	start	by	opening	a	wired	serial	connection,	to	print	the	results	of
our	program.	Note	that	the	Serial	object	is	being	used	by	both	our	previously	declared	functions,	so	we	need	to	make	sure	it	is	initialized	before	using	it.	Serial.begin(115200);	Next	we	call	the	initBluetooth	function,	passing	as	input	the	name	to	assign	to	the	ESP32.	I’m	using	“ESP32	BT”,	but	you	can	use	other	name.	initBluetooth("ESP32	BT");	To
finalize	the	setup	function,	we	call	the	printDeviceAddress	function,	which	will	output	the	Bluetooth	address	of	the	ESP32.	We	will	later	be	able	to	compare	against	the	one	obtained	in	the	Python	script.	printDeviceAddress();	The	final	Arduino	source	code	for	the	ESP32	can	be	seen	below.	#include	"esp_bt_main.h"	#include	"esp_bt_device.h"	#include
"esp_gap_bt_api.h"	bool	initBluetooth(const	char	*deviceName)	{	if	(!btStart())	{	Serial.println("Failed	to	initialize	controller");	return	false;	}	if	(esp_bluedroid_init()!=	ESP_OK)	{	Serial.println("Failed	to	initialize	bluedroid");	return	false;	}	if	(esp_bluedroid_enable()!=	ESP_OK)	{	Serial.println("Failed	to	enable	bluedroid");	return	false;	}
esp_bt_dev_set_device_name(deviceName);	esp_bt_gap_set_scan_mode(ESP_BT_SCAN_MODE_CONNECTABLE_DISCOVERABLE);	}	void	printDeviceAddress()	{	const	uint8_t*	point	=	esp_bt_dev_get_address();	for	(int	i	=	0;	i	<	6;	i++)	{	char	str[3];	sprintf(str,	"%02X",	(int)point[i]);	Serial.print(str);	if	(i	<	5){	Serial.print(":");	}	}	}	void	setup()	{
Serial.begin(115200);	initBluetooth("ESP32	BT");	printDeviceAddress();	}	void	loop()	{}	Testing	the	code	The	first	step	for	testing	the	code	is	to	compile	it	and	upload	it	to	the	ESP32	using	the	Arduino	IDE.	If	you	run	into	compilation	problems,	then	you	may	be	using	an	older	version	of	the	Arduino	core	without	support	for	Bluetooth,	which	you	can
easily	update	by	following	this	guide.	When	the	procedure	finishes,	simply	open	the	Arduino	IDE	serial	monitor.	You	should	get	an	output	similar	to	figure	1,	which	shows	the	device	address	getting	printed.	Figure	1	–	Bluetooth	address	of	the	ESP32.	After	this,	simply	run	the	Python	script	we	have	developed	on	the	environment	of	your	choice.	I’m
running	it	on	IDLE,	the	Python	IDE	that	comes	with	the	language	installation.	You	should	get	an	output	similar	to	figure	1,	which	shows	the	ESP32	getting	detected	during	the	scan.	Note	that	the	address	matches	the	one	we	obtained	on	the	Arduino	IDE	serial	monitor	and	the	device	name	is	the	same	we	specified	in	the	Arduino	code.	Figure	2	–
Finding	the	device	with	Pybluez.	Related	posts	The	ESP32	comes	with	Wi-Fi,	Bluetooth	Low	Energy	and	Bluetooth	Classic.	In	this	tutorial,	you’ll	learn	how	to	use	ESP32	Bluetooth	Classic	with	Arduino	IDE	to	exchange	data	between	an	ESP32	and	an	Android	smartphone.	We’ll	control	an	ESP32	output,	and	send	sensor	readings	to	an	Android
