
	

https://jotasizi.godoxevez.com/725012794473157397657451199582107556984487?xolifenirexafusiwulavinevugovudexigefilaxinotolizif=zarigelalusavuliwisivakogekolomomuxowetepawutitefufatusavefatumimepisudimokufederifojuvirudigopokuxufaboxodotefupevupuxuduzolajedeliborotokikuwozafuriduvunuxezuxutiletafozelalifupebapapafonoxojugepused&utm_term=structure+in+c%2B%2B+w3schools&sosofetigipogenivasativusijunivekiwupimufesovesibivojulatewokibomoxurojixuzulavaxunapogur=jiwobevavesenisuvamisekujibirevuwijisesazugejupenurufewonedoxizaxiwomedukonokozaletatobubewerivedorurexaposifezezegipelowipunewidisamurumodotubomofon

In	C	programming,	a	struct	(or	structure)	is	a	collection	of	variables	(can	be	of	different	types)	under	a	single	name.	Define	Structures	Before	you	can	create	structure	variables,	you	need	to	define	its	data	type.	To	define	a	struct,	the	struct	keyword	is	used.	Syntax	of	struct	struct	structureName	{	dataType	member1;	dataType	member2;	...	};	For
example,	struct	Person	{	char	name[50];	int	citNo;	float	salary;	};	Here,	a	derived	type	struct	Person	is	defined.	Now,	you	can	create	variables	of	this	type.	Create	struct	Variables	When	a	struct	type	is	declared,	no	storage	or	memory	is	allocated.	To	allocate	memory	of	a	given	structure	type	and	work	with	it,	we	need	to	create	variables.	Here's	how
we	create	structure	variables:	struct	Person	{	//	code	};	int	main()	{	struct	Person	person1,	person2,	p[20];	return	0;	}	Another	way	of	creating	a	struct	variable	is:	struct	Person	{	//	code	}	person1,	person2,	p[20];	In	both	cases,	person1	and	person2	are	struct	Person	variables	p[]	is	a	struct	Person	array	of	size	20.	Access	Members	of	a	Structure
There	are	two	types	of	operators	used	for	accessing	members	of	a	structure.	.	-	Member	operator	->	-	Structure	pointer	operator	(will	be	discussed	in	the	next	tutorial)	Suppose,	you	want	to	access	the	salary	of	person2.	Here's	how	you	can	do	it.	person2.salary	Example	1:	C	structs	#include	#include	//	create	struct	with	person1	variable	struct	Person
{	char	name[50];	int	citNo;	float	salary;	}	person1;	int	main()	{	//	assign	value	to	name	of	person1	strcpy(person1.name,	"George	Orwell");	//	assign	values	to	other	person1	variables	person1.citNo	=	1984;	person1.	salary	=	2500;	//	print	struct	variables	printf("Name:	%s",	person1.name);	printf("Citizenship	No.:	%d",	person1.citNo);	printf("Salary:
%.2f",	person1.salary);	return	0;	}	Output	Name:	George	Orwell	Citizenship	No.:	1984	Salary:	2500.00	In	this	program,	we	have	created	a	struct	named	Person.	We	have	also	created	a	variable	of	Person	named	person1.	In	main(),	we	have	assigned	values	to	the	variables	defined	in	Person	for	the	person1	object.	strcpy(person1.name,	"George
Orwell");	person1.citNo	=	1984;	person1.	salary	=	2500;	Notice	that	we	have	used	strcpy()	function	to	assign	the	value	to	person1.name.	This	is	because	name	is	a	char	array	(C-string)	and	we	cannot	use	the	assignment	operator	=	with	it	after	we	have	declared	the	string.	Finally,	we	printed	the	data	of	person1.	Keyword	typedef	We	use	the	typedef
keyword	to	create	an	alias	name	for	data	types.	It	is	commonly	used	with	structures	to	simplify	the	syntax	of	declaring	variables.	For	example,	let	us	look	at	the	following	code:	struct	Distance{	int	feet;	float	inch;	};	int	main()	{	struct	Distance	d1,	d2;	}	We	can	use	typedef	to	write	an	equivalent	code	with	a	simplified	syntax:	typedef	struct	Distance	{
int	feet;	float	inch;	}	distances;	int	main()	{	distances	d1,	d2;	}	Example	2:	C	typedef	#include	#include	//	struct	with	typedef	person	typedef	struct	Person	{	char	name[50];	int	citNo;	float	salary;	}	person;	int	main()	{	//	create	Person	variable	person	p1;	//	assign	value	to	name	of	p1	strcpy(p1.name,	"George	Orwell");	//	assign	values	to	other	p1
variables	p1.citNo	=	1984;	p1.	salary	=	2500;	//	print	struct	variables	printf("Name:	%s",	p1.name);	printf("Citizenship	No.:	%d",	p1.citNo);	printf("Salary:	%.2f",	p1.salary);	return	0;	}	Output	Name:	George	Orwell	Citizenship	No.:	1984	Salary:	2500.00	Here,	we	have	used	typedef	with	the	Person	structure	to	create	an	alias	person.	//	struct	with
typedef	person	typedef	struct	Person	{	//	code	}	person;	Now,	we	can	simply	declare	a	Person	variable	using	the	person	alias:	//	equivalent	to	struct	Person	p1	person	p1;	Nested	Structures	You	can	create	structures	within	a	structure	in	C	programming.	For	example,	struct	complex	{	int	imag;	float	real;	};	struct	number	{	struct	complex	comp;	int
integers;	}	num1,	num2;	Suppose,	you	want	to	set	imag	of	num2	variable	to	11.	Here's	how	you	can	do	it:	num2.comp.imag	=	11;	Example	3:	C	Nested	Structures	#include	struct	complex	{	int	imag;	float	real;	};	struct	number	{	struct	complex	comp;	int	integer;	}	num1;	int	main()	{	//	initialize	complex	variables	num1.comp.imag	=	11;
num1.comp.real	=	5.25;	//	initialize	number	variable	num1.integer	=	6;	//	print	struct	variables	printf("Imaginary	Part:	%d",	num1.comp.imag);	printf("Real	Part:	%.2f",	num1.comp.real);	printf("Integer:	%d",	num1.integer);	return	0;	}	Output	Imaginary	Part:	11	Real	Part:	5.25	Integer:	6	Why	structs	in	C?	Suppose	you	want	to	store	information	about	a
person:	his/her	name,	citizenship	number,	and	salary.	You	can	create	different	variables	name,	citNo	and	salary	to	store	this	information.	What	if	you	need	to	store	information	of	more	than	one	person?	Now,	you	need	to	create	different	variables	for	each	information	per	person:	name1,	citNo1,	salary1,	name2,	citNo2,	salary2,	etc.	A	better	approach
would	be	to	have	a	collection	of	all	related	information	under	a	single	name	Person	structure	and	use	it	for	every	person.	More	on	struct	Structures	and	pointers	Passing	structures	to	a	function	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the
material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your
use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for
elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Sign	in	to	track
your	progress	You	have	already	completed	these	exercises!	Do	you	want	to	take	them	again?	×	Close	the	exercise	You	completed	the	C	Structures	Exercises	from	W3Schools.com	Share	on:	In	C	programming,	both	structures	and	unions	are	used	to	group	different	types	of	data	under	a	single	name,	but	they	behave	in	different	ways.	The	main
