
	

https://jofagawu.nurepikis.com/370882217823029708864063184080707404211103?vedajogatuvezamakixuzedinezubolozidimikomozo=xazobanovuzunebesebuwimevabodomusogibifasogixatawexegekedatedixatetiwojuxusiriguzaxavewezirufumotojujepizatazosudadijanilosudufopigijalovaruwukokajufuxewuwemuwusetutovapasevazufalukuvetufavudufowelamemogenude&utm_term=spark+sql+query+examples&juxujifujujobozixisadosezozasusokifagagabijunujezekavuzazatunubilurazuxuragaluvaruw=jonabubowiwebedipimirewezojejenulesakopuvupiwetunusokelisifewijezipigadivumerabujagibipikasonevatidamosibajojaxojurebegubojepevimawulovaxebufisuwe

Get	Spark	from	the	downloads	page	of	the	project	website.	This	documentation	is	for	Spark	version	3.5.5.	Spark	uses	Hadoops	client	libraries	for	HDFS	and	YARN.	Downloads	are	pre-packaged	for	a	handful	of	popular	Hadoop	versions.Users	can	also	download	a	Hadoop	free	binary	and	run	Spark	with	any	Hadoop	versionby	augmenting	Sparks
classpath.Scala	and	Java	users	can	include	Spark	in	their	projects	using	its	Maven	coordinates	and	Python	users	can	install	Spark	from	PyPI.	If	youd	like	to	build	Spark	fromsource,	visit	Building	Spark.	Spark	runs	on	both	Windows	and	UNIX-like	systems	(e.g.	Linux,	Mac	OS),	and	it	should	run	on	any	platform	that	runs	a	supported	version	of	Java.
This	should	include	JVMs	on	x86_64	and	ARM64.	Its	easy	to	run	locally	on	one	machine	all	you	need	is	to	have	java	installed	on	your	system	PATH,	or	the	JAVA_HOME	environment	variable	pointing	to	a	Java	installation.	Spark	runs	on	Java	8/11/17,	Scala	2.12/2.13,	Python	3.8+,	and	R	3.5+.Java	8	prior	to	version	8u371	support	is	deprecated	as	of
Spark	3.5.0.When	using	the	Scala	API,	it	is	necessary	for	applications	to	use	the	same	version	of	Scala	that	Spark	was	compiled	for.For	example,	when	using	Scala	2.13,	use	Spark	compiled	for	2.13,	and	compile	code/applications	for	Scala	2.13	as	well.	For	Java	11,	setting	-Dio.netty.tryReflectionSetAccessible=true	is	required	for	the	Apache	Arrow
library.	This	prevents	the	java.lang.UnsupportedOperationException:	sun.misc.Unsafe	or	java.nio.DirectByteBuffer.(long,	int)	not	available	error	when	Apache	Arrow	uses	Netty	internally.	Running	the	Examples	and	Shell	Spark	comes	with	several	sample	programs.	Python,	Scala,	Java,	and	R	examples	are	in	theexamples/src/main	directory.	To	run
Spark	interactively	in	a	Python	interpreter,	usebin/pyspark:	./bin/pyspark	--master	"local[2]"	Sample	applications	are	provided	in	Python.	For	example:	./bin/spark-submit	examples/src/main/python/pi.py	10	To	run	one	of	the	Scala	or	Java	sample	programs,	usebin/run-example	[params]	in	the	top-level	Spark	directory.	(Behind	the	scenes,	thisinvokes
the	more	generalspark-submit	script	forlaunching	applications).	For	example,	./bin/run-example	SparkPi	10	You	can	also	run	Spark	interactively	through	a	modified	version	of	the	Scala	shell.	This	is	agreat	way	to	learn	the	framework.	./bin/spark-shell	--master	"local[2]"	The	--master	option	specifies	themaster	URL	for	a	distributed	cluster,	or	local	to
runlocally	with	one	thread,	or	local[N]	to	run	locally	with	N	threads.	You	should	start	by	usinglocal	for	testing.	For	a	full	list	of	options,	run	the	Spark	shell	with	the	--help	option.	Since	version	1.4,	Spark	has	provided	an	R	API	(only	the	DataFrame	APIs	are	included).To	run	Spark	interactively	in	an	R	interpreter,	use	bin/sparkR:	./bin/sparkR	--master
"local[2]"	Example	applications	are	also	provided	in	R.	For	example:	./bin/spark-submit	examples/src/main/r/dataframe.R	Running	Spark	Client	Applications	Anywhere	with	Spark	Connect	Spark	Connect	is	a	new	client-server	architecture	introduced	in	Spark	3.4	that	decouples	Sparkclient	applications	and	allows	remote	connectivity	to	Spark	clusters.
The	separation	betweenclient	and	server	allows	Spark	and	its	open	ecosystem	to	be	leveraged	from	anywhere,	embeddedin	any	application.	In	Spark	3.4,	Spark	Connect	provides	DataFrame	API	coverage	for	PySpark	andDataFrame/Dataset	API	support	in	Scala.	To	learn	more	about	Spark	Connect	and	how	to	use	it,	see	Spark	Connect	Overview.
Launching	on	a	Cluster	The	Spark	cluster	mode	overview	explains	the	key	concepts	in	running	on	a	cluster.Spark	can	run	both	by	itself,	or	over	several	existing	cluster	managers.	It	currently	provides	severaloptions	for	deployment:	Where	to	Go	from	Here	Programming	Guides:	Quick	Start:	a	quick	introduction	to	the	Spark	API;	start	here!	RDD
Programming	Guide:	overview	of	Spark	basics	-	RDDs	(core	but	old	API),	accumulators,	and	broadcast	variables	Spark	SQL,	Datasets,	and	DataFrames:	processing	structured	data	with	relational	queries	(newer	API	than	RDDs)	Structured	Streaming:	processing	structured	data	streams	with	relation	queries	(using	Datasets	and	DataFrames,	newer	API
than	DStreams)	Spark	Streaming:	processing	data	streams	using	DStreams	(old	API)	MLlib:	applying	machine	learning	algorithms	GraphX:	processing	graphs	SparkR:	processing	data	with	Spark	in	R	PySpark:	processing	data	with	Spark	in	Python	Spark	SQL	CLI:	processing	data	with	SQL	on	the	command	line	API	Docs:	Deployment	Guides:	Other
Documents:	External	Resources:	Note	that	Spark	4	is	pre-built	with	Scala	2.13,	and	support	for	Scala	2.12	has	been	officially	dropped.	Spark	3	is	pre-built	with	Scala	2.12	in	general	and	Spark	3.2+	provides	additional	pre-built	distribution	with	Scala	2.13.	Spark	artifacts	are	hosted	in	Maven	Central.	You	can	add	a	Maven	dependency	with	the
following	coordinates:	groupId:	org.apache.sparkartifactId:	spark-core_2.13version:	4.0.0	Installing	with	PyPiPySpark	is	now	available	in	pypi.	To	install	just	run	pip	install	pyspark.	Installing	with	Docker	Spark	docker	images	are	available	from	Dockerhub	under	the	accounts	of	both	The	Apache	Software	Foundation	and	Official	Images.	Note	that,
these	images	contain	non-ASF	software	and	may	be	subject	to	different	license	terms.	Please	check	their	Dockerfiles	to	verify	whether	they	are	compatible	with	your	deployment.	Release	notes	for	stable	releases	Archived	releases	As	new	Spark	releases	come	out	for	each	development	stream,	previous	ones	will	be	archived,but	they	are	still	available
at	Spark	release	archives.	NOTE:	Previous	releases	of	Spark	may	be	affected	by	security	issues.	Please	consult	theSecurity	page	for	a	list	of	known	issues	that	may	affect	the	version	you	downloadbefore	deciding	to	use	it.	Setup	instructions,	programming	guides,	and	other	documentation	are	available	for	each	stable	version	of	Spark	below:
Documentation	for	preview	releases:	The	documentation	linked	to	above	covers	getting	started	with	Spark,	as	well	the	built-in	components	MLlib,Spark	Streaming,	and	GraphX.	In	addition,	this	page	lists	other	resources	for	learning	Spark.	VideosSee	the	Apache	Spark	YouTube	Channel	for	videos	from	Spark	events.	There	are	separate	playlists	for
videos	of	different	topics.	Besides	browsing	through	playlists,	you	can	also	find	direct	links	to	videos	below.	Screencast	Tutorial	Videos	Spark	Summit	Videos	Meetup	Talk	VideosIn	addition	to	the	videos	listed	below,	you	can	also	view	all	slides	from	Bay	Area	meetups	here.	Training	Materials	Training	materials	and	exercises	from	Spark	Summit	2014
are	available	online.	These	include	videos	and	slides	of	talks	as	well	as	exercises	you	can	run	on	your	laptop.	Topics	include	Spark	core,	tuning	and	debugging,	Spark	SQL,	Spark	Streaming,	GraphX	and	MLlib.	Spark	Summit	2013	included	a	training	session,	with	slides	and	videos	available	on	the	training	day	agenda.	The	session	also	included
exercises	that	you	can	walk	through	on	Amazon	EC2.	The	UC	Berkeley	AMPLab	regularly	hosts	training	camps	on	Spark	and	related	projects.Slides,	videos	and	EC2-based	exercises	from	each	of	these	are	available	online:	Hands-On	Exercises	External	Tutorials,	Blog	Posts,	and	Talks	Books	Learning	Spark,	by	Holden	Karau,	Andy	Konwinski,	Patrick
Wendell	and	Matei	Zaharia	(O'Reilly	Media)	Spark	in	Action,	by	Marko	Bonaci	and	Petar	Zecevic	(Manning)	Advanced	Analytics	with	Spark,	by	Juliet	Hougland,	Uri	Laserson,	Sean	Owen,	Sandy	Ryza	and	Josh	Wills	(O'Reilly	Media)	Spark	GraphX	in	Action,	by	Michael	Malak	(Manning)	Fast	Data	Processing	with	Spark,	by	Krishna	Sankar	and	Holden
Karau	(Packt	Publishing)	Machine	Learning	with	Spark,	by	Nick	Pentreath	(Packt	Publishing)	Spark	Cookbook,	by	Rishi	Yadav	(Packt	Publishing)	Apache	Spark	Graph	Processing,	by	Rindra	Ramamonjison	(Packt	Publishing)	Mastering	Apache	Spark,	by	Mike	Frampton	(Packt	Publishing)	Big	Data	Analytics	with	Spark:	A	Practitioner's	Guide	to	Using
Spark	for	Large	Scale	Data	Analysis,	by	Mohammed	Guller	(Apress)	Large	Scale	Machine	Learning	with	Spark,	by	Md.	Rezaul	Karim,	Md.	Mahedi	Kaysar	(Packt	Publishing)	Big	Data	Analytics	with	Spark	and	Hadoop,	by	Venkat	Ankam	(Packt	Publishing)	Examples	The	Spark	examples	page	shows	the	basic	API	in	Scala,	Java	and	Python.	Research
Papers	Spark	was	initially	developed	as	a	UC	Berkeley	research	project,	and	much	of	the	design	is	documented	in	papers.The	research	page	lists	some	of	the	original	motivation	and	direction.	At	a	high	level,	every	Spark	application	consists	of	a	driver	program	that	runs	the	users	main	function	and	executes	various	parallel	operations	on	a	cluster.	The
main	abstraction	Spark	provides	is	a	resilient	distributed	dataset	(RDD),	which	is	a	collection	of	elements	partitioned	across	the	nodes	of	the	cluster	that	can	be	operated	on	in	parallel.	RDDs	are	created	by	starting	with	a	file	in	the	Hadoop	file	system	(or	any	other	Hadoop-supported	file	system),	or	an	existing	Scala	collection	in	the	driver	program,
and	transforming	it.	Users	may	also	ask	Spark	to	persist	an	RDD	in	memory,	allowing	it	to	be	reused	efficiently	across	parallel	operations.	Finally,	RDDs	automatically	recover	from	node	failures.	A	second	abstraction	in	Spark	is	shared	variables	that	can	be	used	in	parallel	operations.	By	default,	when	Spark	runs	a	function	in	parallel	as	a	set	of	tasks
on	different	nodes,	it	ships	a	copy	of	each	variable	used	in	the	function	to	each	task.	Sometimes,	a	variable	needs	to	be	shared	across	tasks,	or	between	tasks	and	the	driver	program.	Spark	supports	two	types	of	shared	variables:	broadcast	variables,	which	can	be	used	to	cache	a	value	in	memory	on	all	nodes,	and	accumulators,	which	are	variables
that	are	only	added	to,	such	as	counters	and	sums.	This	guide	shows	each	of	these	features	in	each	of	Sparks	supported	languages.	It	is	easiest	to	followalong	with	if	you	launch	Sparks	interactive	shell	either	bin/spark-shell	for	the	Scala	shell	orbin/pyspark	for	the	Python	one.	Spark	3.5.5	works	with	Python	3.8+.	It	can	use	the	standard	CPython
interpreter,so	C	libraries	like	NumPy	can	be	used.	It	also	works	with	PyPy	7.3.6+.	Spark	applications	in	Python	can	either	be	run	with	the	bin/spark-submit	script	which	includes	Spark	at	runtime,	or	by	including	it	in	your	setup.py	as:	install_requires=['pyspark==3.5.5']	To	run	Spark	applications	in	Python	without	pip	installing	PySpark,	use	the
bin/spark-submit	script	located	in	the	Spark	directory.This	script	will	load	Sparks	Java/Scala	libraries	and	allow	you	to	submit	applications	to	a	cluster.You	can	also	use	bin/pyspark	to	launch	an	interactive	Python	shell.	If	you	wish	to	access	HDFS	data,	you	need	to	use	a	build	of	PySpark	linkingto	your	version	of	HDFS.Prebuilt	packages	are	also
available	on	the	Spark	homepagefor	common	HDFS	versions.	Finally,	you	need	to	import	some	Spark	classes	into	your	program.	Add	the	following	line:	from	pyspark	import	SparkContext,	SparkConf	PySpark	requires	the	same	minor	version	of	Python	in	both	driver	and	workers.	It	uses	the	default	python	version	in	PATH,you	can	specify	which	version
of	Python	you	want	to	use	by	PYSPARK_PYTHON,	for	example:	$	PYSPARK_PYTHON=python3.8	bin/pyspark$	PYSPARK_PYTHON=/path-to-your-pypy/pypy	bin/spark-submit	examples/src/main/python/pi.py	Spark	3.5.5	is	built	and	distributed	to	work	with	Scala	2.12by	default.	(Spark	can	be	built	to	work	with	other	versions	of	Scala,	too.)	To
writeapplications	in	Scala,	you	will	need	to	use	a	compatible	Scala	version	(e.g.	2.12.X).	To	write	a	Spark	application,	you	need	to	add	a	Maven	dependency	on	Spark.	Spark	is	available	through	Maven	Central	at:	groupId	=	org.apache.sparkartifactId	=	spark-core_2.12version	=	3.5.5	In	addition,	if	you	wish	to	access	an	HDFS	cluster,	you	need	to	add
a	dependency	onhadoop-client	for	your	version	of	HDFS.	groupId	=	org.apache.hadoopartifactId	=	hadoop-clientversion	=	Finally,	you	need	to	import	some	Spark	classes	into	your	program.	Add	the	following	lines:	import	org.apache.spark.SparkContextimport	org.apache.spark.SparkConf	(Before	Spark	1.3.0,	you	need	to	explicitly	import
org.apache.spark.SparkContext._	to	enable	essential	implicit	conversions.)	Spark	3.5.5	supportslambda	expressionsfor	concisely	writing	functions,	otherwise	you	can	use	the	classes	in	theorg.apache.spark.api.java.function	package.	Note	that	support	for	Java	7	was	removed	in	Spark	2.2.0.	To	write	a	Spark	application	in	Java,	you	need	to	add	a
dependency	on	Spark.	Spark	is	available	through	Maven	Central	at:	groupId	=	org.apache.sparkartifactId	=	spark-core_2.12version	=	3.5.5	In	addition,	if	you	wish	to	access	an	HDFS	cluster,	you	need	to	add	a	dependency	onhadoop-client	for	your	version	of	HDFS.	groupId	=	org.apache.hadoopartifactId	=	hadoop-clientversion	=	Finally,	you	need	to
import	some	Spark	classes	into	your	program.	Add	the	following	lines:	import	org.apache.spark.api.java.JavaSparkContext;import	org.apache.spark.api.java.JavaRDD;import	org.apache.spark.SparkConf;	Initializing	Spark	The	first	thing	a	Spark	program	must	do	is	to	create	a	SparkContext	object,	which	tells	Sparkhow	to	access	a	cluster.	To	create	a
SparkContext	you	first	need	to	build	a	SparkConf	objectthat	contains	information	about	your	application.	conf	=	SparkConf().setAppName(appName).setMaster(master)sc	=	SparkContext(conf=conf)	The	first	thing	a	Spark	program	must	do	is	to	create	a	SparkContext	object,	which	tells	Sparkhow	to	access	a	cluster.	To	create	a	SparkContext	you	first
need	to	build	a	SparkConf	objectthat	contains	information	about	your	application.	Only	one	SparkContext	should	be	active	per	JVM.	You	must	stop()	the	active	SparkContext	before	creating	a	new	one.	val	conf	=	new	SparkConf().setAppName(appName).setMaster(master)new	SparkContext(conf)	The	first	thing	a	Spark	program	must	do	is	to	create	a
JavaSparkContext	object,	which	tells	Sparkhow	to	access	a	cluster.	To	create	a	SparkContext	you	first	need	to	build	a	SparkConf	objectthat	contains	information	about	your	application.	SparkConf	conf	=	new	SparkConf().setAppName(appName).setMaster(master);JavaSparkContext	sc	=	new	JavaSparkContext(conf);	The	appName	parameter	is	a
name	for	your	application	to	show	on	the	cluster	UI.master	is	a	Spark,	Mesos	or	YARN	cluster	URL,or	a	special	local	string	to	run	in	local	mode.In	practice,	when	running	on	a	cluster,	you	will	not	want	to	hardcode	master	in	the	program,but	rather	launch	the	application	with	spark-submit	andreceive	it	there.	However,	for	local	testing	and	unit	tests,
you	can	pass	local	to	run	Sparkin-process.	Using	the	Shell	In	the	PySpark	shell,	a	special	interpreter-aware	SparkContext	is	already	created	for	you,	in	thevariable	called	sc.	Making	your	own	SparkContext	will	not	work.	You	can	set	which	master	thecontext	connects	to	using	the	--master	argument,	and	you	can	add	Python	.zip,	.egg	or	.py	filesto	the
runtime	path	by	passing	a	comma-separated	list	to	--py-files.	For	third-party	Python	dependencies,see	Python	Package	Management.	You	can	also	add	dependencies(e.g.	Spark	Packages)	to	your	shell	session	by	supplying	a	comma-separated	list	of	Maven	coordinatesto	the	--packages	argument.	Any	additional	repositories	where	dependencies	might
exist	(e.g.	Sonatype)can	be	passed	to	the	--repositories	argument.	For	example,	to	runbin/pyspark	on	exactly	four	cores,	use:	$./bin/pyspark	--master	local[4]	Or,	to	also	add	code.py	to	the	search	path	(in	order	to	later	be	able	to	import	code),	use:	$./bin/pyspark	--master	local[4]	--py-files	code.py	For	a	complete	list	of	options,	run	pyspark	--help.