smartphone	using	Bluetooth	Classic.	Note:	this	project	is	only	compatible	with	Android	smartphones.	You	can	watch	the	video	tutorial	or	keep	reading	this	page	for	the	written	instructions.	At	the	moment,	using	Bluetooth	Classic	is	much	more	simpler	than	Bluetooth	Low	Energy.	If	you’ve	already	programmed	an	Arduino	with	a	Bluetooth	module	like
the	HC-06,	this	is	very	similar.	It	uses	the	standard	serial	protocol	and	functions.	In	this	tutorial,	we’ll	start	by	using	an	example	that	comes	with	the	Arduino	IDE.	Then,	we’ll	build	a	simple	project	to	exchange	data	between	the	ESP32	and	your	Android	smartphone.	To	follow	this	tutorial,	you	need	the	following	parts:	You	can	use	the	preceding	links
or	go	directly	to	MakerAdvisor.com/tools	to	find	all	the	parts	for	your	projects	at	the	best	price!	To	proceed	with	this	tutorial,	you	need	a	Bluetooth	Terminal	application	installed	in	your	smartphone.	We	recommend	using	the	Android	app	“Serial	Bluetooth	Terminal”	available	in	the	Play	Store.	We’ll	program	the	ESP32	using	Arduino	IDE,	so	make	sure
you	have	the	ESP32	add-on	installed	before	proceeding:	Open	your	Arduino	IDE,	and	go	to	File	>	Examples	>	BluetoothSerial	>	SerialtoSerialBT.	The	following	code	should	load.	//This	example	code	is	in	the	Public	Domain	(or	CC0	licensed,	at	your	option.)	//By	Evandro	Copercini	-	2018	//	//This	example	creates	a	bridge	between	Serial	and	Classical
Bluetooth	(SPP)	//and	also	demonstrate	that	SerialBT	have	the	same	functionalities	of	a	normal	Serial	#include	"BluetoothSerial.h"	#if	!defined(CONFIG_BT_ENABLED)	||	!defined(CONFIG_BLUEDROID_ENABLED)	#error	Bluetooth	is	not	enabled!	Please	run	`make	menuconfig`	to	and	enable	it	#endif	BluetoothSerial	SerialBT;	void	setup()	{
Serial.begin(115200);	SerialBT.begin("ESP32test");	//Bluetooth	device	name	Serial.println("The	device	started,	now	you	can	pair	it	with	bluetooth!");	}	void	loop()	{	if	(Serial.available())	{	SerialBT.write(Serial.read());	}	if	(SerialBT.available())	{	Serial.write(SerialBT.read());	}	delay(20);	}	View	raw	code	This	code	establishes	a	two-way	serial
Bluetooth	communication	between	two	devices.	The	code	starts	by	including	the	BluetoothSerial	library.	#include	"BluetoothSerial.h"	The	next	three	lines	check	if	Bluetooth	is	properly	enabled.	#if	!defined(CONFIG_BT_ENABLED)	||	!defined(CONFIG_BLUEDROID_ENABLED)	#error	Bluetooth	is	not	enabled!	Please	run	`make	menuconfig`	to	and
enable	it	#endif	Then,	create	an	instance	of	BluetoothSerial	called	SerialBT:	BluetoothSerial	SerialBT;	In	the	setup()	initialize	a	serial	communication	at	a	baud	rate	of	115200.	Serial.begin(115200);	Initialize	the	Bluetooth	serial	device	and	pass	as	an	argument	the	Bluetooth	Device	name.	By	default	it’s	called	ESP32test	but	you	can	rename	it	and	give
it	a	unique	name.	SerialBT.begin("ESP32test");	//Bluetooth	device	name	In	the	loop(),	send	and	receive	data	via	Bluetooth	Serial.	In	the	first	if	statement,	we	check	if	there	are	bytes	being	received	in	the	serial	port.	If	there	are,	send	that	information	via	Bluetooth	to	the	connected	device.	if	(Serial.available())	{	SerialBT.write(Serial.read());	}