difference	lies	in	how	they	store	data.The	below	table	lists	the	primary	differences	between	the	C	structures	and	unions:ParameterStructureUnionDefinitionA	structure	is	a	user-defined	data	type	that	groups	different	data	types	into	a	single	entity.A	union	is	a	user-defined	data	type	that	allows	storing	different	data	types	at	the	same	memory
location.KeywordThe	keyword	struct	is	used	to	define	a	structureThe	keyword	union	is	used	to	define	a	unionSizeThe	size	is	the	sum	of	the	sizes	of	all	members,	with	padding	if	necessary.The	size	is	equal	to	the	size	of	the	largest	member,	with	possible	padding.Memory	AllocationEach	member	within	a	structure	is	allocated	unique	storage	area	of
location.Memory	allocated	is	shared	by	individual	members	of	union.Data	OverlapNo	data	overlap	as	members	are	independent.Full	data	overlap	as	members	shares	the	same	memory.Accessing	MembersIndividual	member	can	be	accessed	at	a	time.Only	one	member	can	be	accessed	at	a	time.StructuresA	structure	in	C	is	a	collection	of	variables,
possibly	of	different	types,	under	a	single	name.	Each	member	of	the	structure	is	allocated	its	own	memory	space,	and	the	size	of	the	structure	is	the	sum	of	the	sizes	of	all	its	members.Syntaxstruct	name	{	member1	definition;	member2	definition;	...	memberN	definition;};Example:	C	#include	struct	Student	{	char	name[50];	int	age;	float	grade;	};
int	main()	{	//	Create	a	structure	variable	struct	Student	s1	=	{"Geek",	20,	85.5};	//	Access	structure	members	printf("%s",	s1.name);	printf("%d",	s1.age);	printf("%.2f",	s1.grade);	printf("Size:	%d	bytes",	sizeof(s1));	return	0;	}	OutputGeek	20	85.50	Size:	60	bytesExplanation:	In	this	example,	we	create	a	structure	Student	to	store	a	student's	name,
age,	and	grade.	Each	of	the	members	(name,	age,	grade)	is	stored	in	its	own	separate	memory	location,	and	we	access	them	individually.	The	size	is	also	the	size	of	all	members	combined	plus	structure	padding.UnionsA	union	in	C	is	similar	to	a	structure,	but	with	a	key	difference:	all	members	of	a	union	share	the	same	memory	location.	This	means
only	one	member	of	the	union	can	store	a	value	at	any	given	time.	The	size	of	a	union	is	determined	by	the	size	of	its	largest	member.Syntax:union	name	{	member1	definition;	member2	definition;	...	memberN	definition;};Example:	C	//Driver	Code	Starts	#include	//Driver	Code	Ends	union	Data	{	int	i;	double	d;	char	c;	};	int	main()	{	//	Create	a	union
variable	union	Data	data;	//	Store	an	integer	in	the	union	data.i	=	100;	printf("%d	",	data.i);	//	Store	a	double	in	the	union	(this	will	//	overwrite	the	integer	value)	data.d	=	99.99;	printf("%.2f	",	data.d);	//	Store	a	character	in	the	union	(this	will	//	overwrite	the	double	value)	data.c	=	'A';	printf("%c	",	data.c);	printf("Size:	%d",	sizeof(data));	//Driver	Code
Starts	return	0;	}	//Driver	Code	Ends	Output100	99.99	A	Size:	8Similarities	Between	Structure	and	UnionStructures	and	unions	are	also	similar	in	some	aspects	listed	below:Both	are	user-defined	data	types	used	to	store	data	of	different	types	as	a	single	unit.Their	members	can	be	objects	of	any	type,	including	other	structures	and	unions	or	arrays.	A
member	can	also	consist	of	a	bit	field.Both	structures	and	unions	support	only	assignment	=	and	sizeof	operators.	The	two	structures	or	unions	in	the	assignment	must	have	the	same	members	and	member	types.A	structure	or	a	union	can	be	passed	by	value	to	functions	and	returned	by	value	by	functions.	The	argument	must	have	the	same	type	as
the	function	parameter.	A	structure	or	union	is	passed	by	value	just	like	a	scalar	variable	as	a	corresponding	parameter.‘.’	operator	or	selection	operator,	which	has	one	of	the	highest	precedences,	is	used	for	accessing	member	variables	inside	both	the	user-defined	datatypes.	A	data	structure	is	a	way	to	store	data.	We	structure	data	in	different	ways
depending	on	what	data	we	have,	and	what	we	want	to	do	with	it.	Family	tree	First,	let's	consider	an	example	without	computers	in	mind,	just	to	get	the	idea.	If	we	want	to	store	data	about	people	we	are	related	to,	we	use	a	family	tree	as	the	data	structure.	We	choose	a	family	tree	as	the	data	structure	because	we	have	information	about	people	we
are	related	to	and	how	they	are	related,	and	we	want	an	overview	so	that	we	can	easily	find	a	specific	family	member,	several	generations	back.	With	such	a	family	tree	data	structure	visually	in	front	of	you,	it	is	easy	to	see,	for	example,	who	my	mother's	mother	is—it	is	'Emma,'	right?	But	without	the	links	from	child	to	parents	that	this	data	structure
provides,	it	would	be	difficult	to	determine	how	the	individuals	are	related.	Data	structures	give	us	the	possibility	to	manage	large	amounts	of	data	efficiently	for	uses	such	as	large	databases	and	internet	indexing	services.	Data	structures	are	essential	ingredients	in	creating	fast	and	powerful	algorithms.	They	help	in	managing	and	organizing	data,
reduce	complexity,	and	increase	efficiency.	In	Computer	Science	there	are	two	different	kinds	of	data	structures.	Primitive	Data	Structures	are	basic	data	structures	provided	by	programming	languages	to	represent	single	values,	such	as	integers,	floating-point	numbers,	characters,	and	booleans.	Abstract	Data	Structures	are	higher-level	data
structures	that	are	built	using	primitive	data	types	and	provide	more	complex	and	specialized	operations.	Some	common	examples	of	abstract	data	structures	include	arrays,	linked	lists,	stacks,	queues,	trees,	and	graphs.	What	are	Algorithms?	An	algorithm	is	a	set	of	step-by-step	instructions	to	solve	a	given	problem	or	achieve	a	specific	goal.	Pommes
Frites	Recipe	A	cooking	recipe	written	on	a	piece	of	paper	is	an	example	of	an	algorithm,	where	the	goal	is	to	make	a	certain	dinner.	The	steps	needed	to	make	a	specific	dinner	are	described	exactly.	When	we	talk	about	algorithms	in	Computer	Science,	the	step-by-step	instructions	are	written	in	a	programming	language,	and	instead	of	food
ingredients,	an	algorithm	uses	data	structures.	Algorithms	are	fundamental	to	computer	programming	as	they	provide	step-by-step	instructions	for	executing	tasks.	An	efficient	algorithm	can	help	us	to	find	the	solution	we	are	looking	for,	and	to	transform	a	slow	program	into	a	faster	one.	By	studying	algorithms,	developers	can	write	better	programs.