Behind	the	scenes,pyspark	invokes	the	more	general	spark-submit	script.	It	is	also	possible	to	launch	the	PySpark	shell	in	IPython,	theenhanced	Python	interpreter.	PySpark	works	with	IPython	1.0.0	and	later.	Touse	IPython,	set	the	PYSPARK_DRIVER_PYTHON	variable	to	ipython	when	running	bin/pyspark:	$	PYSPARK_DRIVER_PYTHON=ipython
./bin/pyspark	To	use	the	Jupyter	notebook	(previously	known	as	the	IPython	notebook),	$	PYSPARK_DRIVER_PYTHON=jupyter	PYSPARK_DRIVER_PYTHON_OPTS=notebook	./bin/pyspark	You	can	customize	the	ipython	or	jupyter	commands	by	setting	PYSPARK_DRIVER_PYTHON_OPTS.	After	the	Jupyter	Notebook	server	is	launched,	you	can	create	a
new	notebook	fromthe	Files	tab.	Inside	the	notebook,	you	can	input	the	command	%pylab	inline	as	part	ofyour	notebook	before	you	start	to	try	Spark	from	the	Jupyter	notebook.	In	the	Spark	shell,	a	special	interpreter-aware	SparkContext	is	already	created	for	you,	in	thevariable	called	sc.	Making	your	own	SparkContext	will	not	work.	You	can	set
which	master	thecontext	connects	to	using	the	--master	argument,	and	you	can	add	JARs	to	the	classpathby	passing	a	comma-separated	list	to	the	--jars	argument.	You	can	also	add	dependencies(e.g.	Spark	Packages)	to	your	shell	session	by	supplying	a	comma-separated	list	of	Maven	coordinatesto	the	--packages	argument.	Any	additional	repositories
where	dependencies	might	exist	(e.g.	Sonatype)can	be	passed	to	the	--repositories	argument.	For	example,	to	run	bin/spark-shell	on	exactlyfour	cores,	use:	$./bin/spark-shell	--master	local[4]	Or,	to	also	add	code.jar	to	its	classpath,	use:	$./bin/spark-shell	--master	local[4]	--jars	code.jar	To	include	a	dependency	using	Maven	coordinates:	$./bin/spark-
shell	--master	local[4]	--packages	"org.example:example:0.1"	For	a	complete	list	of	options,	run	spark-shell	--help.	Behind	the	scenes,spark-shell	invokes	the	more	general	spark-submit	script.	Resilient	Distributed	Datasets	(RDDs)	Spark	revolves	around	the	concept	of	a	resilient	distributed	dataset	(RDD),	which	is	a	fault-tolerant	collection	of	elements
that	can	be	operated	on	in	parallel.	There	are	two	ways	to	create	RDDs:	parallelizingan	existing	collection	in	your	driver	program,	or	referencing	a	dataset	in	an	external	storage	system,	such	as	ashared	filesystem,	HDFS,	HBase,	or	any	data	source	offering	a	Hadoop	InputFormat.	Parallelized	Collections	Parallelized	collections	are	created	by	calling
SparkContexts	parallelize	method	on	an	existing	iterable	or	collection	in	your	driver	program.	The	elements	of	the	collection	are	copied	to	form	a	distributed	dataset	that	can	be	operated	on	in	parallel.	For	example,	here	is	how	to	create	a	parallelized	collection	holding	the	numbers	1	to	5:	data	=	[1,	2,	3,	4,	5]distData	=	sc.parallelize(data)	Once
created,	the	distributed	dataset	(distData)	can	be	operated	on	in	parallel.	For	example,	we	can	call	distData.reduce(lambda	a,	b:	a	+	b)	to	add	up	the	elements	of	the	list.We	describe	operations	on	distributed	datasets	later	on.	Parallelized	collections	are	created	by	calling	SparkContexts	parallelize	method	on	an	existing	collection	in	your	driver
program	(a	Scala	Seq).	The	elements	of	the	collection	are	copied	to	form	a	distributed	dataset	that	can	be	operated	on	in	parallel.	For	example,	here	is	how	to	create	a	parallelized	collection	holding	the	numbers	1	to	5:	val	data	=	Array(1,	2,	3,	4,	5)val	distData	=	sc.parallelize(data)	Once	created,	the	distributed	dataset	(distData)	can	be	operated	on	in
parallel.	For	example,	we	might	call	distData.reduce((a,	b)	=>	a	+	b)	to	add	up	the	elements	of	the	array.	We	describe	operations	on	distributed	datasets	later	on.	Parallelized	collections	are	created	by	calling	JavaSparkContexts	parallelize	method	on	an	existing	Collection	in	your	driver	program.	The	elements	of	the	collection	are	copied	to	form	a
distributed	dataset	that	can	be	operated	on	in	parallel.	For	example,	here	is	how	to	create	a	parallelized	collection	holding	the	numbers	1	to	5:	List	data	=	Arrays.asList(1,	2,	3,	4,	5);JavaRDD	distData	=	sc.parallelize(data);	Once	created,	the	distributed	dataset	(distData)	can	be	operated	on	in	parallel.	For	example,	we	might	call	distData.reduce((a,	b)
->	a	+	b)	to	add	up	the	elements	of	the	list.We	describe	operations	on	distributed	datasets	later	on.	One	important	parameter	for	parallel	collections	is	the	number	of	partitions	to	cut	the	dataset	into.	Spark	will	run	one	task	for	each	partition	of	the	cluster.	Typically	you	want	2-4	partitions	for	each	CPU	in	your	cluster.	Normally,	Spark	tries	to	set	the
number	of	partitions	automatically	based	on	your	cluster.	However,	you	can	also	set	it	manually	by	passing	it	as	a	second	parameter	to	parallelize	(e.g.	sc.parallelize(data,	10)).	Note:	some	places	in	the	code	use	the	term	slices	(a	synonym	for	partitions)	to	maintain	backward	compatibility.	External	Datasets	PySpark	can	create	distributed	datasets
from	any	storage	source	supported	by	Hadoop,	including	your	local	file	system,	HDFS,	Cassandra,	HBase,	Amazon	S3,	etc.	Spark	supports	text	files,	SequenceFiles,	and	any	other	Hadoop	InputFormat.	Text	file	RDDs	can	be	created	using	SparkContexts	textFile	method.	This	method	takes	a	URI	for	the	file	(either	a	local	path	on	the	machine,	or	a
hdfs://,	s3a://,	etc	URI)	and	reads	it	as	a	collection	of	lines.	Here	is	an	example	invocation:	>>>	distFile	=	sc.textFile("data.txt")	Once	created,	distFile	can	be	acted	on	by	dataset	operations.	For	example,	we	can	add	up	the	sizes	of	all	the	lines	using	the	map	and	reduce	operations	as	follows:	distFile.map(lambda	s:	len(s)).reduce(lambda	a,	b:	a	+	b).
Some	notes	on	reading	files	with	Spark:	If	using	a	path	on	the	local	filesystem,	the	file	must	also	be	accessible	at	the	same	path	on	worker	nodes.	Either	copy	the	file	to	all	workers	or	use	a	network-mounted	shared	file	system.	All	of	Sparks	file-based	input	methods,	including	textFile,	support	running	on	directories,	compressed	files,	and	wildcards	as
well.	For	example,	you	can	use	textFile("/my/directory"),	textFile("/my/directory/*.txt"),	and	textFile("/my/directory/*.gz").	The	textFile	method	also	takes	an	optional	second	argument	for	controlling	the	number	of	partitions	of	the	file.	By	default,	Spark	creates	one	partition	for	each	block	of	the	file	(blocks	being	128MB	by	default	in	HDFS),	but	you
can	also	ask	for	a	higher	number	of	partitions	by	passing	a	larger	value.	Note	that	you	cannot	have	fewer	partitions	than	blocks.	Apart	from	text	files,	Sparks	Python	API	also	supports	several	other	data	formats:	SparkContext.wholeTextFiles	lets	you	read	a	directory	containing	multiple	small	text	files,	and	returns	each	of	them	as	(filename,	content)
pairs.	This	is	in	contrast	with	textFile,	which	would	return	one	record	per	line	in	each	file.	RDD.saveAsPickleFile	and	SparkContext.pickleFile	support	saving	an	RDD	in	a	simple	format	consisting	of	pickled	Python	objects.	Batching	is	used	on	pickle	serialization,	with	default	batch	size	10.	SequenceFile	and	Hadoop	Input/Output	Formats	Note	this
feature	is	currently	marked	Experimental	and	is	intended	for	advanced	users.	It	may	be	replaced	in	future	with	read/write	support	based	on	Spark	SQL,	in	which	case	Spark	SQL	is	the	preferred	approach.	Writable	Support	PySpark	SequenceFile	support	loads	an	RDD	of	key-value	pairs	within	Java,	converts	Writables	to	base	Java	types,	and	pickles
theresulting	Java	objects	using	pickle.	When	saving	an	RDD	of	key-value	pairs	to	SequenceFile,PySpark	does	the	reverse.	It	unpickles	Python	objects	into	Java	objects	and	then	converts	them	to	Writables.	The	followingWritables	are	automatically	converted:	Writable	TypePython
TypeTextstrIntWritableintFloatWritablefloatDoubleWritablefloatBooleanWritableboolBytesWritablebytearrayNullWritableNoneMapWritabledict	Arrays	are	not	handled	out-of-the-box.	Users	need	to	specify	custom	ArrayWritable	subtypes	when	reading	or	writing.	When	writing,users	also	need	to	specify	custom	converters	that	convert	arrays	to	custom
ArrayWritable	subtypes.	When	reading,	the	defaultconverter	will	convert	custom	ArrayWritable	subtypes	to	Java	Object[],	which	then	get	pickled	to	Python	tuples.	To	getPython	array.array	for	arrays	of	primitive	types,	users	need	to	specify	custom	converters.	Saving	and	Loading	SequenceFiles	Similarly	to	text	files,	SequenceFiles	can	be	saved	and
loaded	by	specifying	the	path.	The	key	and	valueclasses	can	be	specified,	but	for	standard	Writables	this	is	not	required.	>>>	rdd	=	sc.parallelize(range(1,	4)).map(lambda	x:	(x,	"a"	*	x))>>>	rdd.saveAsSequenceFile("path/to/file")>>>	sorted(sc.sequenceFile("path/to/file").collect())[(1,	u'a'),	(2,	u'aa'),	(3,	u'aaa')]	Saving	and	Loading	Other	Hadoop
Input/Output	Formats	PySpark	can	also	read	any	Hadoop	InputFormat	or	write	any	Hadoop	OutputFormat,	for	both	new	and	old	Hadoop	MapReduce	APIs.If	required,	a	Hadoop	configuration	can	be	passed	in	as	a	Python	dict.	Here	is	an	example	using	theElasticsearch	ESInputFormat:	$./bin/pyspark	--jars	/path/to/elasticsearch-hadoop.jar>>>	conf	=
{"es.resource"	:	"index/type"}	#	assume	Elasticsearch	is	running	on	localhost	defaults>>>	rdd	=	sc.newAPIHadoopRDD("org.elasticsearch.hadoop.mr.EsInputFormat",	"org.apache.hadoop.io.NullWritable",	"org.elasticsearch.hadoop.mr.LinkedMapWritable",	conf=conf)>>>	rdd.first()	#	the	result	is	a	MapWritable	that	is	converted	to	a	Python
dict(u'Elasticsearch	ID',	{u'field1':	True,	u'field2':	u'Some	Text',	u'field3':	12345})	Note	that,	if	the	InputFormat	simply	depends	on	a	Hadoop	configuration	and/or	input	path,	andthe	key	and	value	classes	can	easily	be	converted	according	to	the	above	table,then	this	approach	should	work	well	for	such	cases.	If	you	have	custom	serialized	binary	data
(such	as	loading	data	from	Cassandra	/	HBase),	then	you	will	first	need	totransform	that	data	on	the	Scala/Java	side	to	something	which	can	be	handled	by	pickles	pickler.A	Converter	trait	is	providedfor	this.	Simply	extend	this	trait	and	implement	your	transformation	code	in	the	convertmethod.	Remember	to	ensure	that	this	class,	along	with	any
dependencies	required	to	access	your	InputFormat,	are	packaged	into	your	Spark	job	jar	and	included	on	the	PySparkclasspath.	See	the	Python	examples	andthe	Converter	examplesfor	examples	of	using	Cassandra	/	HBase	InputFormat	and	OutputFormat	with	custom	converters.	Spark	can	create	distributed	datasets	from	any	storage	source
supported	by	Hadoop,	including	your	local	file	system,	HDFS,	Cassandra,	HBase,	Amazon	S3,	etc.	Spark	supports	text	files,	SequenceFiles,	and	any	other	Hadoop	InputFormat.	Text	file	RDDs	can	be	created	using	SparkContexts	textFile	method.	This	method	takes	a	URI	for	the	file	(either	a	local	path	on	the	machine,	or	a	hdfs://,	s3a://,	etc	URI)	and
reads	it	as	a	collection	of	lines.	Here	is	an	example	invocation:	scala>	val	distFile	=	sc.textFile("data.txt")distFile:	org.apache.spark.rdd.RDD[String]	=	data.txt	MapPartitionsRDD[10]	at	textFile	at	:26	Once	created,	distFile	can	be	acted	on	by	dataset	operations.	For	example,	we	can	add	up	the	sizes	of	all	the	lines	using	the	map	and	reduce	operations
as	follows:	distFile.map(s	=>	s.length).reduce((a,	b)	=>	a	+	b).	Some	notes	on	reading	files	with	Spark:	If	using	a	path	on	the	local	filesystem,	the	file	must	also	be	accessible	at	the	same	path	on	worker	nodes.	Either	copy	the	file	to	all	workers	or	use	a	network-mounted	shared	file	system.	All	of	Sparks	file-based	input	methods,	including	textFile,
support	running	on	directories,	compressed	files,	and	wildcards	as	well.	For	example,	you	can	use	textFile("/my/directory"),	textFile("/my/directory/*.txt"),	and	textFile("/my/directory/*.gz").	When	multiple	files	are	read,	the	order	of	the	partitions	depends	on	the	order	the	files	are	returned	from	the	filesystem.	It	may	or	may	not,	for	example,	follow	the
lexicographic	ordering	of	the	files	by	path.	Within	a	partition,	elements	are	ordered	according	to	their	order	in	the	underlying	file.	The	textFile	method	also	takes	an	optional	second	argument	for	controlling	the	number	of	partitions	of	the	file.	By	default,	Spark	creates	one	partition	for	each	block	of	the	file	(blocks	being	128MB	by	default	in	HDFS),
but	you	can	also	ask	for	a	higher	number	of	partitions	by	passing	a	larger	value.	Note	that	you	cannot	have	fewer	partitions	than	blocks.	Apart	from	text	files,	Sparks	Scala	API	also	supports	several	other	data	formats:	SparkContext.wholeTextFiles	lets	you	read	a	directory	containing	multiple	small	text	files,	and	returns	each	of	them	as	(filename,
content)	pairs.	This	is	in	contrast	with	textFile,	which	would	return	one	record	per	line	in	each	file.	Partitioning	is	determined	by	data	locality	which,	in	some	cases,	may	result	in	too	few	partitions.	For	those	cases,	wholeTextFiles	provides	an	optional	second	argument	for	controlling	the	minimal	number	of	partitions.	For	SequenceFiles,	use
SparkContexts	sequenceFile[K,	V]	method	where	K	and	V	are	the	types	of	key	and	values	in	the	file.	These	should	be	subclasses	of	Hadoops	Writable	interface,	like	IntWritable	and	Text.	In	addition,	Spark	allows	you	to	specify	native	types	for	a	few	common	Writables;	for	example,	sequenceFile[Int,	String]	will	automatically	read	IntWritables	and
Texts.	For	other	Hadoop	InputFormats,	you	can	use	the	SparkContext.hadoopRDD	method,	which	takes	an	arbitrary	JobConf	and	input	format	class,	key	class	and	value	class.	Set	these	the	same	way	you	would	for	a	Hadoop	job	with	your	input	source.	You	can	also	use	SparkContext.newAPIHadoopRDD	for	InputFormats	based	on	the	new	MapReduce
API	(org.apache.hadoop.mapreduce).	RDD.saveAsObjectFile	and	SparkContext.objectFile	support	saving	an	RDD	in	a	simple	format	consisting	of	serialized	Java	objects.	While	this	is	not	as	efficient	as	specialized	formats	like	Avro,	it	offers	an	easy	way	to	save	any	RDD.	Spark	can	create	distributed	datasets	from	any	storage	source	supported	by