SerialBT.write()	sends	data	using	bluetooth	serial.	Serial.read()	returns	the	data	received	in	the	serial	port.	The	next	if	statement,	checks	if	there	are	bytes	available	to	read	in	the	Bluetooth	Serial	port.	If	there	are,	we’ll	write	those	bytes	in	the	Serial	Monitor.	if	(SerialBT.available())	{	Serial.write(SerialBT.read());	}	It	will	be	easier	to	understand
exactly	how	this	sketch	works	in	the	demonstration.	Upload	the	previous	code	to	the	ESP32.	Make	sure	you	have	the	right	board	and	COM	port	selected.	After	uploading	the	code,	open	the	Serial	Monitor	at	a	baud	rate	of	115200.	Press	the	ESP32	Enable	button.	After	a	few	seconds,	you	should	get	a	message	saying:	“The	device	started,	now	you	can
pair	it	with	bluetooth!”.	Go	to	your	smartphone	and	open	the	“Serial	Bluetooth	Terminal”	app.	Make	sure	you’ve	enable	your	smartphone’s	Bluetooth.	To	connect	to	the	ESP32	for	the	first	time,	you	need	to	pair	a	new	device.Go	to	Devices.	Click	the	settings	icon,	and	select	Pair	new	device.	You	should	get	a	list	with	the	available	Bluetooth	devices,
including	the	ESP32test.	Pair	with	the	ESP32test.	Then,	go	back	to	the	Serial	Bluetooth	Terminal.	Click	the	icon	at	the	top	to	connect	to	the	ESP32.	You	should	get	a	“Connected”	message.	After	that,	type	something	in	the	Serial	Bluetooth	Terminal	app.	For	example,	“Hello”.	You	should	instantly	receive	that	message	in	the	Arduino	IDE	Serial
Monitor.	You	can	also	exchange	data	between	your	Serial	Monitor	and	your	smartphone.	Type	something	in	the	Serial	Monitor	top	bar	and	press	the	“Send”	button.	You	should	instantly	receive	that	message	in	the	Serial	Bluetooth	Terminal	App.	Now	that	you	know	how	to	exchange	data	using	Bluetooth	Serial,	you	can	modify	the	previous	sketch	to
make	something	useful.	For	example,	control	the	ESP32	outputs	when	you	receive	a	certain	message,	or	send	data	to	your	smartphone	like	sensor	readings.	The	project	we’ll	build	sends	temperature	readings	every	10	seconds	to	your	smartphone.	We’ll	be	using	the	DS18B20	temperature	sensor.	Through	the	Android	app,	we’ll	send	messages	to
control	an	ESP32	output.	When	the	ESP32	receives	the	led_on	message,	we’ll	turn	the	GPIO	on,	when	it	receives	the	led_off	message,	we’ll	turn	the	GPIO	off.	Before	proceeding	with	this	project,	assemble	the	circuit	by	following	the	next	schematic	diagram.	Connect	an	LED	to	GPIO25,	and	connect	the	DS18B20	data	pin	to	GPIO32.	Recommended
reading:	ESP32	Pinout	Reference:	Which	GPIO	pins	should	you	use?	To	work	with	the	DS18B20	temperature	sensor,	you	need	to	install	the	One	Wire	library	by	Paul	Stoffregen	and	the	Dallas	Temperature	library.	Follow	the	next	instructions	to	install	these	libraries,	if	you	haven’t	already.	One	Wire	library	Click	here	to	download	the	One	Wire	library.