Algorithm	examples:	Finding	the	fastest	route	in	a	GPS	navigation	system	Navigating	an	airplane	or	a	car	(cruise	control)	Finding	what	users	search	for	(search	engine)	Sorting,	for	example	sorting	movies	by	rating	The	algorithms	we	will	look	at	in	this	tutorial	are	designed	to	solve	specific	problems,	and	are	often	made	to	work	on	specific	data
structures.	For	example,	the	'Bubble	Sort'	algorithm	is	designed	to	sort	values,	and	is	made	to	work	on	arrays.	Data	Structures	together	with	Algorithms	Data	structures	and	algorithms	(DSA)	go	hand	in	hand.	A	data	structure	is	not	worth	much	if	you	cannot	search	through	it	or	manipulate	it	efficiently	using	algorithms,	and	the	algorithms	in	this
tutorial	are	not	worth	much	without	a	data	structure	to	work	on.	DSA	is	about	finding	efficient	ways	to	store	and	retrieve	data,	to	perform	operations	on	data,	and	to	solve	specific	problems.	By	understanding	DSA,	you	can:	Decide	which	data	structure	or	algorithm	is	best	for	a	given	situation.	Make	programs	that	run	faster	or	use	less	memory.
Understand	how	to	approach	complex	problems	and	solve	them	in	a	systematic	way.	Where	is	Data	Structures	and	Algorithms	Needed?	Data	Structures	and	Algorithms	(DSA)	are	used	in	virtually	every	software	system,	from	operating	systems	to	web	applications:	For	managing	large	amounts	of	data,	such	as	in	a	social	network	or	a	search	engine.
For	scheduling	tasks,	to	decide	which	task	a	computer	should	do	first.	For	planning	routes,	like	in	a	GPS	system	to	find	the	shortest	path	from	A	to	B.	For	optimizing	processes,	such	as	arranging	tasks	so	they	can	be	completed	as	quickly	as	possible.	For	solving	complex	problems:	From	finding	the	best	way	to	pack	a	truck	to	making	a	computer	'learn'
from	data.	DSA	is	fundamental	in	nearly	every	part	of	the	software	world:	Operating	Systems	Database	Systems	Web	Applications	Machine	Learning	Video	Games	Cryptographic	Systems	Data	Analysis	Search	Engines	As	we	go	along	in	this	tutorial,	new	theoretical	concepts	and	terminology	(new	words)	will	be	needed	so	that	we	can	better	understand
the	data	structures	and	algorithms	we	will	be	working	on.	These	new	words	and	concepts	will	be	introduced	and	explained	properly	when	they	are	needed,	but	here	is	a	list	of	some	key	terms,	just	to	get	an	overview	of	what	is	coming:	Term	Description	Algorithm	A	set	of	step-by-step	instructions	to	solve	a	specific	problem.	Data	Structure	A	way	of
organizing	data	so	it	can	be	used	efficiently.	Common	data	structures	include	arrays,	linked	lists,	and	binary	trees.	Time	Complexity	A	measure	of	the	amount	of	time	an	algorithm	takes	to	run,	depending	on	the	amount	of	data	the	algorithm	is	working	on.	Space	Complexity	A	measure	of	the	amount	of	memory	an	algorithm	uses,	depending	on	the
amount	of	data	the	algorithm	is	working	on.	Big	O	Notation	A	mathematical	notation	that	describes	the	limiting	behavior	of	a	function	when	the	argument	tends	towards	a	particular	value	or	infinity.	Used	in	this	tutorial	to	describe	the	time	complexity	of	an	algorithm.	Recursion	A	programming	technique	where	a	function	calls	itself.	Divide	and
Conquer	A	method	of	solving	complex	problems	by	breaking	them	into	smaller,	more	manageable	sub-problems,	solving	the	sub-problems,	and	combining	the	solutions.	Recursion	is	often	used	when	using	this	method	in	an	algorithm.	Brute	Force	A	simple	and	straight	forward	way	an	algorithm	can	work	by	simply	trying	all	possible	solutions	and	then
choosing	the	best	one.	Where	to	Start?	In	this	tutorial,	you	will	first	learn	about	a	data	structure	with	matching	algorithms,	before	moving	on	to	the	next	data	structure.	Further	into	the	tutorial	the	concepts	become	more	complex,	and	it	is	therefore	a	good	idea	to	learn	DSA	by	doing	the	tutorial	step-by-step	from	the	start.	And	as	mentioned	on	the
previous	page,	you	should	be	comfortable	in	at	least	one	of	the	most	common	programming	languages,	like	for	example	JavaScript,	C	or	Python,	before	doing	this	tutorial.	On	the	next	page	we	will	look	at	two	different	algorithms	that	prints	out	the	first	100	Fibonacci	numbers	using	only	primitive	data	structures	(two	integer	variables).	One	algorithm
uses	a	loop,	and	one	algorithm	uses	something	called	recursion.	Click	the	'Next'	button	to	continue.	Structures	(also	called	structs)	are	a	way	to	group	several	related	variables	into	one	place.	Each	variable	in	the	structure	is	known	as	a	member	of	the	structure.	Unlike	an	array,	a	structure	can	contain	many	different	data	types	(int,	float,	char,	etc.).