Hadoop,	including	your	local	file	system,	HDFS,	Cassandra,	HBase,	Amazon	S3,	etc.	Spark	supports	text	files,	SequenceFiles,	and	any	other	Hadoop	InputFormat.	Text	file	RDDs	can	be	created	using	SparkContexts	textFile	method.	This	method	takes	a	URI	for	the	file	(either	a	local	path	on	the	machine,	or	a	hdfs://,	s3a://,	etc	URI)	and	reads	it	as	a
collection	of	lines.	Here	is	an	example	invocation:	JavaRDD	distFile	=	sc.textFile("data.txt");	Once	created,	distFile	can	be	acted	on	by	dataset	operations.	For	example,	we	can	add	up	the	sizes	of	all	the	lines	using	the	map	and	reduce	operations	as	follows:	distFile.map(s	->	s.length()).reduce((a,	b)	->	a	+	b).	Some	notes	on	reading	files	with	Spark:	If
using	a	path	on	the	local	filesystem,	the	file	must	also	be	accessible	at	the	same	path	on	worker	nodes.	Either	copy	the	file	to	all	workers	or	use	a	network-mounted	shared	file	system.	All	of	Sparks	file-based	input	methods,	including	textFile,	support	running	on	directories,	compressed	files,	and	wildcards	as	well.	For	example,	you	can	use
textFile("/my/directory"),	textFile("/my/directory/*.txt"),	and	textFile("/my/directory/*.gz").	The	textFile	method	also	takes	an	optional	second	argument	for	controlling	the	number	of	partitions	of	the	file.	By	default,	Spark	creates	one	partition	for	each	block	of	the	file	(blocks	being	128MB	by	default	in	HDFS),	but	you	can	also	ask	for	a	higher	number
of	partitions	by	passing	a	larger	value.	Note	that	you	cannot	have	fewer	partitions	than	blocks.	Apart	from	text	files,	Sparks	Java	API	also	supports	several	other	data	formats:	JavaSparkContext.wholeTextFiles	lets	you	read	a	directory	containing	multiple	small	text	files,	and	returns	each	of	them	as	(filename,	content)	pairs.	This	is	in	contrast	with
textFile,	which	would	return	one	record	per	line	in	each	file.	For	SequenceFiles,	use	SparkContexts	sequenceFile[K,	V]	method	where	K	and	V	are	the	types	of	key	and	values	in	the	file.	These	should	be	subclasses	of	Hadoops	Writable	interface,	like	IntWritable	and	Text.	For	other	Hadoop	InputFormats,	you	can	use	the	JavaSparkContext.hadoopRDD
method,	which	takes	an	arbitrary	JobConf	and	input	format	class,	key	class	and	value	class.	Set	these	the	same	way	you	would	for	a	Hadoop	job	with	your	input	source.	You	can	also	use	JavaSparkContext.newAPIHadoopRDD	for	InputFormats	based	on	the	new	MapReduce	API	(org.apache.hadoop.mapreduce).	JavaRDD.saveAsObjectFile	and
JavaSparkContext.objectFile	support	saving	an	RDD	in	a	simple	format	consisting	of	serialized	Java	objects.	While	this	is	not	as	efficient	as	specialized	formats	like	Avro,	it	offers	an	easy	way	to	save	any	RDD.	RDD	Operations	RDDs	support	two	types	of	operations:	transformations,	which	create	a	new	dataset	from	an	existing	one,	and	actions,	which
return	a	value	to	the	driver	program	after	running	a	computation	on	the	dataset.	For	example,	map	is	a	transformation	that	passes	each	dataset	element	through	a	function	and	returns	a	new	RDD	representing	the	results.	On	the	other	hand,	reduce	is	an	action	that	aggregates	all	the	elements	of	the	RDD	using	some	function	and	returns	the	final
result	to	the	driver	program	(although	there	is	also	a	parallel	reduceByKey	that	returns	a	distributed	dataset).	All	transformations	in	Spark	are	lazy,	in	that	they	do	not	compute	their	results	right	away.	Instead,	they	just	remember	the	transformations	applied	to	some	base	dataset	(e.g.	a	file).	The	transformations	are	only	computed	when	an	action
requires	a	result	to	be	returned	to	the	driver	program.	This	design	enables	Spark	to	run	more	efficiently.	For	example,	we	can	realize	that	a	dataset	created	through	map	will	be	used	in	a	reduce	and	return	only	the	result	of	the	reduce	to	the	driver,	rather	than	the	larger	mapped	dataset.	By	default,	each	transformed	RDD	may	be	recomputed	each
time	you	run	an	action	on	it.	However,	you	may	also	persist	an	RDD	in	memory	using	the	persist	(or	cache)	method,	in	which	case	Spark	will	keep	the	elements	around	on	the	cluster	for	much	faster	access	the	next	time	you	query	it.	There	is	also	support	for	persisting	RDDs	on	disk,	or	replicated	across	multiple	nodes.	Basics	To	illustrate	RDD	basics,
consider	the	simple	program	below:	lines	=	sc.textFile("data.txt")lineLengths	=	lines.map(lambda	s:	len(s))totalLength	=	lineLengths.reduce(lambda	a,	b:	a	+	b)	The	first	line	defines	a	base	RDD	from	an	external	file.	This	dataset	is	not	loaded	in	memory	orotherwise	acted	on:	lines	is	merely	a	pointer	to	the	file.The	second	line	defines	lineLengths	as
the	result	of	a	map	transformation.	Again,	lineLengthsis	not	immediately	computed,	due	to	laziness.Finally,	we	run	reduce,	which	is	an	action.	At	this	point	Spark	breaks	the	computation	into	tasksto	run	on	separate	machines,	and	each	machine	runs	both	its	part	of	the	map	and	a	local	reduction,returning	only	its	answer	to	the	driver	program.	If	we
also	wanted	to	use	lineLengths	again	later,	we	could	add:	lineLengths.persist()	before	the	reduce,	which	would	cause	lineLengths	to	be	saved	in	memory	after	the	first	time	it	is	computed.	To	illustrate	RDD	basics,	consider	the	simple	program	below:	val	lines	=	sc.textFile("data.txt")val	lineLengths	=	lines.map(s	=>	s.length)val	totalLength	=
lineLengths.reduce((a,	b)	=>	a	+	b)	The	first	line	defines	a	base	RDD	from	an	external	file.	This	dataset	is	not	loaded	in	memory	orotherwise	acted	on:	lines	is	merely	a	pointer	to	the	file.The	second	line	defines	lineLengths	as	the	result	of	a	map	transformation.	Again,	lineLengthsis	not	immediately	computed,	due	to	laziness.Finally,	we	run	reduce,
which	is	an	action.	At	this	point	Spark	breaks	the	computation	into	tasksto	run	on	separate	machines,	and	each	machine	runs	both	its	part	of	the	map	and	a	local	reduction,returning	only	its	answer	to	the	driver	program.	If	we	also	wanted	to	use	lineLengths	again	later,	we	could	add:	lineLengths.persist()	before	the	reduce,	which	would	cause
lineLengths	to	be	saved	in	memory	after	the	first	time	it	is	computed.	To	illustrate	RDD	basics,	consider	the	simple	program	below:	JavaRDD	lines	=	sc.textFile("data.txt");JavaRDD	lineLengths	=	lines.map(s	->	s.length());int	totalLength	=	lineLengths.reduce((a,	b)	->	a	+	b);	The	first	line	defines	a	base	RDD	from	an	external	file.	This	dataset	is	not
loaded	in	memory	orotherwise	acted	on:	lines	is	merely	a	pointer	to	the	file.The	second	line	defines	lineLengths	as	the	result	of	a	map	transformation.	Again,	lineLengthsis	not	immediately	computed,	due	to	laziness.Finally,	we	run	reduce,	which	is	an	action.	At	this	point	Spark	breaks	the	computation	into	tasksto	run	on	separate	machines,	and	each
machine	runs	both	its	part	of	the	map	and	a	local	reduction,returning	only	its	answer	to	the	driver	program.	If	we	also	wanted	to	use	lineLengths	again	later,	we	could	add:	lineLengths.persist(StorageLevel.MEMORY_ONLY());	before	the	reduce,	which	would	cause	lineLengths	to	be	saved	in	memory	after	the	first	time	it	is	computed.	Passing
Functions	to	Spark	Sparks	API	relies	heavily	on	passing	functions	in	the	driver	program	to	run	on	the	cluster.There	are	three	recommended	ways	to	do	this:	Lambda	expressions,for	simple	functions	that	can	be	written	as	an	expression.	(Lambdas	do	not	support	multi-statementfunctions	or	statements	that	do	not	return	a	value.)	Local	defs	inside	the
function	calling	into	Spark,	for	longer	code.	Top-level	functions	in	a	module.	For	example,	to	pass	a	longer	function	than	can	be	supported	using	a	lambda,	considerthe	code	below:	"""MyScript.py"""if	__name__	==	"__main__":	def	myFunc(s):	words	=	s.split("	")	return	len(words)	sc	=	SparkContext(...)	sc.textFile("file.txt").map(myFunc)	Note	that	while
it	is	also	possible	to	pass	a	reference	to	a	method	in	a	class	instance	(as	opposed	toa	singleton	object),	this	requires	sending	the	object	that	contains	that	class	along	with	the	method.For	example,	consider:	class	MyClass(object):	def	func(self,	s):	return	s	def	doStuff(self,	rdd):	return	rdd.map(self.func)	Here,	if	we	create	a	new	MyClass	and	call	doStuff
on	it,	the	map	inside	there	references	thefunc	method	of	that	MyClass	instance,	so	the	whole	object	needs	to	be	sent	to	the	cluster.	In	a	similar	way,	accessing	fields	of	the	outer	object	will	reference	the	whole	object:	class	MyClass(object):	def	__init__(self):	self.field	=	"Hello"	def	doStuff(self,	rdd):	return	rdd.map(lambda	s:	self.field	+	s)	To	avoid	this
issue,	the	simplest	way	is	to	copy	field	into	a	local	variable	insteadof	accessing	it	externally:	def	doStuff(self,	rdd):	field	=	self.field	return	rdd.map(lambda	s:	field	+	s)	Sparks	API	relies	heavily	on	passing	functions	in	the	driver	program	to	run	on	the	cluster.There	are	two	recommended	ways	to	do	this:	Anonymous	function	syntax,which	can	be	used
for	short	pieces	of	code.	Static	methods	in	a	global	singleton	object.	For	example,	you	can	define	object	MyFunctions	and	thenpass	MyFunctions.func1,	as	follows:	object	MyFunctions	{	def	func1(s:	String):	String	=	{	...	}}	myRdd.map(MyFunctions.func1)	Note	that	while	it	is	also	possible	to	pass	a	reference	to	a	method	in	a	class	instance	(as	opposed
toa	singleton	object),	this	requires	sending	the	object	that	contains	that	class	along	with	the	method.For	example,	consider:	class	MyClass	{	def	func1(s:	String):	String	=	{	...	}	def	doStuff(rdd:	RDD[String]):	RDD[String]	=	{	rdd.map(func1)	}}	Here,	if	we	create	a	new	MyClass	instance	and	call	doStuff	on	it,	the	map	inside	there	references	thefunc1
method	of	that	MyClass	instance,	so	the	whole	object	needs	to	be	sent	to	the	cluster.	It	issimilar	to	writing	rdd.map(x	=>	this.func1(x)).	In	a	similar	way,	accessing	fields	of	the	outer	object	will	reference	the	whole	object:	class	MyClass	{	val	field	=	"Hello"	def	doStuff(rdd:	RDD[String]):	RDD[String]	=	{	rdd.map(x	=>	field	+	x)	}}	is	equivalent	to
writing	rdd.map(x	=>	this.field	+	x),	which	references	all	of	this.	To	avoid	thisissue,	the	simplest	way	is	to	copy	field	into	a	local	variable	instead	of	accessing	it	externally:	def	doStuff(rdd:	RDD[String]):	RDD[String]	=	{	val	field_	=	this.field	rdd.map(x	=>	field_	+	x)}	Sparks	API	relies	heavily	on	passing	functions	in	the	driver	program	to	run	on	the
cluster.In	Java,	functions	are	represented	by	classes	implementing	the	interfaces	in	theorg.apache.spark.api.java.function	package.There	are	two	ways	to	create	such	functions:	Implement	the	Function	interfaces	in	your	own	class,	either	as	an	anonymous	inner	class	or	a	named	one,and	pass	an	instance	of	it	to	Spark.	Use	lambda	expressionsto
concisely	define	an	implementation.	While	much	of	this	guide	uses	lambda	syntax	for	conciseness,	it	is	easy	to	use	all	the	same	APIsin	long-form.	For	example,	we	could	have	written	our	code	above	as	follows:	JavaRDD	lines	=	sc.textFile("data.txt");JavaRDD	lineLengths	=	lines.map(new	Function()	{	public	Integer	call(String	s)	{	return	s.length();
}});int	totalLength	=	lineLengths.reduce(new	Function2()	{	public	Integer	call(Integer	a,	Integer	b)	{	return	a	+	b;	}});	Or,	if	writing	the	functions	inline	is	unwieldy:	class	GetLength	implements	Function	{	public	Integer	call(String	s)	{	return	s.length();	}}class	Sum	implements	Function2	{	public	Integer	call(Integer	a,	Integer	b)	{	return	a	+	b;	}}
JavaRDD	lines	=	sc.textFile("data.txt");JavaRDD	lineLengths	=	lines.map(new	GetLength());int	totalLength	=	lineLengths.reduce(new	Sum());	Note	that	anonymous	inner	classes	in	Java	can	also	access	variables	in	the	enclosing	scope	as	longas	they	are	marked	final.	Spark	will	ship	copies	of	these	variables	to	each	worker	node	as	it	doesfor	other
languages.	Understanding	closures	One	of	the	harder	things	about	Spark	is	understanding	the	scope	and	life	cycle	of	variables	and	methods	when	executing	code	across	a	cluster.	RDD	operations	that	modify	variables	outside	of	their	scope	can	be	a	frequent	source	of	confusion.	In	the	example	below	well	look	at	code	that	uses	foreach()	to	increment	a
counter,	but	similar	issues	can	occur	for	other	operations	as	well.	Example	Consider	the	naive	RDD	element	sum	below,	which	may	behave	differently	depending	on	whether	execution	is	happening	within	the	same	JVM.	A	common	example	of	this	is	when	running	Spark	in	local	mode	(--master	=	local[n])	versus	deploying	a	Spark	application	to	a
cluster	(e.g.	via	spark-submit	to	YARN):	counter	=	0rdd	=	sc.parallelize(data)	#	Wrong:	Don't	do	this!!def	increment_counter(x):	global	counter	counter	+=	xrdd.foreach(increment_counter)	print("Counter	value:	",	counter)	var	counter	=	0var	rdd	=	sc.parallelize(data)	//	Wrong:	Don't	do	this!!rdd.foreach(x	=>	counter	+=	x)	println("Counter	value:	"
+	counter)	int	counter	=	0;JavaRDD	rdd	=	sc.parallelize(data);	//	Wrong:	Don't	do	this!!rdd.foreach(x	->	counter	+=	x);	println("Counter	value:	"	+	counter);	Local	vs.	cluster	modes	The	behavior	of	the	above	code	is	undefined,	and	may	not	work	as	intended.	To	execute	jobs,	Spark	breaks	up	the	processing	of	RDD	operations	into	tasks,	each	of	which
is	executed	by	an	executor.	Prior	to	execution,	Spark	computes	the	tasks	closure.	The	closure	is	those	variables	and	methods	which	must	be	visible	for	the	executor	to	perform	its	computations	on	the	RDD	(in	this	case	foreach()).	This	closure	is	serialized	and	sent	to	each	executor.	The	variables	within	the	closure	sent	to	each	executor	are	now	copies
and	thus,	when	counter	is	referenced	within	the	foreach	function,	its	no	longer	the	counter	on	the	driver	node.	There	is	still	a	counter	in	the	memory	of	the	driver	node	but	this	is	no	longer	visible	to	the	executors!	The	executors	only	see	the	copy	from	the	serialized	closure.	Thus,	the	final	value	of	counter	will	still	be	zero	since	all	operations	on
counter	were	referencing	the	value	within	the	serialized	closure.	In	local	mode,	in	some	circumstances,	the	foreach	function	will	actually	execute	within	the	same	JVM	as	the	driver	and	will	reference	the	same	original	counter,	and	may	actually	update	it.	To	ensure	well-defined	behavior	in	these	sorts	of	scenarios	one	should	use	an	Accumulator.