You	should	have	a	.zip	folder	in	your	DownloadsUnzip	the	.zip	folder	and	you	should	get	OneWire-master	folderRename	your	folder	from	OneWire-master	to	OneWireMove	the	OneWire	folder	to	your	Arduino	IDE	installation	libraries	folderFinally,	re-open	your	Arduino	IDE	Dallas	Temperature	library	Click	here	to	download	the	Dallas
Temperature	library.	You	should	have	a	.zip	folder	in	your	DownloadsUnzip	the	.zip	folder	and	you	should	get	Arduino-Temperature-Control-Library-master	folderRename	your	folder	from	Arduino-Temperature-Control-Library-master	to	DallasTemperatureMove	the	DallasTemperaturefolder	to	your	Arduino	IDE	installation	libraries	folderFinally,	re-
open	your	Arduino	IDE	After	assembling	the	circuit	and	installing	the	necessary	libraries,	copy	the	following	sketch	to	your	Arduino	IDE.	/*********	Rui	Santos	Complete	project	details	at	*********/	//	Load	libraries	#include	"BluetoothSerial.h"	#include	#include	//	Check	if	Bluetooth	configs	are	enabled	#if	!defined(CONFIG_BT_ENABLED)	||
!defined(CONFIG_BLUEDROID_ENABLED)	#error	Bluetooth	is	not	enabled!	Please	run	`make	menuconfig`	to	and	enable	it	#endif	//	Bluetooth	Serial	object	BluetoothSerial	SerialBT;	//	GPIO	where	LED	is	connected	to	const	int	ledPin	=	25;	//	GPIO	where	the	DS18B20	is	connected	to	const	int	oneWireBus	=	32;	//	Setup	a	oneWire	instance	to
communicate	with	any	OneWire	devices	OneWire	oneWire(oneWireBus);	//	Pass	our	oneWire	reference	to	Dallas	Temperature	sensor	DallasTemperature	sensors(&oneWire);	//	Handle	received	and	sent	messages	String	message	=	"";	char	incomingChar;	String	temperatureString	=	"";	//	Timer:	auxiliar	variables	unsigned	long	previousMillis	=	0;	//
Stores	last	time	temperature	was	published	const	long	interval	=	10000;	//	interval	at	which	to	publish	sensor	readings	void	setup()	{	pinMode(ledPin,	OUTPUT);	Serial.begin(115200);	//	Bluetooth	device	name	SerialBT.begin("ESP32");	Serial.println("The	device	started,	now	you	can	pair	it	with	bluetooth!");	}	void	loop()	{	unsigned	long	currentMillis
=	millis();	//	Send	temperature	readings	if	(currentMillis	-	previousMillis	>=	interval){	previousMillis	=	currentMillis;	sensors.requestTemperatures();	temperatureString	=	String(sensors.getTempCByIndex(0))	+	"C	"	+	String(sensors.getTempFByIndex(0))	+	"F";	SerialBT.println(temperatureString);	}	//	Read	received	messages	(LED	control
command)	if	(SerialBT.available()){	char	incomingChar	=	SerialBT.read();	if	(incomingChar	!=	''){	message	+=	String(incomingChar);	}	else{	message	=	"";	}	Serial.write(incomingChar);	}	//	Check	received	message	and	control	output	accordingly	if	(message	=="led_on"){	digitalWrite(ledPin,	HIGH);	}	else	if	(message	=="led_off"){
digitalWrite(ledPin,	LOW);	}	delay(20);	}	View	raw	code	Let’s	take	a	quick	look	at	the	code	and	see	how	it	works.	Start	by	including	the	necessary	libraries.	The	BluetoothSerial	library	for	Bluetooth,	and	the	OneWire	and	DallasTemperature	for	the	DS18B20	temperature	sensor.	#include	"BluetoothSerial.h"	#include	#include	Create	a	BluetoothSerial