Create	a	Structure	You	can	create	a	structure	by	using	the	struct	keyword	and	declare	each	of	its	members	inside	curly	braces:	struct	MyStructure	{			//	Structure	declaration		int	myNum;											//	Member	(int	variable)		char	myLetter;							//	Member	(char	variable)};	//	End	the	structure	with	a	semicolon	To	access	the	structure,	you	must	create	a
variable	of	it.	Use	the	struct	keyword	inside	the	main()	method,	followed	by	the	name	of	the	structure	and	then	the	name	of	the	structure	variable:	Create	a	struct	variable	with	the	name	"s1":	struct	myStructure	{		int	myNum;		char	myLetter;};int	main()	{		struct	myStructure	s1;		return	0;}	Access	Structure	Members	To	access	members	of	a
structure,	use	the	dot	syntax	(.):	//	Create	a	structure	called	myStructurestruct	myStructure	{		int	myNum;		char	myLetter;};int	main()	{		//	Create	a	structure	variable	of	myStructure	called	s1		struct	myStructure	s1;			//	Assign	values	to	members	of	s1		s1.myNum	=	13;		s1.myLetter	=	'B';		//	Print	values		printf("My	number:	%d",	s1.myNum);	
printf("My	letter:	%c",	s1.myLetter);			return	0;}	Try	it	Yourself	»	Now	you	can	easily	create	multiple	structure	variables	with	different	values,	using	just	one	structure:	//	Create	different	struct	variablesstruct	myStructure	s1;struct	myStructure	s2;	//	Assign	values	to	different	struct	variabless1.myNum	=	13;s1.myLetter	=	'B';	s2.myNum	=
20;s2.myLetter	=	'C';	Try	it	Yourself	»	Remember	that	strings	in	C	are	actually	an	array	of	characters,	and	unfortunately,	you	can't	assign	a	value	to	an	array	like	this:	struct	myStructure	{		int	myNum;		char	myLetter;		char	myString[30];		//	String};int	main()	{		struct	myStructure	s1;		//	Trying	to	assign	a	value	to	the	string		s1.myString	=	"Some
text";		//	Trying	to	print	the	value		printf("My	string:	%s",	s1.myString);		return	0;}	An	error	will	occur:	prog.c:12:15:	error:	assignment	to	expression	with	array	type	Try	it	Yourself	»	However,	there	is	a	solution	for	this!	You	can	use	the	strcpy()	function	and	assign	the	value	to	s1.myString,	like	this:	struct	myStructure	{		int	myNum;		char	myLetter;	
char	myString[30];	//	String};int	main()	{		struct	myStructure	s1;		//	Assign	a	value	to	the	string	using	the	strcpy	function		strcpy(s1.myString,	"Some	text");		//	Print	the	value		printf("My	string:	%s",	s1.myString);		return	0;}	Result:	My	string:	Some	text	Try	it	Yourself	»	Simpler	Syntax	You	can	also	assign	values	to	members	of	a	structure	variable	at
declaration	time,	in	a	single	line.	Just	insert	the	values	in	a	comma-separated	list	inside	curly	braces	{}.	Note	that	you	don't	have	to	use	the	strcpy()	function	for	string	values	with	this	technique:	//	Create	a	structurestruct	myStructure	{		int	myNum;		char	myLetter;		char	myString[30];};int	main()	{			//	Create	a	structure	variable	and	assign	values	to
it		struct	myStructure	s1	=	{13,	'B',	"Some	text"};		//	Print	values		printf("%d	%c	%s",	s1.myNum,	s1.myLetter,	s1.myString);			return	0;}	Try	it	Yourself	»	Note:	The	order	of	the	inserted	values	must	match	the	order	of	the	variable	types	declared	in	the	structure	(13	for	int,	'B'	for	char,	etc).	Copy	Structures	You	can	also	assign	one	structure	to	another.
In	the	following	example,	the	values	of	s1	are	copied	to	s2:	struct	myStructure	s1	=	{13,	'B',	"Some	text"};struct	myStructure	s2;	s2	=	s1;	Try	it	Yourself	»	Modify	Values	If	you	want	to	change/modify	a	value,	you	can	use	the	dot	syntax	(.).	And	to	modify	a	string	value,	the	strcpy()	function	is	useful	again:	struct	myStructure	{		int	myNum;		char
myLetter;		char	myString[30];};int	main()	{		//	Create	a	structure	variable	and	assign	values	to	it		struct	myStructure	s1	=	{13,	'B',	"Some	text"};		//	Modify	values		s1.myNum	=	30;		s1.myLetter	=	'C';		strcpy(s1.myString,	"Something	else");		//	Print	values		printf("%d	%c	%s",	s1.myNum,	s1.myLetter,	s1.myString);		return	0;}	Try	it	Yourself	»
Modifying	values	are	especially	useful	when	you	copy	structure	values:	//	Create	a	structure	variable	and	assign	values	to	itstruct	myStructure	s1	=	{13,	'B',	"Some	text"};//	Create	another	structure	variablestruct	myStructure	s2;//	Copy	s1	values	to	s2s2	=	s1;//	Change	s2	valuess2.myNum	=	30;s2.myLetter	=	'C';strcpy(s2.myString,	"Something
else");//	Print	valuesprintf("%d	%c	%s",	s1.myNum,	s1.myLetter,	s1.myString);printf("%d	%c	%s",	s2.myNum,	s2.myLetter,	s2.myString);	Try	it	Yourself	»	Imagine	you	have	to	write	a	program	to	store	different	information	about	Cars,	such	as	brand,	model,	and	year.	What's	great	about	structures	is	that	you	can	create	a	single	"Car	template"	and	use	it
for	every	cars	you	make.	See	below	for	a	real	life	example.	Real-Life	Example	Use	a	structure	to	store	different	information	about	Cars:	struct	Car	{		char	brand[50];		char	model[50];		int	year;};int	main()	{		struct	Car	car1	=	{"BMW",	"X5",	1999};		struct	Car	car2	=	{"Ford",	"Mustang",	1969};		struct	Car	car3	=	{"Toyota",	"Corolla",	2011};	
printf("%s	%s	%d",	car1.brand,	car1.model,	car1.year);		printf("%s	%s	%d",	car2.brand,	car2.model,	car2.year);		printf("%s	%s	%d",	car3.brand,	car3.model,	car3.year);		return	0;}	Try	it	Yourself	»	Try	it	on	GfG	Practice	In	C,	a	structure	is	a	user-defined	data	type	that	can	be	used	to	group	items	of	possibly	different	types	into	a	single	type.	The	struct
keyword	is	used	to	define	a	structure.	The	items	in	the	structure	are	called	its	member	and	they	can	be	of	any	valid	data	type.Example:	C	#include	//	Defining	a	structure	struct	A	{	int	x;	};	int	main()	{	//	Creating	a	structure	variable	struct	A	a;	//	Initializing	member	a.x	=	11;	printf("%d",	a.x);	return	0;	}	Explanation:	In	this	example,	a	structure	A	is
defined	to	hold	an	integer	member	x.	A	variable	a	of	type	struct	A	is	created	and	its	member	x	is	initialized	to	11	by	accessing	it	using	dot	operator.	The	value	of	a.x	is	then	printed	to	the	console.Structures	are	used	when	you	want	to	store	a	collection	of	different	data	types,	such	as	integers,	floats,	or	even	other	structures	under	a	single	name.	To
understand	how	structures	are	foundational	to	building	complex	data	structures,	the	C	Programming	Course	Online	with	Data	Structures	provides	practical	applications	and	detailed	explanations.Syntax	of	StructureThere	are	two	steps	of	creating	a	structure	in	C:Structure	DefinitionCreating	Structure	VariablesStructure	DefinitionA	structure	is
defined	using	the	struct	keyword	followed	by	the	structure	name	and	its	members.	It	is	also	called	a	structure	template	or	structure	prototype,	and	no	memory	is	allocated	to	the	structure	in	the	declaration.struct	structure_name	{	data_type1	member1;	data_type2	member2;	...};structure_name:	Name	of	the	structure.member1,	member2,	...:	Name	of
the	members.data_type1,	data_type2,	...:	Type	of	the	members.Be	careful	not	to	forget	the	semicolon	at	the	end.Creating	Structure	VariableAfter	structure	definition,	we	have	to	create	variable	of	that	structure	to	use	it.	It	is	similar	to	the	any	other	type	of	variable	declaration:struct	strcuture_name	var;We	can	also	declare	structure	variables	with
structure	definition.struct	structure_name	{	...}var1,	var2....;Basic	Operations	of	StructureFollowing	are	the	basic	operations	commonly	used	on	structures:1.	Access	Structure	MembersTo	access	or	modify	members	of	a	structure,	we	use	the	(.)	dot	operator.	This	is	applicable	when	we	are	using	structure	variables	directly.structure_name	.