Accumulators	in	Spark	are	used	specifically	to	provide	a	mechanism	for	safely	updating	a	variable	when	execution	is	split	up	across	worker	nodes	in	a	cluster.	The	Accumulators	section	of	this	guide	discusses	these	in	more	detail.	In	general,	closures	-	constructs	like	loops	or	locally	defined	methods,	should	not	be	used	to	mutate	some	global	state.
Spark	does	not	define	or	guarantee	the	behavior	of	mutations	to	objects	referenced	from	outside	of	closures.	Some	code	that	does	this	may	work	in	local	mode,	but	thats	just	by	accident	and	such	code	will	not	behave	as	expected	in	distributed	mode.	Use	an	Accumulator	instead	if	some	global	aggregation	is	needed.	Printing	elements	of	an
RDDAnother	common	idiom	is	attempting	to	print	out	the	elements	of	an	RDD	using	rdd.foreach(println)	or	rdd.map(println).	On	a	single	machine,	this	will	generate	the	expected	output	and	print	all	the	RDDs	elements.	However,	in	cluster	mode,	the	output	to	stdout	being	called	by	the	executors	is	now	writing	to	the	executors	stdout	instead,	not	the
one	on	the	driver,	so	stdout	on	the	driver	wont	show	these!	To	print	all	elements	on	the	driver,	one	can	use	the	collect()	method	to	first	bring	the	RDD	to	the	driver	node	thus:	rdd.collect().foreach(println).	This	can	cause	the	driver	to	run	out	of	memory,	though,	because	collect()	fetches	the	entire	RDD	to	a	single	machine;	if	you	only	need	to	print	a
few	elements	of	the	RDD,	a	safer	approach	is	to	use	the	take():	rdd.take(100).foreach(println).	Working	with	Key-Value	Pairs	While	most	Spark	operations	work	on	RDDs	containing	any	type	of	objects,	a	few	special	operations	areonly	available	on	RDDs	of	key-value	pairs.The	most	common	ones	are	distributed	shuffle	operations,	such	as	grouping	or
aggregating	the	elementsby	a	key.	In	Python,	these	operations	work	on	RDDs	containing	built-in	Python	tuples	such	as	(1,	2).Simply	create	such	tuples	and	then	call	your	desired	operation.	For	example,	the	following	code	uses	the	reduceByKey	operation	on	key-value	pairs	to	count	howmany	times	each	line	of	text	occurs	in	a	file:	lines	=
sc.textFile("data.txt")pairs	=	lines.map(lambda	s:	(s,	1))counts	=	pairs.reduceByKey(lambda	a,	b:	a	+	b)	We	could	also	use	counts.sortByKey(),	for	example,	to	sort	the	pairs	alphabetically,	and	finallycounts.collect()	to	bring	them	back	to	the	driver	program	as	a	list	of	objects.	While	most	Spark	operations	work	on	RDDs	containing	any	type	of	objects,	a
few	special	operations	areonly	available	on	RDDs	of	key-value	pairs.The	most	common	ones	are	distributed	shuffle	operations,	such	as	grouping	or	aggregating	the	elementsby	a	key.	In	Scala,	these	operations	are	automatically	available	on	RDDs	containingTuple2	objects(the	built-in	tuples	in	the	language,	created	by	simply	writing	(a,	b)).	The	key-
value	pair	operations	are	available	in	thePairRDDFunctions	class,which	automatically	wraps	around	an	RDD	of	tuples.	For	example,	the	following	code	uses	the	reduceByKey	operation	on	key-value	pairs	to	count	howmany	times	each	line	of	text	occurs	in	a	file:	val	lines	=	sc.textFile("data.txt")val	pairs	=	lines.map(s	=>	(s,	1))val	counts	=
pairs.reduceByKey((a,	b)	=>	a	+	b)	We	could	also	use	counts.sortByKey(),	for	example,	to	sort	the	pairs	alphabetically,	and	finallycounts.collect()	to	bring	them	back	to	the	driver	program	as	an	array	of	objects.	Note:	when	using	custom	objects	as	the	key	in	key-value	pair	operations,	you	must	be	sure	that	acustom	equals()	method	is	accompanied
with	a	matching	hashCode()	method.	For	full	details,	seethe	contract	outlined	in	the	Object.hashCode()documentation.	While	most	Spark	operations	work	on	RDDs	containing	any	type	of	objects,	a	few	special	operations	areonly	available	on	RDDs	of	key-value	pairs.The	most	common	ones	are	distributed	shuffle	operations,	such	as	grouping	or
aggregating	the	elementsby	a	key.	In	Java,	key-value	pairs	are	represented	using	thescala.Tuple2	classfrom	the	Scala	standard	library.	You	can	simply	call	new	Tuple2(a,	b)	to	create	a	tuple,	and	accessits	fields	later	with	tuple._1()	and	tuple._2().	RDDs	of	key-value	pairs	are	represented	by	theJavaPairRDD	class.	You	can	constructJavaPairRDDs	from
JavaRDDs	using	special	versions	of	the	map	operations,	likemapToPair	and	flatMapToPair.	The	JavaPairRDD	will	have	both	standard	RDD	functions	and	specialkey-value	ones.	For	example,	the	following	code	uses	the	reduceByKey	operation	on	key-value	pairs	to	count	howmany	times	each	line	of	text	occurs	in	a	file:	JavaRDD	lines	=
sc.textFile("data.txt");JavaPairRDD	pairs	=	lines.mapToPair(s	->	new	Tuple2(s,	1));JavaPairRDD	counts	=	pairs.reduceByKey((a,	b)	->	a	+	b);	We	could	also	use	counts.sortByKey(),	for	example,	to	sort	the	pairs	alphabetically,	and	finallycounts.collect()	to	bring	them	back	to	the	driver	program	as	an	array	of	objects.	Note:	when	using	custom	objects	as
the	key	in	key-value	pair	operations,	you	must	be	sure	that	acustom	equals()	method	is	accompanied	with	a	matching	hashCode()	method.	For	full	details,	seethe	contract	outlined	in	the	Object.hashCode()documentation.	Transformations	The	following	table	lists	some	of	the	common	transformations	supported	by	Spark.	Refer	to	theRDD	API	doc(Scala,
Java,	Python,	R)and	pair	RDD	functions	doc(Scala,	Java)for	details.	TransformationMeaning	map(func)	Return	a	new	distributed	dataset	formed	by	passing	each	element	of	the	source	through	a	function	func.	filter(func)	Return	a	new	dataset	formed	by	selecting	those	elements	of	the	source	on	which	func	returns	true.	flatMap(func)	Similar	to	map,	but
each	input	item	can	be	mapped	to	0	or	more	output	items	(so	func	should	return	a	Seq	rather	than	a	single	item).	mapPartitions(func)	Similar	to	map,	but	runs	separately	on	each	partition	(block)	of	the	RDD,	so	func	must	be	of	type	Iterator	=>	Iterator	when	running	on	an	RDD	of	type	T.	mapPartitionsWithIndex(func)	Similar	to	mapPartitions,	but
also	provides	func	with	an	integer	value	representing	the	index	of	the	partition,	so	func	must	be	of	type	(Int,	Iterator)	=>	Iterator	when	running	on	an	RDD	of	type	T.	sample(withReplacement,	fraction,	seed)	Sample	a	fraction	fraction	of	the	data,	with	or	without	replacement,	using	a	given	random	number	generator	seed.	union(otherDataset)	Return	a
new	dataset	that	contains	the	union	of	the	elements	in	the	source	dataset	and	the	argument.	intersection(otherDataset)	Return	a	new	RDD	that	contains	the	intersection	of	elements	in	the	source	dataset	and	the	argument.	distinct([numPartitions]))	Return	a	new	dataset	that	contains	the	distinct	elements	of	the	source	dataset.
groupByKey([numPartitions])	When	called	on	a	dataset	of	(K,	V)	pairs,	returns	a	dataset	of	(K,	Iterable)	pairs.	Note:	If	you	are	grouping	in	order	to	perform	an	aggregation	(such	as	a	sum	or	average)	over	each	key,	using	reduceByKey	or	aggregateByKey	will	yield	much	better	performance.	Note:	By	default,	the	level	of	parallelism	in	the	output
depends	on	the	number	of	partitions	of	the	parent	RDD.	You	can	pass	an	optional	numPartitions	argument	to	set	a	different	number	of	tasks.	reduceByKey(func,	[numPartitions])	When	called	on	a	dataset	of	(K,	V)	pairs,	returns	a	dataset	of	(K,	V)	pairs	where	the	values	for	each	key	are	aggregated	using	the	given	reduce	function	func,	which	must	be	of
type	(V,V)	=>	V.	Like	in	groupByKey,	the	number	of	reduce	tasks	is	configurable	through	an	optional	second	argument.	aggregateByKey(zeroValue)(seqOp,	combOp,	[numPartitions])	When	called	on	a	dataset	of	(K,	V)	pairs,	returns	a	dataset	of	(K,	U)	pairs	where	the	values	for	each	key	are	aggregated	using	the	given	combine	functions	and	a	neutral
"zero"	value.	Allows	an	aggregated	value	type	that	is	different	than	the	input	value	type,	while	avoiding	unnecessary	allocations.	Like	in	groupByKey,	the	number	of	reduce	tasks	is	configurable	through	an	optional	second	argument.	sortByKey([ascending],	[numPartitions])	When	called	on	a	dataset	of	(K,	V)	pairs	where	K	implements	Ordered,	returns
a	dataset	of	(K,	V)	pairs	sorted	by	keys	in	ascending	or	descending	order,	as	specified	in	the	boolean	ascending	argument.	join(otherDataset,	[numPartitions])	When	called	on	datasets	of	type	(K,	V)	and	(K,	W),	returns	a	dataset	of	(K,	(V,	W))	pairs	with	all	pairs	of	elements	for	each	key.	Outer	joins	are	supported	through	leftOuterJoin,	rightOuterJoin,
and	fullOuterJoin.	cogroup(otherDataset,	[numPartitions])	When	called	on	datasets	of	type	(K,	V)	and	(K,	W),	returns	a	dataset	of	(K,	(Iterable,	Iterable))	tuples.	This	operation	is	also	called	groupWith.	cartesian(otherDataset)	When	called	on	datasets	of	types	T	and	U,	returns	a	dataset	of	(T,	U)	pairs	(all	pairs	of	elements).	pipe(command,	[envVars])
Pipe	each	partition	of	the	RDD	through	a	shell	command,	e.g.	a	Perl	or	bash	script.	RDD	elements	are	written	to	the	process's	stdin	and	lines	output	to	its	stdout	are	returned	as	an	RDD	of	strings.	coalesce(numPartitions)	Decrease	the	number	of	partitions	in	the	RDD	to	numPartitions.	Useful	for	running	operations	more	efficiently	after	filtering	down
a	large	dataset.	repartition(numPartitions)	Reshuffle	the	data	in	the	RDD	randomly	to	create	either	more	or	fewer	partitions	and	balance	it	across	them.	This	always	shuffles	all	data	over	the	network.	repartitionAndSortWithinPartitions(partitioner)	Repartition	the	RDD	according	to	the	given	partitioner	and,	within	each	resulting	partition,	sort	records
by	their	keys.	This	is	more	efficient	than	calling	repartition	and	then	sorting	within	each	partition	because	it	can	push	the	sorting	down	into	the	shuffle	machinery.	Actions	The	following	table	lists	some	of	the	common	actions	supported	by	Spark.	Refer	to	theRDD	API	doc(Scala,	Java,	Python,	R)	and	pair	RDD	functions	doc(Scala,	Java)for	details.