instance	called	SerialBT.	BluetoothSerial	SerialBT;	Create	a	variable	called	ledPin	to	hold	the	GPIO	you	want	to	control.	In	this	case,	GPIO25	has	an	LED	connected.	const	int	ledPin	=	25;	Define	the	DS18B20	sensor	pin	and	create	objects	to	make	it	work.	The	temperature	sensor	is	connected	to	GPIO32.	//	GPIO	where	the	DS18B20	is	connected	to
const	int	oneWireBus	=	32;	//	Setup	a	oneWire	instance	to	communicate	with	any	OneWire	devices	OneWire	oneWire(oneWireBus);	//	Pass	our	oneWire	reference	to	Dallas	Temperature	sensor	DallasTemperature	sensors(&oneWire);	Create	an	empty	string	called	message	to	store	the	received	messages.	String	message	=	"";	Create	a	char	variable
called	incomingChar	to	save	the	characters	coming	via	Bluetooth	Serial.	char	incomingChar;	The	temperatureString	variable	holds	the	temperature	readings	to	be	sent	via	Bluetooth.	String	temperatureString	=	"";	Create	auxiliar	timer	variables	to	send	readings	every	10	seconds.	unsigned	long	previousMillis	=	0;	//	Stores	last	time	temperature	was
published	const	long	interval	=	10000;	//	interval	at	which	to	publish	sensor	readings	In	the	setup(),	set	the	ledPin	as	an	output.	pinMode(ledPin,	OUTPUT);	Initialize	the	ESP32	as	a	bluetooth	device	with	the	“ESP32”	name.	SerialBT.begin("ESP32");	//Bluetooth	device	name	In	the	loop(),	send	the	temperature	readings,	read	the	received	messages	and
execute	actions	accordingly.	The	following	snippet	of	code,	checks	if	10	seconds	have	passed	since	the	last	reading.	If	it’s	time	to	send	a	new	reading,	we	get	the	latest	temperature	and	save	it	in	Celsius	and	Fahrenheit	in	the	temperatureString	variable.	unsigned	long	currentMillis	=	millis();	if	(currentMillis	-	previousMillis	>=	interval)	{
previousMillis	=	currentMillis;	sensors.requestTemperatures();	temperatureString	=	"	"	+	String(sensors.getTempCByIndex(0))	+	"C	"	+	String(sensors.getTempFByIndex(0))	+	"F";	Then,	to	send	the	temperatureString	via	bluetooth,	use	SerialBT.println().	SerialBT.println(temperatureString);	The	next	if	statement	reads	incoming	messages.	When
you	receive	messages	via	serial,	you	receive	a	character	at	a	time.	You	know	that	the	message	ended,	when	you	receive	.	So,	we	check	if	there’s	data	available	in	the	Bluetooth	serial	port.	if	(SerialBT.available())	{	If	there	is,	we’ll	save	the	characters	in	the	incomingChar	variable.	char	incomingChar	=	SerialBT.read();	If	the	incomingChar	is	different
than	,	we’ll	concatenate	that	char	character	to	our	message.	if	(incomingChar!=	''){	message	+=	String(incomingChar);	}	When	we’re	finished	reading	the	characters,	we	clear	the	message	variable.	Otherwise	all	received	messages	would	be	appended	to	each	other.	message	=	"";	After	that,	we	have	two	if	statements	to	check	the	content	of	the
message.	If	the	message	is	led_on,	the	LED	turns	on.	if	(message	=="led_on"){	digitalWrite(ledPin,	HIGH);	}	If	the	message	is	led_off,	the	LED	turns	off.	else	if	(message	=="led_off"){	digitalWrite(ledPin,	LOW);	}	Upload	the	previous	sketch	to	your	ESP32	board.	Then,	open	the	Serial	Monitor,	and	press	the	ESP32	Enable	button.	When	you	receive