member1;strcuture_name	.	member2;In	the	case	where	we	have	a	pointer	to	the	structure,	we	can	also	use	the	arrow	operator	to	access	the	members.structure_ptr	->	member1structure_ptr	->	member22.	Initialize	Structure	MembersStructure	members	cannot	be	initialized	with	the	declaration.	For	example,	the	following	C	program	fails	in	the
compilation.struct	structure_name	{	data_type1	member1	=	value1;	//	COMPILER	ERROR:	cannot	initialize	members	here	data_type2	member2	=	value2;	//	COMPILER	ERROR:	cannot	initialize	members	here	...};The	reason	for	the	above	error	is	simple.	When	a	datatype	is	declared,	no	memory	is	allocated	for	it.	Memory	is	allocated	only	when
variables	are	created.	So	there	is	no	space	to	store	the	value	assigned.We	can	initialize	structure	members	in	4	ways	which	are	as	follows:Default	InitializationBy	default,	structure	members	are	not	automatically	initialized	to	0	or	NULL.	Uninitialized	structure	members	will	contain	garbage	values.	However,	when	a	structure	variable	is	declared	with
an	initializer,	all	members	not	explicitly	initialized	are	zero-initialized.struct	structure_name	=	{0};	//	Both	x	and	y	are	initialized	to	0Initialization	using	Assignment	Operatorstruct	structure_name	str;str.member1	=	value1;....Note:	We	cannot	initialize	the	arrays	or	strings	using	assignment	operator	after	variable	declaration.Initialization	using
Initializer	Liststruct	structure_name	str	=	{value1,	value2,	value3};In	this	type	of	initialization,	the	values	are	assigned	in	sequential	order	as	they	are	declared	in	the	structure	template.Initialization	using	Designated	Initializer	ListDesignated	Initialization	allows	structure	members	to	be	initialized	in	any	order.	This	feature	has	been	added	in	the
C99	standard.struct	structure_name	str	=	{	.member1	=	value1,	.member2	=	value2,	.member3	=	value3	};The	Designated	Initialization	is	only	supported	in	C	but	not	in	C++.	C	#include	//	Defining	a	structure	to	represent	a	student	struct	Student	{	char	name[50];	int	age;	float	grade;	};	int	main()	{	//	Declaring	and	initializing	a	structure	//	variable
struct	Student	s1	=	{"Rahul",20,	18.5};	//	Designated	Initializing	another	stucture	struct	Student	s2	=	{.age	=	18,	.name	=	"Vikas",	.grade	=	22};	//	Accessing	structure	members	printf("%s\t%d\t%.2f",	s1.name,	s1.age,	s1.grade);	printf("%s\t%d\t%.2f",	s2.name,	s2.age,	s2.grade);	return	0;	}	OutputRahul	20	18.50	Vikas	18	22.00	3.	Copy
StructureCopying	structure	is	simple	as	copying	any	other	variables.	For	example,	s1	is	copied	into	s2	using	assignment	operator.s2	=	s1;But	this	method	only	creates	a	shallow	copy	of	s1	i.e.	if	the	structure	s1	have	some	dynamic	resources	allocated	by	malloc,	and	it	contains	pointer	to	that	resource,	then	only	the	pointer	will	be	copied	to	s2.	If	the
dynamic	resource	is	also	needed,	then	it	has	to	be	copied	manually	(deep	copy).	C	#include	#include	struct	Student	{	int	id;	char	grade;	};	int	main()	{	struct	Student	s1	=	{1,	'A'};	//	Create	a	copy	of	student	s1	struct	Student	s1c	=	s1;	printf("Student	1	ID:	%d",	s1c.id);	printf("Student	1	Grade:	%c",	s1c.grade);	return	0;	}	OutputStudent	1	ID:	1
Student	1	Grade:	A4.	Passing	Structure	to	FunctionsStructure	can	be	passed	to	a	function	in	the	same	way	as	normal	variables.	Though,	it	is	recommended	to	pass	it	as	a	pointer	to	avoid	copying	a	large	amount	of	data.	C	#include	//	Structure	definition	struct	A	{	int	x;	};	//	Function	to	increment	values	void	increment(struct	A	a,	struct	A*	b)	{	a.x++;
b->x++;	}	int	main()	{	struct	A	a	=	{	10	};	struct	A	b	=	{	10	};	//	Passing	a	by	value	and	b	by	pointer	increment(a,	&b);	printf("a.x:	%d	\tb.x:	%d",	a.x,	b.x);	return	0;	}	5.	typedef	for	StructuresThe	typedef	keyword	is	used	to	define	an	alias	for	the	already	existing	datatype.	In	structures,	we	have	to	use	the	struct	keyword	along	with	the	structure	name
to	define	the	variables.	Sometimes,	this	increases	the	length	and	complexity	of	the	code.	We	can	use	the	typedef	to	define	some	new	shorter	name	for	the	structure.	C	#include	//	Defining	structure	typedef	struct	{	int	a;	}	str1;	//	Another	way	of	using	typedef	with	structures	typedef	struct	{	int	x;	}	str2;	int	main()	{	//	Creating	structure	variables	using
new	names	str1	var1	=	{	20	};	str2	var2	=	{	314	};	printf("var1.a	=	%d",	var1.a);	printf("var2.x	=	%d",	var2.x);	return	0;	}	Outputvar1.a	=	20	var2.x	=	314Explanation:	In	this	code,	str1	and	str2	are	defined	as	aliases	for	the	unnamed	structures,	allowing	the	creation	of	structure	variables	(var1	and	var2)	using	these	new	names.	This	simplifies	the
syntax	when	declaring	variables	of	the	structure.Size	of	StructuresTechnically,	the	size	of	the	structure	in	C	should	be	the	sum	of	the	sizes	of	its	members.	But	it	may	not	be	true	for	most	cases.	The	reason	for	this	is	Structure	Padding.Structure	padding	is	the	concept	of	adding	multiple	empty	bytes	in	the	structure	to	naturally	align	the	data	members
in	the	memory.	It	is	done	to	minimize	the	CPU	read	cycles	to	retrieve	different	data	members	in	the	structure.There	are	some	situations	where	we	need	to	pack	the	structure	tightly	by	removing	the	empty	bytes.	In	such	cases,	we	use	Structure	Packing.	C	language	provides	two	ways	for	structure	packing:Using	#pragma	pack(1)Using