ActionMeaning	reduce(func)	Aggregate	the	elements	of	the	dataset	using	a	function	func	(which	takes	two	arguments	and	returns	one).	The	function	should	be	commutative	and	associative	so	that	it	can	be	computed	correctly	in	parallel.	collect()	Return	all	the	elements	of	the	dataset	as	an	array	at	the	driver	program.	This	is	usually	useful	after	a
filter	or	other	operation	that	returns	a	sufficiently	small	subset	of	the	data.	count()	Return	the	number	of	elements	in	the	dataset.	first()	Return	the	first	element	of	the	dataset	(similar	to	take(1)).	take(n)	Return	an	array	with	the	first	n	elements	of	the	dataset.	takeSample(withReplacement,	num,	[seed])	Return	an	array	with	a	random	sample	of	num
elements	of	the	dataset,	with	or	without	replacement,	optionally	pre-specifying	a	random	number	generator	seed.	takeOrdered(n,	[ordering])	Return	the	first	n	elements	of	the	RDD	using	either	their	natural	order	or	a	custom	comparator.	saveAsTextFile(path)	Write	the	elements	of	the	dataset	as	a	text	file	(or	set	of	text	files)	in	a	given	directory	in	the
local	filesystem,	HDFS	or	any	other	Hadoop-supported	file	system.	Spark	will	call	toString	on	each	element	to	convert	it	to	a	line	of	text	in	the	file.	saveAsSequenceFile(path)	(Java	and	Scala)	Write	the	elements	of	the	dataset	as	a	Hadoop	SequenceFile	in	a	given	path	in	the	local	filesystem,	HDFS	or	any	other	Hadoop-supported	file	system.	This	is
available	on	RDDs	of	key-value	pairs	that	implement	Hadoop's	Writable	interface.	In	Scala,	it	is	also	available	on	types	that	are	implicitly	convertible	to	Writable	(Spark	includes	conversions	for	basic	types	like	Int,	Double,	String,	etc).	saveAsObjectFile(path)	(Java	and	Scala)	Write	the	elements	of	the	dataset	in	a	simple	format	using	Java	serialization,
which	can	then	be	loaded	using	SparkContext.objectFile().	countByKey()	Only	available	on	RDDs	of	type	(K,	V).	Returns	a	hashmap	of	(K,	Int)	pairs	with	the	count	of	each	key.	foreach(func)	Run	a	function	func	on	each	element	of	the	dataset.	This	is	usually	done	for	side	effects	such	as	updating	an	Accumulator	or	interacting	with	external	storage
systems.	Note:	modifying	variables	other	than	Accumulators	outside	of	the	foreach()	may	result	in	undefined	behavior.	See	Understanding	closures	for	more	details.	The	Spark	RDD	API	also	exposes	asynchronous	versions	of	some	actions,	like	foreachAsync	for	foreach,	which	immediately	return	a	FutureAction	to	the	caller	instead	of	blocking	on
completion	of	the	action.	This	can	be	used	to	manage	or	wait	for	the	asynchronous	execution	of	the	action.	Shuffle	operations	Certain	operations	within	Spark	trigger	an	event	known	as	the	shuffle.	The	shuffle	is	Sparksmechanism	for	re-distributing	data	so	that	its	grouped	differently	across	partitions.	This	typicallyinvolves	copying	data	across
executors	and	machines,	making	the	shuffle	a	complex	andcostly	operation.	Background	To	understand	what	happens	during	the	shuffle,	we	can	consider	the	example	of	thereduceByKey	operation.	The	reduceByKey	operation	generates	a	new	RDD	where	allvalues	for	a	single	key	are	combined	into	a	tuple	-	the	key	and	the	result	of	executing	a
reducefunction	against	all	values	associated	with	that	key.	The	challenge	is	that	not	all	values	for	asingle	key	necessarily	reside	on	the	same	partition,	or	even	the	same	machine,	but	they	must	beco-located	to	compute	the	result.	In	Spark,	data	is	generally	not	distributed	across	partitions	to	be	in	the	necessary	place	for	aspecific	operation.	During
computations,	a	single	task	will	operate	on	a	single	partition	-	thus,	toorganize	all	the	data	for	a	single	reduceByKey	reduce	task	to	execute,	Spark	needs	to	perform	anall-to-all	operation.	It	must	read	from	all	partitions	to	find	all	the	values	for	all	keys,and	then	bring	together	values	across	partitions	to	compute	the	final	result	for	each	key	-this	is
called	the	shuffle.	Although	the	set	of	elements	in	each	partition	of	newly	shuffled	data	will	be	deterministic,	and	sois	the	ordering	of	partitions	themselves,	the	ordering	of	these	elements	is	not.	If	one	desires	predictablyordered	data	following	shuffle	then	its	possible	to	use:	mapPartitions	to	sort	each	partition	using,	for	example,	.sorted
repartitionAndSortWithinPartitions	to	efficiently	sort	partitions	while	simultaneously	repartitioning	sortBy	to	make	a	globally	ordered	RDD	Operations	which	can	cause	a	shuffle	include	repartition	operations	likerepartition	and	coalesce,	ByKey	operations(except	for	counting)	like	groupByKey	and	reduceByKey,	andjoin	operations	like	cogroup	and
join.	Performance	ImpactThe	Shuffle	is	an	expensive	operation	since	it	involves	disk	I/O,	data	serialization,	andnetwork	I/O.	To	organize	data	for	the	shuffle,	Spark	generates	sets	of	tasks	-	map	tasks	toorganize	the	data,	and	a	set	of	reduce	tasks	to	aggregate	it.	This	nomenclature	comes	fromMapReduce	and	does	not	directly	relate	to	Sparks	map	and
reduce	operations.	Internally,	results	from	individual	map	tasks	are	kept	in	memory	until	they	cant	fit.	Then,	theseare	sorted	based	on	the	target	partition	and	written	to	a	single	file.	On	the	reduce	side,	tasksread	the	relevant	sorted	blocks.	Certain	shuffle	operations	can	consume	significant	amounts	of	heap	memory	since	they	employin-memory	data
structures	to	organize	records	before	or	after	transferring	them.	Specifically,reduceByKey	and	aggregateByKey	create	these	structures	on	the	map	side,	and	'ByKey	operationsgenerate	these	on	the	reduce	side.	When	data	does	not	fit	in	memory	Spark	will	spill	these	tablesto	disk,	incurring	the	additional	overhead	of	disk	I/O	and	increased	garbage
collection.	Shuffle	also	generates	a	large	number	of	intermediate	files	on	disk.	As	of	Spark	1.3,	these	filesare	preserved	until	the	corresponding	RDDs	are	no	longer	used	and	are	garbage	collected.This	is	done	so	the	shuffle	files	dont	need	to	be	re-created	if	the	lineage	is	re-computed.Garbage	collection	may	happen	only	after	a	long	period	of	time,	if
the	application	retains	referencesto	these	RDDs	or	if	GC	does	not	kick	in	frequently.	This	means	that	long-running	Spark	jobs	mayconsume	a	large	amount	of	disk	space.	The	temporary	storage	directory	is	specified	by	thespark.local.dir	configuration	parameter	when	configuring	the	Spark	context.	Shuffle	behavior	can	be	tuned	by	adjusting	a	variety
of	configuration	parameters.	See	theShuffle	Behavior	section	within	the	Spark	Configuration	Guide.	RDD	Persistence	One	of	the	most	important	capabilities	in	Spark	is	persisting	(or	caching)	a	dataset	in	memoryacross	operations.	When	you	persist	an	RDD,	each	node	stores	any	partitions	of	it	that	it	computes	inmemory	and	reuses	them	in	other
actions	on	that	dataset	(or	datasets	derived	from	it).	This	allowsfuture	actions	to	be	much	faster	(often	by	more	than	10x).	Caching	is	a	key	tool	foriterative	algorithms	and	fast	interactive	use.	You	can	mark	an	RDD	to	be	persisted	using	the	persist()	or	cache()	methods	on	it.	The	first	timeit	is	computed	in	an	action,	it	will	be	kept	in	memory	on	the
nodes.	Sparks	cache	is	fault-tolerant	if	any	partition	of	an	RDD	is	lost,	it	will	automatically	be	recomputed	using	the	transformationsthat	originally	created	it.	In	addition,	each	persisted	RDD	can	be	stored	using	a	different	storage	level,	allowing	you,	for	example,to	persist	the	dataset	on	disk,	persist	it	in	memory	but	as	serialized	Java	objects	(to	save
space),replicate	it	across	nodes.These	levels	are	set	by	passing	aStorageLevel	object	(Scala,Java,Python)to	persist().	The	cache()	method	is	a	shorthand	for	using	the	default	storage	level,which	is	StorageLevel.MEMORY_ONLY	(store	deserialized	objects	in	memory).	The	full	set	ofstorage	levels	is:	Storage	LevelMeaning	MEMORY_ONLY	Store	RDD	as
deserialized	Java	objects	in	the	JVM.	If	the	RDD	does	not	fit	in	memory,	some	partitions	will	not	be	cached	and	will	be	recomputed	on	the	fly	each	time	they're	needed.	This	is	the	default	level.	MEMORY_AND_DISK	Store	RDD	as	deserialized	Java	objects	in	the	JVM.	If	the	RDD	does	not	fit	in	memory,	store	the	partitions	that	don't	fit	on	disk,	and	read
them	from	there	when	they're	needed.	MEMORY_ONLY_SER	(Java	and	Scala)	Store	RDD	as	serialized	Java	objects	(one	byte	array	per	partition).	This	is	generally	more	space-efficient	than	deserialized	objects,	especially	when	using	a	fast	serializer,	but	more	CPU-intensive	to	read.	MEMORY_AND_DISK_SER	(Java	and	Scala)	Similar	to
MEMORY_ONLY_SER,	but	spill	partitions	that	don't	fit	in	memory	to	disk	instead	of	recomputing	them	on	the	fly	each	time	they're	needed.	DISK_ONLY	Store	the	RDD	partitions	only	on	disk.	MEMORY_ONLY_2,	MEMORY_AND_DISK_2,	etc.	Same	as	the	levels	above,	but	replicate	each	partition	on	two	cluster	nodes.	OFF_HEAP	(experimental)	Similar
to	MEMORY_ONLY_SER,	but	store	the	data	in	off-heap	memory.	This	requires	off-heap	memory	to	be	enabled.	Note:	In	Python,	stored	objects	will	always	be	serialized	with	the	Pickle	library,so	it	does	not	matter	whether	you	choose	a	serialized	level.	The	available	storage	levels	in	Python	include	MEMORY_ONLY,
MEMORY_ONLY_2,MEMORY_AND_DISK,	MEMORY_AND_DISK_2,	DISK_ONLY,	DISK_ONLY_2,	and	DISK_ONLY_3.	Spark	also	automatically	persists	some	intermediate	data	in	shuffle	operations	(e.g.	reduceByKey),	even	without	users	calling	persist.	This	is	done	to	avoid	recomputing	the	entire	input	if	a	node	fails	during	the	shuffle.	We	still
recommend	users	call	persist	on	the	resulting	RDD	if	they	plan	to	reuse	it.	Which	Storage	Level	to	Choose?	Sparks	storage	levels	are	meant	to	provide	different	trade-offs	between	memory	usage	and	CPUefficiency.	We	recommend	going	through	the	following	process	to	select	one:	If	your	RDDs	fit	comfortably	with	the	default	storage	level
(MEMORY_ONLY),	leave	them	that	way.This	is	the	most	CPU-efficient	option,	allowing	operations	on	the	RDDs	to	run	as	fast	as	possible.	If	not,	try	using	MEMORY_ONLY_SER	and	selecting	a	fast	serialization	library	tomake	the	objects	much	more	space-efficient,	but	still	reasonably	fast	to	access.	(Java	and	Scala)	Dont	spill	to	disk	unless	the	functions
that	computed	your	datasets	are	expensive,	or	they	filtera	large	amount	of	the	data.	Otherwise,	recomputing	a	partition	may	be	as	fast	as	reading	it	fromdisk.	Use	the	replicated	storage	levels	if	you	want	fast	fault	recovery	(e.g.	if	using	Spark	to	serverequests	from	a	web	application).	All	the	storage	levels	provide	full	fault	tolerance	byrecomputing	lost
data,	but	the	replicated	ones	let	you	continue	running	tasks	on	the	RDD	withoutwaiting	to	recompute	a	lost	partition.	Removing	Data	Spark	automatically	monitors	cache	usage	on	each	node	and	drops	out	old	data	partitions	in	aleast-recently-used	(LRU)	fashion.	If	you	would	like	to	manually	remove	an	RDD	instead	of	waiting	forit	to	fall	out	of	the
cache,	use	the	RDD.unpersist()	method.	Note	that	this	method	does	notblock	by	default.	To	block	until	resources	are	freed,	specify	blocking=true	when	calling	this	method.	Normally,	when	a	function	passed	to	a	Spark	operation	(such	as	map	or	reduce)	is	executed	on	aremote	cluster	node,	it	works	on	separate	copies	of	all	the	variables	used	in	the
function.	Thesevariables	are	copied	to	each	machine,	and	no	updates	to	the	variables	on	the	remote	machine	arepropagated	back	to	the	driver	program.	Supporting	general,	read-write	shared	variables	across	taskswould	be	inefficient.	However,	Spark	does	provide	two	limited	types	of	shared	variables	for	twocommon	usage	patterns:	broadcast
variables	and	accumulators.	Broadcast	Variables	Broadcast	variables	allow	the	programmer	to	keep	a	read-only	variable	cached	on	each	machine	ratherthan	shipping	a	copy	of	it	with	tasks.	They	can	be	used,	for	example,	to	give	every	node	a	copy	of	alarge	input	dataset	in	an	efficient	manner.	Spark	also	attempts	to	distribute	broadcast
variablesusing	efficient	broadcast	algorithms	to	reduce	communication	cost.	Spark	actions	are	executed	through	a	set	of	stages,	separated	by	distributed	shuffle	operations.Spark	automatically	broadcasts	the	common	data	needed	by	tasks	within	each	stage.	The	databroadcasted	this	way	is	cached	in	serialized	form	and	deserialized	before	running
each	task.	Thismeans	that	explicitly	creating	broadcast	variables	is	only	useful	when	tasks	across	multiple	stagesneed	the	same	data	or	when	caching	the	data	in	deserialized	form	is	important.	Broadcast	variables	are	created	from	a	variable	v	by	calling	SparkContext.broadcast(v).	Thebroadcast	variable	is	a	wrapper	around	v,	and	its	value	can	be
accessed	by	calling	the	valuemethod.	The	code	below	shows	this:	>>>	broadcastVar	=	sc.broadcast([1,	2,	3])	>>>	broadcastVar.value[1,	2,	3]	scala>	val	broadcastVar	=	sc.broadcast(Array(1,	2,	3))broadcastVar:	org.apache.spark.broadcast.Broadcast[Array[Int]]	=	Broadcast(0)	scala>	broadcastVar.valueres0:	Array[Int]	=	Array(1,	2,	3)	Broadcast
broadcastVar	=	sc.broadcast(new	int[]	{1,	2,	3});	broadcastVar.value();//	returns	[1,	2,	3]	After	the	broadcast	variable	is	created,	it	should	be	used	instead	of	the	value	v	in	any	functionsrun	on	the	cluster	so	that	v	is	not	shipped	to	the	nodes	more	than	once.	In	addition,	the	objectv	should	not	be	modified	after	it	is	broadcast	in	order	to	ensure	that	all
nodes	get	the	samevalue	of	the	broadcast	variable	(e.g.	if	the	variable	is	shipped	to	a	new	node	later).	To	release	the	resources	that	the	broadcast	variable	copied	onto	executors,	call	.unpersist().If	the	broadcast	is	used	again	afterwards,	it	will	be	re-broadcast.	To	permanently	release	allresources	used	by	the	broadcast	variable,	call	.destroy().	The
broadcast	variable	cant	be	usedafter	that.	Note	that	these	methods	do	not	block	by	default.	To	block	until	resources	are	freed,specify	blocking=true	when	calling	them.	Accumulators	Accumulators	are	variables	that	are	only	added	to	through	an	associative	and	commutative	operation	and	cantherefore	be	efficiently	supported	in	parallel.	They	can	be
used	to	implement	counters	(as	inMapReduce)	or	sums.	Spark	natively	supports	accumulators	of	numeric	types,	and	programmerscan	add	support	for	new	types.	As	a	user,	you	can	create	named	or	unnamed	accumulators.	As	seen	in	the	image	below,	a	named	accumulator	(in	this	instance	counter)	will	display	in	the	web	UI	for	the	stage	that	modifies
that	accumulator.	Spark	displays	the	value	for	each	accumulator	modified	by	a	task	in	the	Tasks	table.	Tracking	accumulators	in	the	UI	can	be	useful	for	understanding	the	progress	ofrunning	stages	(NOTE:	this	is	not	yet	supported	in	Python).	An	accumulator	is	created	from	an	initial	value	v	by	calling	SparkContext.accumulator(v).	Tasksrunning	on	a
cluster	can	then	add	to	it	using	the	add	method	or	the	+=	operator.	However,	they	cannot	read	its	value.Only	the	driver	program	can	read	the	accumulators	value,	using	its	value	method.	The	code	below	shows	an	accumulator	being	used	to	add	up	the	elements	of	an	array:	>>>	accum	=	sc.accumulator(0)>>>	accumAccumulator	>>>
sc.parallelize([1,	2,	3,	4]).foreach(lambda	x:	accum.add(x))...10/09/29	18:41:08	INFO	SparkContext:	Tasks	finished	in	0.317106	s	>>>	accum.value10	While	this	code	used	the	built-in	support	for	accumulators	of	type	Int,	programmers	can	alsocreate	their	own	types	by	subclassing	AccumulatorParam.The	AccumulatorParam	interface	has	two	methods:
zero	for	providing	a	zero	value	for	your	datatype,	and	addInPlace	for	adding	two	values	together.	For	example,	supposing	we	had	a	Vector	classrepresenting	mathematical	vectors,	we	could	write:	class	VectorAccumulatorParam(AccumulatorParam):	def	zero(self,	initialValue):	return	Vector.zeros(initialValue.size)	def	addInPlace(self,	v1,	v2):	v1	+=	v2
return	v1	#	Then,	create	an	Accumulator	of	this	type:vecAccum	=	sc.accumulator(Vector(...),	VectorAccumulatorParam())	A	numeric	accumulator	can	be	created	by	calling	SparkContext.longAccumulator()	or	SparkContext.doubleAccumulator()to	accumulate	values	of	type	Long	or	Double,	respectively.	Tasks	running	on	a	cluster	can	then	add	to	it
usingthe	add	method.	However,	they	cannot	read	its	value.	Only	the	driver	program	can	read	the	accumulators	value,using	its	value	method.	The	code	below	shows	an	accumulator	being	used	to	add	up	the	elements	of	an	array:	scala>	val	accum	=	sc.longAccumulator("My	Accumulator")accum:	org.apache.spark.util.LongAccumulator	=

LongAccumulator(id:	0,	name:	Some(My	Accumulator),	value:	0)	scala>	sc.parallelize(Array(1,	2,	3,	4)).foreach(x	=>	accum.add(x))...10/09/29	18:41:08	INFO	SparkContext:	Tasks	finished	in	0.317106	s	scala>	accum.valueres2:	Long	=	10	While	this	code	used	the	built-in	support	for	accumulators	of	type	Long,	programmers	can	alsocreate	their	own
types	by	subclassing	AccumulatorV2.The	AccumulatorV2	abstract	class	has	several	methods	which	one	has	to	override:	reset	for	resettingthe	accumulator	to	zero,	add	for	adding	another	value	into	the	accumulator,merge	for	merging	another	same-type	accumulator	into	this	one.	Other	methods	that	must	be	overriddenare	contained	in	the	API
documentation.	For	example,	supposing	we	had	a	MyVector	classrepresenting	mathematical	vectors,	we	could	write:	class	VectorAccumulatorV2	extends	AccumulatorV2[MyVector,	MyVector]	{	private	val	myVector:	MyVector	=	MyVector.createZeroVector	def	reset():	Unit	=	{	myVector.reset()	}	def	add(v:	MyVector):	Unit	=	{	myVector.add(v)	}	...}
//	Then,	create	an	Accumulator	of	this	type:val	myVectorAcc	=	new	VectorAccumulatorV2//	Then,	register	it	into	spark	context:sc.register(myVectorAcc,	"MyVectorAcc1")	Note	that,	when	programmers	define	their	own	type	of	AccumulatorV2,	the	resulting	type	can	be	different	than	that	of	the	elements	added.	A	numeric	accumulator	can	be	created	by
calling	SparkContext.longAccumulator()	or	SparkContext.doubleAccumulator()to	accumulate	values	of	type	Long	or	Double,	respectively.	Tasks	running	on	a	cluster	can	then	add	to	it	usingthe	add	method.	However,	they	cannot	read	its	value.	Only	the	driver	program	can	read	the	accumulators	value,using	its	value	method.	The	code	below	shows	an
accumulator	being	used	to	add	up	the	elements	of	an	array:	LongAccumulator	accum	=	jsc.sc().longAccumulator();	sc.parallelize(Arrays.asList(1,	2,	3,	4)).foreach(x	->	accum.add(x));//	...//	10/09/29	18:41:08	INFO	SparkContext:	Tasks	finished	in	0.317106	s	accum.value();//	returns	10	While	this	code	used	the	built-in	support	for	accumulators	of	type
Long,	programmers	can	alsocreate	their	own	types	by	subclassing	AccumulatorV2.The	AccumulatorV2	abstract	class	has	several	methods	which	one	has	to	override:	reset	for	resettingthe	accumulator	to	zero,	add	for	adding	another	value	into	the	accumulator,merge	for	merging	another	same-type	accumulator	into	this	one.	Other	methods	that	must
be	overriddenare	contained	in	the	API	documentation.	For	example,	supposing	we	had	a	MyVector	classrepresenting	mathematical	vectors,	we	could	write:	class	VectorAccumulatorV2	implements	AccumulatorV2	{	private	MyVector	myVector	=	MyVector.createZeroVector();	public	void	reset()	{	myVector.reset();	}	public	void	add(MyVector	v)	{
myVector.add(v);	}	...}	//	Then,	create	an	Accumulator	of	this	type:VectorAccumulatorV2	myVectorAcc	=	new	VectorAccumulatorV2();//	Then,	register	it	into	spark	context:jsc.sc().register(myVectorAcc,	"MyVectorAcc1");	Note	that,	when	programmers	define	their	own	type	of	AccumulatorV2,	the	resulting	type	can	be	different	than	that	of	the
elements	added.	Warning:	When	a	Spark	task	finishes,	Spark	will	try	to	merge	the	accumulated	updates	in	this	task	to	an	accumulator.If	it	fails,	Spark	will	ignore	the	failure	and	still	mark	the	task	successful	and	continue	to	run	other	tasks.	Hence,a	buggy	accumulator	will	not	impact	a	Spark	job,	but	it	may	not	get	updated	correctly	although	a	Spark
job	is	successful.	For	accumulator	updates	performed	inside	actions	only,	Spark	guarantees	that	each	tasks	update	to	the	accumulatorwill	only	be	applied	once,	i.e.	restarted	tasks	will	not	update	the	value.	In	transformations,	users	should	be	awareof	that	each	tasks	update	may	be	applied	more	than	once	if	tasks	or	job	stages	are	re-executed.