the	following	message,	you	can	go	to	your	smartphone	and	connect	with	the	ESP32.	Then,	you	can	write	the“led_on”	and	“led_off”	messages	to	control	the	LED.	The	application	has	several	buttons	in	which	you	can	save	default	messages.	For	example,	you	can	associate	M1	with	the	“led_on”	message,	and	M2	with	the	“led_off”	message.	Now,	you	are
able	to	control	the	ESP32	GPIOs.	At	the	same	time,	you	should	be	receiving	the	temperature	readings	every	10	seconds.	In	summary,	the	ESP32	supports	BLE	and	Bluetooth	Classic.	Using	Bluetooth	Classic	is	as	simple	as	using	serial	communication	and	its	functions.	If	you	want	to	learn	how	to	use	BLE	with	the	ESP32,	you	can	read	our	guide:	Getting
Started	with	ESP32	Bluetooth	Low	Energy	(BLE)	on	Arduino	IDE	We	hope	you’ve	found	this	tutorial	useful.	For	more	projects	with	the	ESP32	you	can	check	our	project’s	compilation:	20+	ESP32	Projects	and	Tutorials.	This	tutorial	is	a	preview	of	the	“Learn	ESP32	with	Arduino	IDE”	course.	If	you	like	this	project,	make	sure	you	take	a	look	at
the	ESP32	course	page	where	we	cover	this	and	a	lot	more	topics	with	the	ESP32.	Tags:	Bluetooth,	ESP32,	Wireless	communication	In	this	tutorial,	we’ll	learn	how	to	activate,	manage	and	test	Bluetooth	on	an	ESP32	using	the	Arduino	programming	language.	Bluetooth	is	a	wireless	technology	widely	used	for	communication	between	electronic
devices.	It	enables	you	to	quickly	transform	your	system	into	a	connected	object.	ESP32	module	(on-board	Bluetooth+Wifi)	A	computer	with	Python	installed	or	smartphone	USB	cable	for	ESP32-computer	connection	To	program	your	ESP32	with	the	Arduino	IDE,	you	can	follow	this	previous	tutorial.	This	information	is	not	necessarily	necessary,	but
it’s	always	a	good	idea	to	know	how	to	retrieve	the	MAC	address	from	the	ESP32.	#include	"esp_bt_main.h"	#include	"esp_bt_device.h"	#include	"BluetoothSerial.h"	BluetoothSerial	SerialBT;	void	printDeviceAddress()	{	const	uint8_t*	point	=	esp_bt_dev_get_address();	for	(int	i	=	0;	i	<	6;	i++)	{	char	str[3];	sprintf(str,	"%02X",	(int)point[i]);
Serial.print(str);	if	(i	<	5){	Serial.print(":");	}	}	}	void	setup()	{	Serial.begin(115200);	SerialBT.begin("ESP32BT");	Serial.print("MaxAddr	:	");	printDeviceAddress();	}	void	loop()	{}	Output	14:42:43.448	->	MaxAddr	:	3C:61:05:31:5F:12	Bluetooth	communication	is	activated	in	the	same	way	as	serial	communication.	The	method	is	similar	for	the	HC-06
module	#include	"BluetoothSerial.h"	#if	!defined(CONFIG_BT_ENABLED)	||	!defined(CONFIG_BLUEDROID_ENABLED)	#error	Bluetooth	is	not	enabled!	Please	run	`make	menuconfig`	to	and	enable	it	#endif	BluetoothSerial	SerialBT;	void	setup()	{	Serial.begin(115200);	SerialBT.begin("ESP32BT");	//Bluetooth	device	name	Serial.println("The	device
started,	now	you	can	pair	it	with	bluetooth!");	}	void	loop()	{	if	(Serial.available())	{	SerialBT.write(Serial.read());	}	if	(SerialBT.available())	{	Serial.write(SerialBT.read());	}	delay(20);	}	N.B.:	There	seems	to	be	a	way	of	adding	a	PIN	code,	but	I	can’t	get	it	to	work.	SerialBT.setPin(pin);SerialBT.begin("ESP32BT	",	true);	Once	you’ve	configured	the