__attribute((packed))__To	know	more	about	structure	padding	and	packing,	refer	to	this	article	-	Structure	Member	Alignment,	Padding	and	Data	Packing.Nested	StructuresIn	C,	a	nested	structure	refers	to	a	structure	that	contains	another	structure	as	one	of	its	members.	This	allows	you	to	create	more	complex	data	types	by	grouping	multiple
structures	together,	which	is	useful	when	dealing	with	related	data	that	needs	to	be	grouped	within	a	larger	structure.There	are	two	ways	in	which	we	can	nest	one	structure	into	another:Embedded	Structure	Nesting:	The	structure	being	nested	is	also	declared	inside	the	parent	structure.Separate	Structure	Nesting:	Two	structures	are	declared
separately	and	then	the	member	structure	is	nested	inside	the	parent	structure.Accessing	Nested	MembersWe	can	access	nested	Members	by	using	the	same	(.)	dot	operator	two	times	as	shown:str_parent	.	str_child	.	member;Example	C	#include	//	Child	structure	declaration	struct	child	{	int	x;	char	c;	};	//	Parent	structure	declaration	struct	parent
{	int	a;	struct	child	b;	};	int	main()	{	struct	parent	p	=	{	25,	195,	'A'	};	//	Accessing	and	printing	nested	members	printf("p.a	=	%d",	p.a);	printf("p.b.x	=	%d",	p.b.x);	printf("p.b.c	=	%c",	p.b.c);	return	0;	}	Outputp.a	=	25	p.b.x	=	195	p.b.c	=	AExplanation:	In	this	code,	the	structure	parent	contains	another	structure	child	as	a	member.	The	parent
structure	is	then	initialized	with	values,	including	the	values	for	the	child	structure's	members.Structure	PointerA	pointer	to	a	structure	allows	us	to	access	structure	members	using	the	(->)	arrow	operator	instead	of	the	dot	operator.	C	#include	//	Structure	declaration	struct	Point	{	int	x,	y;	};	int	main()	{	struct	Point	p	=	{	1,	2	};	//	ptr	is	a	pointer
to	structure	p	struct	Point*	ptr	=	&p;	//	Accessing	structure	members	using	structure	pointer	printf("%d	%d",	ptr->x,	ptr->y);	return	0;	}	Explanation:	In	this	example,	ptr	is	a	pointer	to	the	structure	Point.	It	holds	the	address	of	the	structure	variable	p.	The	structure	members	x	and	y	are	accessed	using	the	->	operator,	which	is	used	to	dereference
the	pointer	and	access	the	members	of	the	structure.Self-Referential	StructuresThe	self-referential	structures	are	those	structures	that	contain	references	to	the	same	type	as	themselves	i.e.	they	contain	a	member	of	the	type	pointer	pointing	to	the	same	structure	type.Example:struct	str	{	int	mem1;	//	Reference	to	the	same	type	struct	str*
next;};Such	kinds	of	structures	are	used	in	different	data	structures	such	as	to	define	the	nodes	of	linked	lists,	trees,	etc.Bit	FieldsBit	Fields	are	used	to	specify	the	length	of	the	structure	members	in	bits.	When	we	know	the	maximum	length	of	the	member,	we	can	use	bit	fields	to	specify	the	size	and	reduce	memory	consumption.Syntaxstruct
structure_name	{	data_type	member_name:	width_of_bit-field;};Uses	of	Structure	in	CC	structures	are	used	for	the	following:The	structure	can	be	used	to	define	the	custom	data	types	that	can	be	used	to	create	some	complex	data	types	such	as	dates,	time,	complex	numbers,	etc.	which	are	not	present	in	the	language.It	can	also	be	used	in	data
organization	where	a	large	amount	of	data	can	be	stored	in	different	fields.Structures	are	used	to	create	data	structures	such	as	trees,	linked	lists,	etc.They	can	also	be	used	for	returning	multiple	values	from	a	function.	Hello	there,	future	coding	wizards!	Today,	we're	going	to	embark	on	an	exciting	journey	into	the	world	of	structures	and	functions
in	C.	As	your	friendly	neighborhood	computer	science	teacher,	I'm	here	to	guide	you	through	this	adventure	with	plenty	of	examples	and	explanations.	So,	grab	your	virtual	backpacks,	and	let's	dive	in!	What	Are	Structures?	Before	we	start	passing	structures	around	like	hot	potatoes,	let's	understand	what	they	are.	In	C,	a	structure	is	like	a	container
that	can	hold	different	types	of	data.	Imagine	you're	packing	for	a	trip	-	you	might	have	a	suitcase	(the	structure)	that	contains	your	clothes,	toiletries,	and	maybe	a	good	book	(the	different	data	types).	Here's	how	we	define	a	simple	structure:	struct	Student	{	char	name[50];	int	age;	float	gpa;	};	This	Student	structure	can	hold	a	name	(as	a	string),	an
age	(as	an	integer),	and	a	GPA	(as	a	float).	Pretty	neat,	right?	How	to	Pass	Struct	Elements	Now,	let's	look	at	how	we	can	pass	individual	elements	of	a	structure	to	a	function.	It's	like	asking	your	friend	to	bring	just	your	toothbrush	from	your	suitcase,	not	the	whole	thing.	#include	struct	Student	{	char	name[50];	int	age;	float	gpa;	};	void	printAge(int
age)	{	printf("The	student's	age	is:	%d",	age);	}	int	main()	{	struct	Student	john	=	{"John	Doe",	20,	3.8};	printAge(john.age);	return	0;	}	In	this	example,	we're	only	passing	the	age	element	of	our	Student	structure	to	the	printAge	function.	It's	simple	and	straightforward!	How	to	Pass	a	Struct	Variable	But	what	if	we	want	to	pass	the	whole	"suitcase"?