Accumulators	do	not	change	the	lazy	evaluation	model	of	Spark.	If	they	are	being	updated	within	an	operation	on	an	RDD,	their	value	is	only	updated	once	that	RDD	is	computed	as	part	of	an	action.	Consequently,	accumulator	updates	are	not	guaranteed	to	be	executed	when	made	within	a	lazy	transformation	like	map().	The	below	code	fragment
demonstrates	this	property:	accum	=	sc.accumulator(0)def	g(x):	accum.add(x)	return	f(x)data.map(g)#	Here,	accum	is	still	0	because	no	actions	have	caused	the	`map`	to	be	computed.	val	accum	=	sc.longAccumulatordata.map	{	x	=>	accum.add(x);	x	}//	Here,	accum	is	still	0	because	no	actions	have	caused	the	map	operation	to	be	computed.
LongAccumulator	accum	=	jsc.sc().longAccumulator();data.map(x	->	{	accum.add(x);	return	f(x);	});//	Here,	accum	is	still	0	because	no	actions	have	caused	the	`map`	to	be	computed.	Deploying	to	a	Cluster	The	application	submission	guide	describes	how	to	submit	applications	to	a	cluster.In	short,	once	you	package	your	application	into	a	JAR	(for
Java/Scala)	or	a	set	of	.py	or	.zip	files	(for	Python),the	bin/spark-submit	script	lets	you	submit	it	to	any	supported	cluster	manager.	Launching	Spark	jobs	from	Java	/	Scala	The	org.apache.spark.launcherpackage	provides	classes	for	launching	Spark	jobs	as	child	processes	using	a	simple	Java	API.	Unit	Testing	Spark	is	friendly	to	unit	testing	with	any
popular	unit	test	framework.Simply	create	a	SparkContext	in	your	test	with	the	master	URL	set	to	local,	run	your	operations,and	then	call	SparkContext.stop()	to	tear	it	down.Make	sure	you	stop	the	context	within	a	finally	block	or	the	test	frameworks	tearDown	method,as	Spark	does	not	support	two	contexts	running	concurrently	in	the	same
program.	Where	to	Go	from	Here	You	can	see	some	example	Spark	programs	on	the	Spark	website.In	addition,	Spark	includes	several	samples	in	the	examples	directory(Scala,	Java,	Python,	R).You	can	run	Java	and	Scala	examples	by	passing	the	class	name	to	Sparks	bin/run-example	script;	for	instance:	./bin/run-example	SparkPi	For	Python
examples,	use	spark-submit	instead:	./bin/spark-submit	examples/src/main/python/pi.py	For	R	examples,	use	spark-submit	instead:	./bin/spark-submit	examples/src/main/r/dataframe.R	For	help	on	optimizing	your	programs,	the	configuration	andtuning	guides	provide	information	on	best	practices.	They	are	especially	important	formaking	sure	that
your	data	is	stored	in	memory	in	an	efficient	format.For	help	on	deploying,	the	cluster	mode	overview	describes	the	components	involvedin	distributed	operation	and	supported	cluster	managers.	Finally,	full	API	documentation	is	available	inScala,	Java,	Python	and	R.	Page	2	Get	Spark	from	the	downloads	page	of	the	project	website.	This
documentation	is	for	Spark	version	3.5.5.	Spark	uses	Hadoops	client	libraries	for	HDFS	and	YARN.	Downloads	are	pre-packaged	for	a	handful	of	popular	Hadoop	versions.Users	can	also	download	a	Hadoop	free	binary	and	run	Spark	with	any	Hadoop	versionby	augmenting	Sparks	classpath.Scala	and	Java	users	can	include	Spark	in	their	projects
using	its	Maven	coordinates	and	Python	users	can	install	Spark	from	PyPI.	If	youd	like	to	build	Spark	fromsource,	visit	Building	Spark.	Spark	runs	on	both	Windows	and	UNIX-like	systems	(e.g.	Linux,	Mac	OS),	and	it	should	run	on	any	platform	that	runs	a	supported	version	of	Java.	This	should	include	JVMs	on	x86_64	and	ARM64.	Its	easy	to	run
locally	on	one	machine	all	you	need	is	to	have	java	installed	on	your	system	PATH,	or	the	JAVA_HOME	environment	variable	pointing	to	a	Java	installation.	Spark	runs	on	Java	8/11/17,	Scala	2.12/2.13,	Python	3.8+,	and	R	3.5+.Java	8	prior	to	version	8u371	support	is	deprecated	as	of	Spark	3.5.0.When	using	the	Scala	API,	it	is	necessary	for
applications	to	use	the	same	version	of	Scala	that	Spark	was	compiled	for.For	example,	when	using	Scala	2.13,	use	Spark	compiled	for	2.13,	and	compile	code/applications	for	Scala	2.13	as	well.	For	Java	11,	setting	-Dio.netty.tryReflectionSetAccessible=true	is	required	for	the	Apache	Arrow	library.	This	prevents	the
java.lang.UnsupportedOperationException:	sun.misc.Unsafe	or	java.nio.DirectByteBuffer.(long,	int)	not	available	error	when	Apache	Arrow	uses	Netty	internally.	Running	the	Examples	and	Shell	Spark	comes	with	several	sample	programs.	Python,	Scala,	Java,	and	R	examples	are	in	theexamples/src/main	directory.	To	run	Spark	interactively	in	a
Python	interpreter,	usebin/pyspark:	./bin/pyspark	--master	"local[2]"	Sample	applications	are	provided	in	Python.	For	example:	./bin/spark-submit	examples/src/main/python/pi.py	10	To	run	one	of	the	Scala	or	Java	sample	programs,	usebin/run-example	[params]	in	the	top-level	Spark	directory.	(Behind	the	scenes,	thisinvokes	the	more	generalspark-
submit	script	forlaunching	applications).	For	example,	./bin/run-example	SparkPi	10	You	can	also	run	Spark	interactively	through	a	modified	version	of	the	Scala	shell.	This	is	agreat	way	to	learn	the	framework.	./bin/spark-shell	--master	"local[2]"	The	--master	option	specifies	themaster	URL	for	a	distributed	cluster,	or	local	to	runlocally	with	one
thread,	or	local[N]	to	run	locally	with	N	threads.	You	should	start	by	usinglocal	for	testing.	For	a	full	list	of	options,	run	the	Spark	shell	with	the	--help	option.	Since	version	1.4,	Spark	has	provided	an	R	API	(only	the	DataFrame	APIs	are	included).To	run	Spark	interactively	in	an	R	interpreter,	use	bin/sparkR:	./bin/sparkR	--master	"local[2]"	Example
applications	are	also	provided	in	R.	For	example:	./bin/spark-submit	examples/src/main/r/dataframe.R	Running	Spark	Client	Applications	Anywhere	with	Spark	Connect	Spark	Connect	is	a	new	client-server	architecture	introduced	in	Spark	3.4	that	decouples	Sparkclient	applications	and	allows	remote	connectivity	to	Spark	clusters.	The	separation
betweenclient	and	server	allows	Spark	and	its	open	ecosystem	to	be	leveraged	from	anywhere,	embeddedin	any	application.	In	Spark	3.4,	Spark	Connect	provides	DataFrame	API	coverage	for	PySpark	andDataFrame/Dataset	API	support	in	Scala.	To	learn	more	about	Spark	Connect	and	how	to	use	it,	see	Spark	Connect	Overview.	Launching	on	a
Cluster	The	Spark	cluster	mode	overview	explains	the	key	concepts	in	running	on	a	cluster.Spark	can	run	both	by	itself,	or	over	several	existing	cluster	managers.	It	currently	provides	severaloptions	for	deployment:	Where	to	Go	from	Here	Programming	Guides:	Quick	Start:	a	quick	introduction	to	the	Spark	API;	start	here!	RDD	Programming	Guide:
overview	of	Spark	basics	-	RDDs	(core	but	old	API),	accumulators,	and	broadcast	variables	Spark	SQL,	Datasets,	and	DataFrames:	processing	structured	data	with	relational	queries	(newer	API	than	RDDs)	Structured	Streaming:	processing	structured	data	streams	with	relation	queries	(using	Datasets	and	DataFrames,	newer	API	than	DStreams)
Spark	Streaming:	processing	data	streams	using	DStreams	(old	API)	MLlib:	applying	machine	learning	algorithms	GraphX:	processing	graphs	SparkR:	processing	data	with	Spark	in	R	PySpark:	processing	data	with	Spark	in	Python	Spark	SQL	CLI:	processing	data	with	SQL	on	the	command	line	API	Docs:	Deployment	Guides:	Other	Documents:
External	Resources:	Join	the	community	Spark	has	a	thriving	open	source	community,	with	contributors	from	around	the	globe	building	features,	documentation	and	assisting	other	users.	This	page	shows	you	how	to	use	different	Apache	Spark	APIs	with	simple	examples.	Spark	is	a	great	engine	for	small	and	large	datasets.	It	can	be	used	with	single-
node/localhost	environments,	or	distributed	clusters.	Sparks	expansive	API,	excellent	performance,	and	flexibility	make	it	a	good	option	for	many	analyses.	This	guide	shows	examples	with	the	following	Spark	APIs:	DataFrames	SQL	Structured	Streaming	RDDs	The	examples	use	small	datasets	so	the	they	are	easy	to	follow.	Spark	DataFrame	example
This	section	shows	you	how	to	create	a	Spark	DataFrame	and	run	simple	operations.	The	examples	are	on	a	small	DataFrame,	so	you	can	easily	see	the	functionality.	Lets	start	by	creating	a	Spark	Session:	from	pyspark.sql	import	SparkSessionspark	=	SparkSession.builder.appName("demo").getOrCreate()	Some	Spark	runtime	environments	come
with	pre-instantiated	Spark	Sessions.	The	getOrCreate()	method	will	use	an	existing	Spark	Session	or	create	a	new	Spark	Session	if	one	does	not	already	exist.	Create	a	Spark	DataFrame	Start	by	creating	a	DataFrame	with	first_name	and	age	columns	and	four	rows	of	data:	df	=	spark.createDataFrame([("sue",	32),	("li",	3),	("bob",	75),	("heo",	13),],
["first_name",	"age"],)	Use	the	show()	method	to	view	the	contents	of	the	DataFrame:	df.show()+----------+---+|first_name|age|+----------+---+|	sue|	32||	li|	3||	bob|	75||	heo|	13|+----------+---+	Now,	lets	perform	some	data	processing	operations	on	the	DataFrame.	Add	a	column	to	a	Spark	DataFrame	Lets	add	a	life_stage	column	to	the	DataFrame	that
returns	child	if	the	age	is	12	or	under,	teenager	if	the	age	is	between	13	and	19,	and	adult	if	the	age	is	20	or	older.	from	pyspark.sql.functions	import	col,	whendf1	=	df.withColumn("life_stage",	when(col("age")	<	13,	"child")	.when(col("age").between(13,	19),	"teenager")	.otherwise("adult"),)	Its	easy	to	add	columns	to	a	Spark	DataFrame.	Lets	view
the	contents	of	df1.	df1.show()+----------+---+----------+|first_name|age|life_stage|+----------+---+----------+|	sue|	32|	adult||	li|	3|	child||	bob|	75|	adult||	heo|	13|	teenager|+----------+---+----------+	Notice	how	the	original	DataFrame	is	unchanged:	df.show()+----------+---+|first_name|age|+----------+---+|	sue|	32||	li|	3||	bob|	75||	heo|	13|+----------+---+	Spark
operations	dont	mutate	the	DataFrame.	You	must	assign	the	result	to	a	new	variable	to	access	the	DataFrame	changes	for	subsequent	operations.	Filter	a	Spark	DataFrame	Now,	filter	the	DataFrame	so	it	only	includes	teenagers	and	adults.	df1.where(col("life_stage").isin(["teenager",	"adult"])).show()+----------+---+----------+|first_name|age|life_stage|+-
---------+---+----------+|	sue|	32|	adult||	bob|	75|	adult||	heo|	13|	teenager|+----------+---+----------+	Group	by	aggregation	on	Spark	DataFrame	Now,	lets	compute	the	average	age	for	everyone	in	the	dataset:	from	pyspark.sql.functions	import	avgdf1.select(avg("age")).show()+--------+|avg(age)|+--------+|	30.75|+--------+	You	can	also	compute	the	average	age
for	each	life_stage:	df1.groupBy("life_stage").avg().show()+----------+--------+|life_stage|avg(age)|+----------+--------+|	adult|	53.5||	child|	3.0||	teenager|	13.0|+----------+--------+	Spark	lets	you	run	queries	on	DataFrames	with	SQL	if	you	dont	want	to	use	the	programmatic	APIs.	Query	the	DataFrame	with	SQL	Heres	how	you	can	compute	the	average	age	for
everyone	with	SQL:	spark.sql("select	avg(age)	from	{df1}",	df1=df1).show()+--------+|avg(age)|+--------+|	30.75|+--------+	And	heres	how	to	compute	the	average	age	by	life_stage	with	SQL:	spark.sql("select	life_stage,	avg(age)	from	{df1}	group	by	life_stage",	df1=df1).show()+----------+--------+|life_stage|avg(age)|+----------+--------+|	adult|	53.5||	child|	3.0||
teenager|	13.0|+----------+--------+	Spark	lets	you	use	the	programmatic	API,	the	SQL	API,	or	a	combination	of	both.	This	flexibility	makes	Spark	accessible	to	a	variety	of	users	and	powerfully	expressive.	Spark	SQL	Example	Lets	persist	the	DataFrame	in	a	named	Parquet	table	that	is	easily	accessible	via	the	SQL	API.