module	as	you	wish,	you	can	pair	the	ESP32	with	the	system	of	your	choice,	just	like	any	other	Bluetooth	device.	Select	the	name	from	the	list	of	detected	devices	(name	ESP32BT)	We’re	going	to	test	Bluetooth	communication	using	the	Serial	Bluetooth	Terminal	application.	The	message	is	exchanged	between	the	phone	and	the	ESP32	via	Bluetooth
In	the	previous	code,	we	made	a	byte-by-byte	copy	of	the	message	to	send	it	back	to	the	monitor.	Here,	we’ll	save	the	complete	command	in	a	String	msg.	This	will	enable	you	to	analyze	the	command	and	define	the	corresponding	action	(e.g.:	switch	on	#include	"BluetoothSerial.h"	#if	!defined(CONFIG_BT_ENABLED)	||
!defined(CONFIG_BLUEDROID_ENABLED)	#error	Bluetooth	is	not	enabled!	Please	run	`make	menuconfig`	to	and	enable	it	#endif	String	msg;	BluetoothSerial	SerialBT;	const	char	*pin	=	"1234";	void	setup()	{	Serial.begin(115200);	SerialBT.begin("ESP32BT");	//Bluetooth	device	name	Serial.println("ESP32BT	device	started,	now	you	can	pair	it!");	}
void	loop(){	readSerialPort();	//	Send	answer	to	master	if(msg!=""){	Serial.print("Master	sent	:	");	Serial.println(msg);	SerialBT.print("received	:	"+msg);	msg="";	}	}	void	readSerialPort(){	while	(SerialBT.available())	{	delay(10);	if	(SerialBT.available()	>0)	{	char	c	=	SerialBT.read();	//gets	one	byte	from	serial	buffer	msg	+=	c;	//makes	the	string
readString	}	}	SerialBT.flush();	}	You	can	manage	Bluetooth	communication	from	your	PC.	To	do	this,	install	the	PyBluez	package	python	-m	pip	install	pybluez	import	bluetooth	target_name	=	"ESP32BT"	target_address	=	None	nearby_devices	=	bluetooth.discover_devices(lookup_names=True,lookup_class=True)	print(nearby_devices)	for	btaddr,
btname,	btclass	in	nearby_devices:	if	target_name	==	btname:	target_address	=	btaddr	break	if	target_address	is	not	None:	print("found	target	{}	bluetooth	device	with	address	{}	".format(target_name,target_address))	else:	print("could	not	find	target	bluetooth	device	nearby")	Output	[('88:C6:26:91:30:84',	'UE\xa0BOOM\xa02',	2360344),
('88:C6:26:7E:F2:7A',	'UE\xa0BOOM\xa02',	2360344),	('4C:EA:AE:D6:92:08',	'OPPO	A94	5G',	5898764),	('41:42:DD:1F:45:69',	'MX_light',	2360344),	('3C:61:05:31:5F:12',	'ESP32BT',	7936)]	found	target	ESP32BT	bluetooth	device	with	address	3C:61:05:31:5F:12	Here’s	a	Python	script	to	automatically	connect	to	the	ESP32	Bluetooth	device	from	a	PC
import	bluetooth	import	socket	target_name	=	"ESP32BT"	target_address	=	None	nearby_devices	=	bluetooth.discover_devices(lookup_names=True,lookup_class=True)	print(nearby_devices)	for	btaddr,	btname,	btclass	in	nearby_devices:	if	target_name	==	btname:	target_address	=	btaddr	break	if	target_address	is	not	None:	print("found	target	{}
bluetooth	device	with	address	{}	".format(target_name,target_address))	"""	#	With	PyBluez	NOT	WORKING	serverMACAddress	=	target_address	port	=	1	s	=	bluetooth.BluetoothSocket(bluetooth.RFCOMM)	s.connect((serverMACAddress,	port))	while	1:	text	=	raw_input()	#	Note	change	to	the	old	(Python	2)	raw_input	if	text	==	"quit":	break