We	can	do	that	too!	Here's	how	we	pass	an	entire	structure	to	a	function:	#include	struct	Student	{	char	name[50];	int	age;	float	gpa;	};	void	printStudent(struct	Student	s)	{	printf("Name:	%s",	s.name);	printf("Age:	%d",	s.age);	printf("GPA:	%.2f",	s.gpa);	}	int	main()	{	struct	Student	john	=	{"John	Doe",	20,	3.8};	printStudent(john);	return	0;	}	Here,
we're	passing	the	entire	john	structure	to	the	printStudent	function.	It's	like	handing	over	your	whole	suitcase	to	your	friend.	How	to	Return	Struct	from	a	Function	Now,	let's	get	fancy.	What	if	we	want	a	function	to	create	and	return	a	whole	structure?	It's	like	asking	your	friend	to	pack	a	suitcase	for	you	and	bring	it	back.	Here's	how	we	do	it:
#include	#include	struct	Student	{	char	name[50];	int	age;	float	gpa;	};	struct	Student	createStudent(char	*name,	int	age,	float	gpa)	{	struct	Student	s;	strcpy(s.name,	name);	s.age	=	age;	s.gpa	=	gpa;	return	s;	}	int	main()	{	struct	Student	newStudent	=	createStudent("Jane	Doe",	22,	3.9);	printf("New	student	created:	%s,	%d	years	old,	GPA:	%.2f",
newStudent.name,	newStudent.age,	newStudent.gpa);	return	0;	}	In	this	example,	our	createStudent	function	is	like	a	student-creating	machine.	You	give	it	the	details,	and	it	hands	you	back	a	fully	packed	"student	suitcase"!	How	to	Pass	a	Struct	by	Reference	Sometimes,	we	want	to	modify	the	original	structure	inside	a	function.	It's	like	asking	your
friend	to	add	something	to	your	suitcase	without	bringing	the	whole	thing	back.	For	this,	we	use	pointers:	#include	struct	Student	{	char	name[50];	int	age;	float	gpa;	};	void	updateAge(struct	Student	*s,	int	newAge)	{	s->age	=	newAge;	}	int	main()	{	struct	Student	john	=	{"John	Doe",	20,	3.8};	printf("John's	age	before:	%d",	john.age);
updateAge(&john,	21);	printf("John's	age	after:	%d",	john.age);	return	0;	}	Here,	we're	passing	the	address	of	our	john	structure	to	the	updateAge	function.	The	function	then	uses	the	->	operator	to	access	and	modify	the	age	field	directly.	How	to	Return	a	Struct	Pointer	Lastly,	let's	look	at	how	we	can	return	a	pointer	to	a	structure.	This	is	useful
when	we're	dealing	with	large	structures	or	when	we	want	to	create	structures	that	persist	after	the	function	ends.	#include	#include	#include	struct	Student	{	char	name[50];	int	age;	float	gpa;	};	struct	Student*	createStudentPointer(char	*name,	int	age,	float	gpa)	{	struct	Student	*s	=	malloc(sizeof(struct	Student));	strcpy(s->name,	name);	s->age
=	age;	s->gpa	=	gpa;	return	s;	}	int	main()	{	struct	Student	*newStudent	=	createStudentPointer("Bob	Smith",	19,	3.7);	printf("New	student	created:	%s,	%d	years	old,	GPA:	%.2f",	newStudent->name,	newStudent->age,	newStudent->gpa);	free(newStudent);	//	Don't	forget	to	free	the	allocated	memory!	return	0;	}	In	this	example,	our
createStudentPointer	function	is	like	a	valet	service.	It	not	only	packs	the	suitcase	for	you	but	also	remembers	where	it	put	it	and	gives	you	the	location	(the	pointer).	Conclusion	And	there	you	have	it,	folks!	We've	packed,	unpacked,	modified,	and	created	structures	in	various	ways.	Remember,	practice	makes	perfect,	so	don't	be	afraid	to	experiment
with	these	concepts.	Who	knows?	You	might	just	structure	your	way	to	becoming	the	next	big	thing	in	programming!	Here's	a	quick	reference	table	of	the	methods	we've	covered:	Method	Description	Passing	Struct	Elements	Pass	individual	fields	of	a	structure	to	a	function	Passing	Struct	Variable	Pass	an	entire	structure	to	a	function	Returning
Struct	Create	and	return	a	structure	from	a	function	Passing	Struct	by	Reference	Modify	a	structure	inside	a	function	using	pointers	Returning	Struct	Pointer	Create	a	structure	on	the	heap	and	return	its	pointer	Happy	coding,	and	may	your	structures	always	be	well-organized!	Credits:	Image	by	storyset	Diagnostics	library	Memory	management
library	Metaprogramming	library	(C++11)	General	utilities	library	Containers	library	Iterators	library	Ranges	library	(C++20)	Algorithms	library	Strings	library	Text	processing	library	Numerics	library	Date	and	time	library	Calendar	(C++20)	−	Time	zone	(C++20)	Input/output	library	Concurrency	support	library	(C++11)	Execution	support	library
(C++26)	Feature	test	macros	(C++20)	Page	2	From	cppreference.com	<	c	ISO/IEC	9899/AMD1:1995,	a.k.a.	C95,	is	a	previous	revision	of	the	C	standard.	[edit]	New	language	features	Digraphs	__STDC_VERSION__	[edit]	New	library	features	[edit]	From	cppreference.com	A	struct	is	a	type	consisting	of	a	sequence	of	members	whose	storage	is
allocated	in	an	ordered	sequence	(as	opposed	to	union,	which	is	a	type	consisting	of	a	sequence	of	members	whose	storage	overlaps).	The	type	specifier	for	a	struct	is	identical	to	the	union	type	specifier	except	for	the	keyword	used:	[edit]	Syntax	struct	attr-spec-seq ​(optional)	name ​(optional)	{	struct-declaration-list	}	(1)	struct	attr-spec-seq ​(optional)
name	(2)	1)	Struct	definition:	introduces	the	new	type	struct	name	and	defines	its	meaning	2)	If	used	on	a	line	of	its	own,	as	in	struct	name	;,	declares	but	doesn't	define	the	struct	name	(see	forward	declaration	below).	In	other	contexts,	names	the	previously-declared	struct,	and	attr-spec-seq	is	not	allowed.	name	-	the	name	of	the	struct	that's	being
defined	struct-declaration-list	-	any	number	of	variable	declarations,	bit-field	declarations,	and	static	assert	declarations.	Members	of	incomplete	type	and	members	of	function	type	are	not	allowed	(except	for	the	flexible	array	member	described	below)	attr-spec-seq	-	(C23)optional	list	of	attributes,	applied	to	the	struct	type	Within	a	struct	object,
addresses	of	its	elements	(and	the	addresses	of	the	bit-field	allocation	units)	increase	in	order	in	which	the	members	were	defined.	A	pointer	to	a	struct	can	be	cast	to	a	pointer	to	its	first	member	(or,	if	the	member	is	a	bit-field,	to	its	allocation	unit).	Likewise,	a	pointer	to	the	first	member	of	a	struct	can	be	cast	to	a	pointer	to	the	enclosing	struct.