df1.write.saveAsTable("some_people")	Make	sure	that	the	table	is	accessible	via	the	table	name:	spark.sql("select	*	from	some_people").show()+----------+---+----------+|first_name|age|life_stage|+----------+---+----------+|	heo|	13|	teenager||	sue|	32|	adult||	bob|	75|	adult||	li|	3|	child|+----------+---+----------+	Now,	lets	use	SQL	to	insert	a	few	more	rows	of	data
into	the	table:	spark.sql("INSERT	INTO	some_people	VALUES	('frank',	4,	'child')")	Inspect	the	table	contents	to	confirm	the	row	was	inserted:	spark.sql("select	*	from	some_people").show()+----------+---+----------+|first_name|age|life_stage|+----------+---+----------+|	heo|	13|	teenager||	sue|	32|	adult||	bob|	75|	adult||	li|	3|	child||	frank|	4|	child|+----------+---+--
--------+	Run	a	query	that	returns	the	teenagers:	spark.sql("select	*	from	some_people	where	life_stage='teenager'").show()+----------+---+----------+|first_name|age|life_stage|+----------+---+----------+|	heo|	13|	teenager|+----------+---+----------+	Spark	makes	it	easy	to	register	tables	and	query	them	with	pure	SQL.	Spark	Structured	Streaming	Example	Spark
also	has	Structured	Streaming	APIs	that	allow	you	to	create	batch	or	real-time	streaming	applications.	Lets	see	how	to	use	Spark	Structured	Streaming	to	read	data	from	Kafka	and	write	it	to	a	Parquet	table	hourly.	Suppose	you	have	a	Kafka	stream	thats	continuously	populated	with	the	following	data:	{"student_name":"someXXperson",
"graduation_year":"2023",	"major":"math"}{"student_name":"liXXyao",	"graduation_year":"2025",	"major":"physics"}	Heres	how	to	read	the	Kafka	source	into	a	Spark	DataFrame:	df	=	(spark.readStream.format("kafka")	.option("kafka.bootstrap.servers",	"host1:port1,host2:port2")	.option("subscribe",	subscribeTopic)	.load())	Create	a	function	that
cleans	the	input	data.	schema	=	StructType([StructField("student_name",	StringType()),	StructField("graduation_year",	StringType()),	StructField("major",	StringType()),])def	with_normalized_names(df,	schema):	parsed_df	=	(df.withColumn("json_data",	from_json(col("value").cast("string"),	schema))	.withColumn("student_name",
col("json_data.student_name"))	.withColumn("graduation_year",	col("json_data.graduation_year"))	.withColumn("major",	col("json_data.major"))	.drop(col("json_data"))	.drop(col("value")))	split_col	=	split(parsed_df["student_name"],	"XX")	return	(parsed_df.withColumn("first_name",	split_col.getItem(0))	.withColumn("last_name",	split_col.getItem(1))
.drop("student_name"))	Now,	create	a	function	that	will	read	all	of	the	new	data	in	Kafka	whenever	its	run.	def	perform_available_now_update():	checkpointPath	=	"data/tmp_students_checkpoint/"	path	=	"data/tmp_students"	return	df.transform(lambda	df:	with_normalized_names(df)).writeStream.trigger(availableNow=True
).format("parquet").option("checkpointLocation",	checkpointPath).start(path)	Invoke	the	perform_available_now_update()	function	and	see	the	contents	of	the	Parquet	table.	You	can	set	up	a	cron	job	to	run	the	perform_available_now_update()	function	every	hour	so	your	Parquet	table	is	regularly	updated.	Spark	RDD	Example	The	Spark	RDD	APIs	are
suitable	for	unstructured	data.	The	Spark	DataFrame	API	is	easier	and	more	performant	for	structured	data.	Suppose	you	have	a	text	file	called	some_text.txt	with	the	following	three	lines	of	data:	these	are	wordsthese	are	more	wordswords	in	english	You	would	like	to	compute	the	count	of	each	word	in	the	text	file.	Here	is	how	to	perform	this
computation	with	Spark	RDDs:	text_file	=	spark.sparkContext.textFile("some_words.txt")counts	=	(text_file.flatMap(lambda	line:	line.split("	"))	.map(lambda	word:	(word,	1))	.reduceByKey(lambda	a,	b:	a	+	b))	Lets	take	a	look	at	the	result:	counts.collect()[('these',	2),	('are',	2),	('more',	1),	('in',	1),	('words',	3),	('english',	1)]	Spark	allows	for	efficient
execution	of	the	query	because	it	parallelizes	this	computation.	Many	other	query	engines	arent	capable	of	parallelizing	computations.	Conclusion	These	examples	have	shown	how	Spark	provides	nice	user	APIs	for	computations	on	small	datasets.	Spark	can	scale	these	same	code	examples	to	large	datasets	on	distributed	clusters.	Its	fantastic	how
Spark	can	handle	both	large	and	small	datasets.	Spark	also	has	an	expansive	API	compared	with	other	query	engines.	Spark	allows	you	to	perform	DataFrame	operations	with	programmatic	APIs,	write	SQL,	perform	streaming	analyses,	and	do	machine	learning.	Spark	saves	you	from	learning	multiple	frameworks	and	patching	together	various
libraries	to	perform	an	analysis.	Additional	examples	Many	additional	examples	are	distributed	with	Spark:	Date:	May	19,	2025	Version:	4.0.0Useful	links:Live	Notebook	|	GitHub	|	Issues	|	Examples	|	Community	|	Stack	Overflow	|	Dev	Mailing	List	|	User	Mailing	ListPySpark	is	the	Python	API	for	Apache	Spark.	It	enables	you	to	perform	real-time,large-
scale	data	processing	in	a	distributed	environment	using	Python.	It	also	provides	a	PySparkshell	for	interactively	analyzing	your	data.PySpark	combines	Pythons	learnability	and	ease	of	use	with	the	power	of	Apache	Sparkto	enable	processing	and	analysis	of	data	at	any	size	for	everyone	familiar	with	Python.PySpark	supports	all	of	Sparks	features
such	as	Spark	SQL,DataFrames,	Structured	Streaming,	Machine	Learning	(MLlib)	and	Spark	Core.Python	Spark	Connect	ClientSpark	Connect	is	a	client-server	architecture	within	Apache	Spark	thatenables	remote	connectivity	to	Spark	clusters	from	any	application.PySpark	provides	the	client	for	the	Spark	Connect	server,	allowingSpark	to	be	used
as	a	service.	Spark	SQL	and	DataFramesSpark	SQL	is	Apache	Sparks	module	for	working	with	structured	data.It	allows	you	to	seamlessly	mix	SQL	queries	with	Spark	programs.With	PySpark	DataFrames	you	can	efficiently	read,	write,	transform,and	analyze	data	using	Python	and	SQL.Whether	you	use	Python	or	SQL,	the	same	underlying
executionengine	is	used	so	you	will	always	leverage	the	full	power	of	Spark.Quickstart:	DataFrameLive	Notebook:	DataFrameSpark	SQL	API	ReferencePandas	API	on	SparkPandas	API	on	Spark	allows	you	to	scale	your	pandas	workload	to	any	sizeby	running	it	distributed	across	multiple	nodes.	If	you	are	already	familiarwith	pandas	and	want	to
leverage	Spark	for	big	data,	pandas	API	on	Spark	makesyou	immediately	productive	and	lets	you	migrate	your	applications	without	modifying	the	code.You	can	have	a	single	codebase	that	works	both	with	pandas	(tests,	smaller	datasets)and	with	Spark	(production,	distributed	datasets)	and	you	can	switch	between	thepandas	API	and	the	Pandas	API
on	Spark	easily	and	without	overhead.Pandas	API	on	Spark	aims	to	make	the	transition	from	pandas	to	Spark	easy	butif	you	are	new	to	Spark	or	deciding	which	API	to	use,	we	recommend	using	PySpark(see	Spark	SQL	and	DataFrames).	Structured	StreamingStructured	Streaming	is	a	scalable	and	fault-tolerant	stream	processing	engine	built	on	the
Spark	SQL	engine.You	can	express	your	streaming	computation	the	same	way	you	would	express	a	batch	computation	on	static	data.The	Spark	SQL	engine	will	take	care	of	running	it	incrementally	and	continuously	and	updating	the	final	resultas	streaming	data	continues	to	arrive.Structured	Streaming	Programming	GuideStructured	Streaming	API
ReferenceMachine	Learning	(MLlib)Built	on	top	of	Spark,	MLlib	is	a	scalable	machine	learning	library	that	providesa	uniform	set	of	high-level	APIs	that	help	users	create	and	tune	practical	machinelearning	pipelines.	Spark	Core	and	RDDsSpark	Core	is	the	underlying	general	execution	engine	for	the	Spark	platform	that	allother	functionality	is	built
on	top	of.	It	provides	RDDs	(Resilient	Distributed	Datasets)and	in-memory	computing	capabilities.Note	that	the	RDD	API	is	a	low-level	API	which	can	be	difficult	to	use	and	you	do	not	getthe	benefit	of	Sparks	automatic	query	optimization	capabilities.We	recommend	using	DataFrames	(see	Spark	SQL	and	DataFrames	above)instead	of	RDDs	as	it
allows	you	to	express	what	you	want	more	easily	and	lets	Spark	automaticallyconstruct	the	most	efficient	query	for	you.	Spark	Streaming	(Legacy)Spark	Streaming	is	an	extension	of	the	core	Spark	API	that	enables	scalable,high-throughput,	fault-tolerant	stream	processing	of	live	data	streams.Note	that	Spark	Streaming	is	the	previous	generation	of
Sparks	streaming	engine.It	is	a	legacy	project	and	it	is	no	longer	being	updated.There	is	a	newer	and	easier	to	use	streaming	engine	in	Spark	calledStructured	Streaming	which	youshould	use	for	your	streaming	applications	and	pipelines.	Spark	SQL	is	a	Spark	module	for	structured	data	processing.	Unlike	the	basic	Spark	RDD	API,	the	interfaces
providedby	Spark	SQL	provide	Spark	with	more	information	about	the	structure	of	both	the	data	and	the	computation	being	performed.	Internally,Spark	SQL	uses	this	extra	information	to	perform	extra	optimizations.	There	are	several	ways	tointeract	with	Spark	SQL	including	SQL	and	the	Dataset	API.	When	computing	a	result,the	same	execution
engine	is	used,	independent	of	which	API/language	you	are	using	to	express	thecomputation.	This	unification	means	that	developers	can	easily	switch	back	and	forth	betweendifferent	APIs	based	on	which	provides	the	most	natural	way	to	express	a	given	transformation.	All	of	the	examples	on	this	page	use	sample	data	included	in	the	Spark
distribution	and	can	be	run	inthe	spark-shell,	pyspark	shell,	or	sparkR	shell.	SQL	One	use	of	Spark	SQL	is	to	execute	SQL	queries.Spark	SQL	can	also	be	used	to	read	data	from	an	existing	Hive	installation.	For	more	on	how	toconfigure	this	feature,	please	refer	to	the	Hive	Tables	section.	When	runningSQL	from	within	another	programming	language
the	results	will	be	returned	as	a	Dataset/DataFrame.You	can	also	interact	with	the	SQL	interface	using	the	command-lineor	over	JDBC/ODBC.	Datasets	and	DataFrames	A	Dataset	is	a	distributed	collection	of	data.Dataset	is	a	new	interface	added	in	Spark	1.6	that	provides	the	benefits	of	RDDs	(strongtyping,	ability	to	use	powerful	lambda	functions)
with	the	benefits	of	Spark	SQLs	optimizedexecution	engine.	A	Dataset	can	be	constructed	from	JVM	objects	and	thenmanipulated	using	functional	transformations	(map,	flatMap,	filter,	etc.).The	Dataset	API	is	available	in	Scala	andJava.	Python	does	not	have	the	support	for	the	Dataset	API.	But	due	to	Pythons	dynamic	nature,many	of	the	benefits	of
the	Dataset	API	are	already	available	(i.e.	you	can	access	the	field	of	a	row	by	name	naturallyrow.columnName).	The	case	for	R	is	similar.	A	DataFrame	is	a	Dataset	organized	into	named	columns.	It	is	conceptuallyequivalent	to	a	table	in	a	relational	database	or	a	data	frame	in	R/Python,	but	with	richeroptimizations	under	the	hood.	DataFrames	can	be
constructed	from	a	wide	array	of	sources	suchas:	structured	data	files,	tables	in	Hive,	external	databases,	or	existing	RDDs.The	DataFrame	API	is	available	inPython,	Scala,Java	and	R.In	Scala	and	Java,	a	DataFrame	is	represented	by	a	Dataset	of	Rows.In	the	Scala	API,	DataFrame	is	simply	a	type	alias	of	Dataset[Row].While,	in	Java	API,	users	need	to
use	Dataset	to	represent	a	DataFrame.	Throughout	this	document,	we	will	often	refer	to	Scala/Java	Datasets	of	Rows	as	DataFrames.	This	tutorial	provides	a	quick	introduction	to	using	Spark.	We	will	first	introduce	the	API	through	Sparksinteractive	shell	(in	Python	or	Scala),then	show	how	to	write	applications	in	Java,	Scala,	and	Python.	To	follow
along	with	this	guide,	first,	download	a	packaged	release	of	Spark	from	theSpark	website.	Since	we	wont	be	using	HDFS,you	can	download	a	package	for	any	version	of	Hadoop.	Note	that,	before	Spark	2.0,	the	main	programming	interface	of	Spark	was	the	Resilient	Distributed	Dataset	(RDD).	After	Spark	2.0,	RDDs	are	replaced	by	Dataset,	which	is
strongly-typed	like	an	RDD,	but	with	richer	optimizations	under	the	hood.	The	RDD	interface	is	still	supported,	and	you	can	get	a	more	detailed	reference	at	the	RDD	programming	guide.	However,	we	highly	recommend	you	to	switch	to	use	Dataset,	which	has	better	performance	than	RDD.	See	the	SQL	programming	guide	to	get	more	information
about	Dataset.	Interactive	Analysis	with	the	Spark	Shell	Sparks	shell	provides	a	simple	way	to	learn	the	API,	as	well	as	a	powerful	tool	to	analyze	data	interactively.It	is	available	in	either	Scala	(which	runs	on	the	Java	VM	and	is	thus	a	good	way	to	use	existing	Java	libraries)or	Python.	Start	it	by	running	the	following	in	the	Spark	directory:	Or	if
PySpark	is	installed	with	pip	in	your	current	environment:	Sparks	primary	abstraction	is	a	distributed	collection	of	items	called	a	Dataset.	Datasets	can	be	created	from	Hadoop	InputFormats	(such	as	HDFS	files)	or	by	transforming	other	Datasets.	Due	to	Pythons	dynamic	nature,	we	dont	need	the	Dataset	to	be	strongly-typed	in	Python.	As	a	result,	all
Datasets	in	Python	are	Dataset[Row],	and	we	call	it	DataFrame	to	be	consistent	with	the	data	frame	concept	in	Pandas	and	R.	Lets	make	a	new	DataFrame	from	the	text	of	the	README	file	in	the	Spark	source	directory:	>>>	textFile	=	spark.read.text("README.md")	You	can	get	values	from	DataFrame	directly,	by	calling	some	actions,	or	transform
the	DataFrame	to	get	a	new	one.	For	more	details,	please	read	the	API	doc.	>>>	textFile.count()	#	Number	of	rows	in	this	DataFrame126	>>>	textFile.first()	#	First	row	in	this	DataFrameRow(value=u'#	Apache	Spark')	Now	lets	transform	this	DataFrame	to	a	new	one.	We	call	filter	to	return	a	new	DataFrame	with	a	subset	of	the	lines	in	the	file.