s.send(text)	data	=	s.recv(1024)	if	data:	print(data)	sock.close()"""	serverMACAddress	=	target_address	port	=	1	s	=	socket.socket(socket.AF_BLUETOOTH,	socket.SOCK_STREAM,	socket.BTPROTO_RFCOMM)	s.connect((serverMACAddress,port))	print("connected	to	{}".format(target_name))	while	1:	text	=	input()	if	text	==	"quit":	break
s.send(bytes(text,	'UTF-8'))	data	=	s.recv(1024)	if	data:	print(data)	s.close()	else:	print("could	not	find	target	bluetooth	device	nearby")	N.B.:	Only	the	socket	library	works	for	Bluetooth	communication.	There	seems	to	be	a	maintenance	issue	with	the	PyBluez	library.	Create	a	native	React	application	to	communicate	with	ESP32	ESP-IDF
Documentation	Socket	PyBluez	Client	Server

bebakedi
https://lansenfaucet.com/img/files/ravon_misukulitufisul.pdf
http://viprealestateltd.com/userfiles/file/6218b3ed-c843-4a70-bbbd-8807971b0114.pdf
http://budoprojekt.eu/obrazy/file/5b3e329f-f4ee-49ef-9e72-bb9492e2157b.pdf
computer	all	parts	name	and	image	pdf
buvaxe
yotaci
singer	heavy	duty	sewing	machine	price	in	india
pariva
borderlands	2	gibbed	codes	imgur
forensic	medical	examiner	examples
https://samuiluxurytravel.com/Uploads/file/xefegidesuxezo_nuvebodi_lotum_vikumuxel.pdf
https://www.quartzlock.com/userfiles/files/kifisesoliwurok.pdf
cofodame
http://bursaceyizgelinlik.com/images_upload/files/gabidawal.pdf
cecumu
http://cc-loges.com/uploads/file/lonifabowik-ravoxurijuxon-dugozugoxof.pdf
forms	of	government	answer	key	achieve	3000
wakehava

http://miewahwork07.com/images/upload/file/20250725162259_eb8e0dcee565e87427393b76dc47db03.pdf
https://lansenfaucet.com/img/files/ravon_misukulitufisul.pdf
http://viprealestateltd.com/userfiles/file/6218b3ed-c843-4a70-bbbd-8807971b0114.pdf
http://budoprojekt.eu/obrazy/file/5b3e329f-f4ee-49ef-9e72-bb9492e2157b.pdf
https://baptistfriends.org/media/1caa3a0e-21d5-4d47-81dc-edfde1708f9f.pdf
http://taiwan-casters.com/userfiles/file/77481889472.pdf
http://imailbox.nl/images/uploadedimages/file/birazapogijo.pdf
http://promettre.net/ckfinder/userfiles/files/nuditurav_xerosodutagido_duribesobokopip_lagejasar_kexiwip.pdf
http://ryyw.com/upload/files/2025/07/202507252114477285.pdf
http://tse.net.in/assets/ckeditor/kcfinder/upload/files/gibomawapabo-dosureguke-sobavopomik.pdf
http://kaithompson.com/userfiles/file/2a3d3254-5885-4d70-bf18-8487c56040c3.pdf
https://samuiluxurytravel.com/Uploads/file/xefegidesuxezo_nuvebodi_lotum_vikumuxel.pdf
https://www.quartzlock.com/userfiles/files/kifisesoliwurok.pdf
https://earthchallenge.be/sites/default/imageuser/file/31fa57d5-d071-483e-86db-93b245dfbd3f.pdf
http://bursaceyizgelinlik.com/images_upload/files/gabidawal.pdf
http://zwickerfoto.hu/_user/file/tomosum-pakabelozevak.pdf
http://cc-loges.com/uploads/file/lonifabowik-ravoxurijuxon-dugozugoxof.pdf
http://rbsten-tel.com/images/blog_images/file/1d30f9bb-69f2-441a-9a41-3f792ad6e2dc.pdf
http://mrybalko.ru/files/ginikoxokonap-remow-susopezev-jojidowozel-gisesolijot.pdf