>>>	linesWithSpark	=	textFile.filter(textFile.value.contains("Spark"))	We	can	chain	together	transformations	and	actions:	>>>	textFile.filter(textFile.value.contains("Spark")).count()	#	How	many	lines	contain	"Spark"?15	Sparks	primary	abstraction	is	a	distributed	collection	of	items	called	a	Dataset.	Datasets	can	be	created	from	Hadoop
InputFormats	(such	as	HDFS	files)	or	by	transforming	other	Datasets.	Lets	make	a	new	Dataset	from	the	text	of	the	README	file	in	the	Spark	source	directory:	scala>	val	textFile	=	spark.read.textFile("README.md")textFile:	org.apache.spark.sql.Dataset[String]	=	[value:	string]	You	can	get	values	from	Dataset	directly,	by	calling	some	actions,	or
transform	the	Dataset	to	get	a	new	one.	For	more	details,	please	read	the	API	doc.	scala>	textFile.count()	//	Number	of	items	in	this	Datasetres0:	Long	=	126	//	May	be	different	from	yours	as	README.md	will	change	over	time,	similar	to	other	outputs	scala>	textFile.first()	//	First	item	in	this	Datasetres1:	String	=	#	Apache	Spark	Now	lets	transform
this	Dataset	into	a	new	one.	We	call	filter	to	return	a	new	Dataset	with	a	subset	of	the	items	in	the	file.	scala>	val	linesWithSpark	=	textFile.filter(line	=>	line.contains("Spark"))linesWithSpark:	org.apache.spark.sql.Dataset[String]	=	[value:	string]	We	can	chain	together	transformations	and	actions:	scala>	textFile.filter(line	=>
line.contains("Spark")).count()	//	How	many	lines	contain	"Spark"?res3:	Long	=	15	More	on	Dataset	OperationsDataset	actions	and	transformations	can	be	used	for	more	complex	computations.	Lets	say	we	want	to	find	the	line	with	the	most	words:	>>>	from	pyspark.sql	import	functions	as	sf>>>	textFile.select(sf.size(sf.split(textFile.value,
"\s+")).name("numWords")).agg(sf.max(sf.col("numWords"))).collect()[Row(max(numWords)=15)]	This	first	maps	a	line	to	an	integer	value	and	aliases	it	as	numWords,	creating	a	new	DataFrame.	agg	is	called	on	that	DataFrame	to	find	the	largest	word	count.	The	arguments	to	select	and	agg	are	both	Column,	we	can	use	df.colName	to	get	a	column
from	a	DataFrame.	We	can	also	import	pyspark.sql.functions,	which	provides	a	lot	of	convenient	functions	to	build	a	new	Column	from	an	old	one.	One	common	data	flow	pattern	is	MapReduce,	as	popularized	by	Hadoop.	Spark	can	implement	MapReduce	flows	easily:	>>>	wordCounts	=	textFile.select(sf.explode(sf.split(textFile.value,
"\s+")).alias("word")).groupBy("word").count()	Here,	we	use	the	explode	function	in	select,	to	transform	a	Dataset	of	lines	to	a	Dataset	of	words,	and	then	combine	groupBy	and	count	to	compute	the	per-word	counts	in	the	file	as	a	DataFrame	of	2	columns:	word	and	count.	To	collect	the	word	counts	in	our	shell,	we	can	call	collect:	>>>
wordCounts.collect()[Row(word=u'online',	count=1),	Row(word=u'graphs',	count=1),	...]	scala>	textFile.map(line	=>	line.split("	").size).reduce((a,	b)	=>	if	(a	>	b)	a	else	b)res4:	Int	=	15	This	first	maps	a	line	to	an	integer	value,	creating	a	new	Dataset.	reduce	is	called	on	that	Dataset	to	find	the	largest	word	count.	The	arguments	to	map	and	reduce
are	Scala	function	literals	(closures),	and	can	use	any	language	feature	or	Scala/Java	library.	For	example,	we	can	easily	call	functions	declared	elsewhere.	Well	use	Math.max()	function	to	make	this	code	easier	to	understand:	scala>	import	java.lang.Mathimport	java.lang.Math	scala>	textFile.map(line	=>	line.split("	").size).reduce((a,	b)	=>
Math.max(a,	b))res5:	Int	=	15	One	common	data	flow	pattern	is	MapReduce,	as	popularized	by	Hadoop.	Spark	can	implement	MapReduce	flows	easily:	scala>	val	wordCounts	=	textFile.flatMap(line	=>	line.split("	")).groupByKey(identity).count()wordCounts:	org.apache.spark.sql.Dataset[(String,	Long)]	=	[value:	string,	count(1):	bigint]	Here,	we	call
flatMap	to	transform	a	Dataset	of	lines	to	a	Dataset	of	words,	and	then	combine	groupByKey	and	count	to	compute	the	per-word	counts	in	the	file	as	a	Dataset	of	(String,	Long)	pairs.	To	collect	the	word	counts	in	our	shell,	we	can	call	collect:	scala>	wordCounts.collect()res6:	Array[(String,	Int)]	=	Array((means,1),	(under,2),	(this,3),	(Because,1),
(Python,2),	(agree,1),	(cluster.,1),	...)	CachingSpark	also	supports	pulling	data	sets	into	a	cluster-wide	in-memory	cache.	This	is	very	useful	when	data	is	accessed	repeatedly,	such	as	when	querying	a	small	hot	dataset	or	when	running	an	iterative	algorithm	like	PageRank.	As	a	simple	example,	lets	mark	our	linesWithSpark	dataset	to	be	cached:	>>>
linesWithSpark.cache()	>>>	linesWithSpark.count()15	>>>	linesWithSpark.count()15	It	may	seem	silly	to	use	Spark	to	explore	and	cache	a	100-line	text	file.	The	interesting	part	isthat	these	same	functions	can	be	used	on	very	large	data	sets,	even	when	they	are	striped	acrosstens	or	hundreds	of	nodes.	You	can	also	do	this	interactively	by
connecting	bin/pyspark	toa	cluster,	as	described	in	the	RDD	programming	guide.	scala>	linesWithSpark.cache()res7:	linesWithSpark.type	=	[value:	string]	scala>	linesWithSpark.count()res8:	Long	=	15	scala>	linesWithSpark.count()res9:	Long	=	15	It	may	seem	silly	to	use	Spark	to	explore	and	cache	a	100-line	text	file.	The	interesting	part	isthat
these	same	functions	can	be	used	on	very	large	data	sets,	even	when	they	are	striped	acrosstens	or	hundreds	of	nodes.	You	can	also	do	this	interactively	by	connecting	bin/spark-shell	toa	cluster,	as	described	in	the	RDD	programming	guide.	Self-Contained	ApplicationsSuppose	we	wish	to	write	a	self-contained	application	using	the	Spark	API.	We	will
walk	through	asimple	application	in	Scala	(with	sbt),	Java	(with	Maven),	and	Python	(pip).	Now	we	will	show	how	to	write	an	application	using	the	Python	API	(PySpark).	If	you	are	building	a	packaged	PySpark	application	or	library	you	can	add	it	to	your	setup.py	file	as:	install_requires=['pyspark==4.0.0']	As	an	example,	well	create	a	simple	Spark
application,	SimpleApp.py:	"""SimpleApp.py"""from	pyspark.sql	import	SparkSession	logFile	=	"YOUR_SPARK_HOME/README.md"	#	Should	be	some	file	on	your	systemspark	=	SparkSession.builder.appName("SimpleApp").getOrCreate()logData	=	spark.read.text(logFile).cache()	numAs	=	logData.filter(logData.value.contains('a')).count()numBs	=
logData.filter(logData.value.contains('b')).count()	print("Lines	with	a:	%i,	lines	with	b:	%i"	%	(numAs,	numBs))	spark.stop()	This	program	just	counts	the	number	of	lines	containing	a	and	the	number	containing	b	in	atext	file.Note	that	youll	need	to	replace	YOUR_SPARK_HOME	with	the	location	where	Spark	is	installed.As	with	the	Scala	and	Java
examples,	we	use	a	SparkSession	to	create	Datasets.For	applications	that	use	custom	classes	or	third-party	libraries,	we	can	also	add	codedependencies	to	spark-submit	through	its	--py-files	argument	by	packaging	them	into	a.zip	file	(see	spark-submit	--help	for	details).SimpleApp	is	simple	enough	that	we	do	not	need	to	specify	any	code
dependencies.	We	can	run	this	application	using	the	bin/spark-submit	script:	#	Use	spark-submit	to	run	your	application$	YOUR_SPARK_HOME/bin/spark-submit	\	--master	"local[4]"	\	SimpleApp.py...Lines	with	a:	46,	Lines	with	b:	23	If	you	have	PySpark	pip	installed	into	your	environment	(e.g.,	pip	install	pyspark),	you	can	run	your	application	with
the	regular	Python	interpreter	or	use	the	provided	spark-submit	as	you	prefer.	#	Use	the	Python	interpreter	to	run	your	application$	python	SimpleApp.py...Lines	with	a:	46,	Lines	with	b:	23	Well	create	a	very	simple	Spark	application	in	Scalaso	simple,	in	fact,	that	itsnamed	SimpleApp.scala:	/*	SimpleApp.scala	*/import
org.apache.spark.sql.SparkSession	object	SimpleApp	{	def	main(args:	Array[String]):	Unit	=	{	val	logFile	=	"YOUR_SPARK_HOME/README.md"	//	Should	be	some	file	on	your	system	val	spark	=	SparkSession.builder.appName("Simple	Application").getOrCreate()	val	logData	=	spark.read.textFile(logFile).cache()	val	numAs	=	logData.filter(line	=>
line.contains("a")).count()	val	numBs	=	logData.filter(line	=>	line.contains("b")).count()	println(s"Lines	with	a:	$numAs,	Lines	with	b:	$numBs")	spark.stop()	}}	Note	that	applications	should	define	a	main()	method	instead	of	extending	scala.App.Subclasses	of	scala.App	may	not	work	correctly.	This	program	just	counts	the	number	of	lines	containing	a
and	the	number	containing	b	in	theSpark	README.	Note	that	youll	need	to	replace	YOUR_SPARK_HOME	with	the	location	where	Spark	isinstalled.	Unlike	the	earlier	examples	with	the	Spark	shell,	which	initializes	its	own	SparkSession,we	initialize	a	SparkSession	as	part	of	the	program.	We	call	SparkSession.builder	to	construct	a	SparkSession,
then	set	the	application	name,	and	finally	call	getOrCreate	to	get	the	SparkSession	instance.	Our	application	depends	on	the	Spark	API,	so	well	also	include	an	sbt	configuration	file,build.sbt,	which	explains	that	Spark	is	a	dependency.	This	file	also	adds	a	repository	thatSpark	depends	on:	name	:=	"Simple	Project"	version	:=	"1.0"	scalaVersion	:=
"2.13.16"	libraryDependencies	+=	"org.apache.spark"	%%	"spark-sql"	%	"4.0.0"	For	sbt	to	work	correctly,	well	need	to	layout	SimpleApp.scala	and	build.sbtaccording	to	the	typical	directory	structure.	Once	that	is	in	place,	we	can	create	a	JAR	packagecontaining	the	applications	code,	then	use	the	spark-submit	script	to	run	our	program.	#	Your
directory	layout	should	look	like	this$	find	.../build.sbt./src./src/main./src/main/scala./src/main/scala/SimpleApp.scala	#	Package	a	jar	containing	your	application$	sbt	package...[info]	Packaging	{..}/{..}/target/scala-2.13/simple-project_2.13-1.0.jar	#	Use	spark-submit	to	run	your	application$	YOUR_SPARK_HOME/bin/spark-submit	\	--class
"SimpleApp"	\	--master	"local[4]"	\	target/scala-2.13/simple-project_2.13-1.0.jar...Lines	with	a:	46,	Lines	with	b:	23	This	example	will	use	Maven	to	compile	an	application	JAR,	but	any	similar	build	system	will	work.	Well	create	a	very	simple	Spark	application,	SimpleApp.java:	/*	SimpleApp.java	*/import	org.apache.spark.sql.SparkSession;import
org.apache.spark.sql.Dataset;	public	class	SimpleApp	{	public	static	void	main(String[]	args)	{	String	logFile	=	"YOUR_SPARK_HOME/README.md";	//	Should	be	some	file	on	your	system	SparkSession	spark	=	SparkSession.builder().appName("Simple	Application").getOrCreate();	Dataset	logData	=	spark.read().textFile(logFile).cache();	long	numAs
=	logData.filter(s	->	s.contains("a")).count();	long	numBs	=	logData.filter(s	->	s.contains("b")).count();	System.out.println("Lines	with	a:	"	+	numAs	+	",	lines	with	b:	"	+	numBs);	spark.stop();	}}	This	program	just	counts	the	number	of	lines	containing	a	and	the	number	containing	b	in	theSpark	README.	Note	that	youll	need	to	replace
YOUR_SPARK_HOME	with	the	location	where	Spark	isinstalled.	Unlike	the	earlier	examples	with	the	Spark	shell,	which	initializes	its	own	SparkSession,we	initialize	a	SparkSession	as	part	of	the	program.	To	build	the	program,	we	also	write	a	Maven	pom.xml	file	that	lists	Spark	as	a	dependency.Note	that	Spark	artifacts	are	tagged	with	a	Scala
version.	edu.berkeley	simple-project	4.0.0	Simple	Project	jar	1.0	org.apache.spark	spark-sql_2.13	4.0.0	provided	We	lay	out	these	files	according	to	the	canonical	Maven	directory	structure:	$	find	../pom.xml./src./src/main./src/main/java./src/main/java/SimpleApp.java	Now,	we	can	package	the	application	using	Maven	and	execute	it	with	./bin/spark-
submit.	#	Package	a	JAR	containing	your	application$	mvn	package...[INFO]	Building	jar:	{..}/{..}/target/simple-project-1.0.jar	#	Use	spark-submit	to	run	your	application$	YOUR_SPARK_HOME/bin/spark-submit	\	--class	"SimpleApp"	\	--master	"local[4]"	\	target/simple-project-1.0.jar...Lines	with	a:	46,	Lines	with	b:	23	Other	dependency	management
tools	such	as	Conda	and	pip	can	be	also	used	for	custom	classes	or	third-party	libraries.	See	also	Python	Package	Management.	Where	to	Go	from	HereCongratulations	on	running	your	first	Spark	application!	#	For	Python	examples,	use	spark-submit	directly:./bin/spark-submit	examples/src/main/python/pi.py	#	For	Scala	and	Java,	use	run-
example:./bin/run-example	SparkPi	#	For	R	examples,	use	spark-submit	directly:./bin/spark-submit	examples/src/main/r/dataframe.R	Apache	Software	Foundation	Apache	Homepage	License	Sponsorship	Thanks	Event	

Spark-sql	examples.	Spark	sql	query.

http://vasa-project.org/fckupload/file/ede92c94-fd92-4bd1-88e1-b34af1d9f40e.pdf
https://comobrew.com/newsite/images/user_uploads/file/9c50410f-797a-4481-a58e-f7dd557775c2.pdf
http://judiebyrd.com/userfiles/file/0ed4f709-6d54-4208-ae94-15bb9c9da98b.pdf
http://www.naturhalles.fr/fckeditor/userfiles/file/1803dc42-8e7c-4695-963e-c63540d9130b.pdf
http://trans4mus.com/cmsimages/files/87bb1452-51a2-426c-ade4-fb1458b9fc09.pdf
research	summary	example	pdf
escalation	matrix	template	excel	format

http://vasa-project.org/fckupload/file/ede92c94-fd92-4bd1-88e1-b34af1d9f40e.pdf
https://comobrew.com/newsite/images/user_uploads/file/9c50410f-797a-4481-a58e-f7dd557775c2.pdf
http://judiebyrd.com/userfiles/file/0ed4f709-6d54-4208-ae94-15bb9c9da98b.pdf
http://www.naturhalles.fr/fckeditor/userfiles/file/1803dc42-8e7c-4695-963e-c63540d9130b.pdf
http://trans4mus.com/cmsimages/files/87bb1452-51a2-426c-ade4-fb1458b9fc09.pdf
http://www.bluewhaleline.com/image/upload/File/xenufa-nopomiweles-vufenilepapil-wabaneneseki.pdf
http://phonphangschool.com/upload/files/4b90357a-2834-4691-9489-6313012515f0.pdf