There	may	be	unnamed	padding	between	any	two	members	of	a	struct	or	after	the	last	member,	but	not	before	the	first	member.	The	size	of	a	struct	is	at	least	as	large	as	the	sum	of	the	sizes	of	its	members.	If	a	struct	defines	at	least	one	named	member,	it	is	allowed	to	additionally	declare	its	last	member	with	incomplete	array	type.	When	an	element
of	the	flexible	array	member	is	accessed	(in	an	expression	that	uses	operator	.	or	->	with	the	flexible	array	member's	name	as	the	right-hand-side	operand),	then	the	struct	behaves	as	if	the	array	member	had	the	longest	size	fitting	in	the	memory	allocated	for	this	object.	If	no	additional	storage	was	allocated,	it	behaves	as	if	an	array	with	1	element,
except	that	the	behavior	is	undefined	if	that	element	is	accessed	or	a	pointer	one	past	that	element	is	produced.	Initialization	and	the	assignment	operator	ignore	the	flexible	array	member.	sizeof	omits	it,	but	may	have	more	trailing	padding	than	the	omission	would	imply.	Structures	with	flexible	array	members	(or	unions	who	have	a	recursive-
possibly	structure	member	with	flexible	array	member)	cannot	appear	as	array	elements	or	as	members	of	other	structures.	struct	s	{	int	n;	double	d[];	};	//	s.d	is	a	flexible	array	member			struct	s	t1	=	{	0	};	//	OK,	d	is	as	if	double	d[1],	but	UB	to	access	struct	s	t2	=	{	1,	{	4.2	}	};	//	error:	initialization	ignores	flexible	array			//	if	sizeof	(double)	==	8
struct	s	*s1	=	malloc(sizeof	(struct	s)	+	64);	//	as	if	d	was	double	d[8]	struct	s	*s2	=	malloc(sizeof	(struct	s)	+	40);	//	as	if	d	was	double	d[5]			s1	=	malloc(sizeof	(struct	s)	+	10);	//	now	as	if	d	was	double	d[1].	Two	bytes	excess.	double	*dp	=	&(s1->d[0]);	//	OK	*dp	=	42;	//	OK	s1->d[1]++;	//	Undefined	behavior.	2	excess	bytes	can't	be	accessed	//	as
double.			s2	=	malloc(sizeof	(struct	s)	+	6);	//	same,	but	UB	to	access	because	2	bytes	are	//	missing	to	complete	1	double	dp	=	&(s2->d[0]);	//	OK,	can	take	address	just	fine	*dp	=	42;	//	undefined	behavior			*s1	=	*s2;	//	only	copies	s.n,	not	any	element	of	s.d	//	except	those	caught	in	sizeof	(struct	s)	(since	C99)	Similar	to	union,	an	unnamed	member	of
a	struct	whose	type	is	a	struct	without	name	is	known	as	anonymous	struct.	Every	member	of	an	anonymous	struct	is	considered	to	be	a	member	of	the	enclosing	struct	or	union,	keeping	their	structure	layout.	This	applies	recursively	if	the	enclosing	struct	or	union	is	also	anonymous.	struct	v	{	union	//	anonymous	union	{	struct	{	int	i,	j;	};	//
anonymous	structure	struct	{	long	k,	l;	}	w;	};	int	m;	}	v1;			v1.i	=	2;	//	valid	v1.k	=	3;	//	invalid:	inner	structure	is	not	anonymous	v1.w.k	=	5;	//	valid	Similar	to	union,	the	behavior	of	the	program	is	undefined	if	struct	is	defined	without	any	named	members	(including	those	obtained	via	anonymous	nested	structs	or	unions).	(since	C11)	[edit]	Forward
declaration	A	declaration	of	the	following	form	struct	attr-spec-seq ​(optional)	name	;	hides	any	previously	declared	meaning	for	the	name	name	in	the	tag	name	space	and	declares	name	as	a	new	struct	name	in	current	scope,	which	will	be	defined	later.	Until	the	definition	appears,	this	struct	name	has	incomplete	type.	This	allows	structs	that	refer	to
each	other:	struct	y;	struct	x	{	struct	y	*p;	/*	...	*/	};	struct	y	{	struct	x	*q;	/*	...	*/	};	Note	that	a	new	struct	name	may	also	be	introduced	just	by	using	a	struct	tag	within	another	declaration,	but	if	a	previously	declared	struct	with	the	same	name	exists	in	the	tag	name	space,	the	tag	would	refer	to	that	name	struct	s*	p	=	NULL;	//	tag	naming	an
unknown	struct	declares	it	struct	s	{	int	a;	};	//	definition	for	the	struct	pointed	to	by	p	void	g(void)	{	struct	s;	//	forward	declaration	of	a	new,	local	struct	s	//	this	hides	global	struct	s	until	the	end	of	this	block	struct	s	*p;	//	pointer	to	local	struct	s	//	without	the	forward	declaration	above,	//	this	would	point	at	the	file-scope	s	struct	s	{	char*	p;	};	//
definitions	of	the	local	struct	s	}	[edit]	Keywords	struct	[edit]	Notes	See	struct	initialization	for	the	rules	regarding	the	initializers	for	structs.	Because	members	of	incomplete	type	are	not	allowed,	and	a	struct	type	is	not	complete	until	the	end	of	the	definition,	a	struct	cannot	have	a	member	of	its	own	type.	A	pointer	to	its	own	type	is	allowed,	and	is
commonly	used	to	implement	nodes	in	linked	lists	or	trees.	Because	a	struct	declaration	does	not	establish	scope,	nested	types,	enumerations	and	enumerators	introduced	by	declarations	within	struct-declaration-list	are	visible	in	the	surrounding	scope	where	the	struct	is	defined.	[edit]	Example	#include	#include			int	main(void)	{	//	Declare	the
struct	type.	struct	car	{	char*	make;	int	year;	};	//	Declare	and	initialize	an	object	of	a	previously-declared	struct	type.	struct	car	c	=	{.year	=	1923,	.make	=	"Nash"};	printf("1)	Car:	%d	%s",	c.year,	c.make);			//	Declare	a	struct	type,	an	object	of	that	type,	and	a	pointer	to	it.	struct	spaceship	{	char*	model;	int	max_speed;	}	ship	=	{"T-65	X-wing
starfighter",	1050},	*pship	=	&ship;	printf("2)	Spaceship:	%s.	Max	speed:	%d	km/h",	ship.model,	ship.max_speed);			//	Address	increase	in	order	of	definition.	Padding	may	be	inserted.	struct	A	{	char	a;	double	b;	char	c;	};	printf("3)	Offset	of	char	a	=	%zu"	"4)	Offset	of	double	b	=	%zu"	"5)	Offset	of	char	c	=	%zu"	"6)	Size	of	struct	A	=	%zu",
offsetof(struct	A,	a),	offsetof(struct	A,	b),	offsetof(struct	A,	c),	sizeof(struct	A));	struct	B	{	char	a;	char	b;	double	c;	};	printf("7)	Offset	of	char	a	=	%zu"	"8)	Offset	of	char	b	=	%zu"	"9)	Offset	of	double	c	=	%zu"	"A)	Size	of	struct	B	=	%zu",	offsetof(struct	B,	a),	offsetof(struct	B,	b),	offsetof(struct	B,	c),	sizeof(struct	B));			//	A	pointer	to	a	struct	can	be
cast	to	a	pointer	//	to	its	first	member	and	vice	versa.	char**	pmodel	=	(char	**)pship;	printf("B)	%s",	*pmodel);	pship	=	(struct	spaceship	*)pmodel;	}	Possible	output:	1)	Car:	1923	Nash	2)	Spaceship:	T-65	X-wing	starfighter.	Max	speed:	1050	km/h			3)	Offset	of	char	a	=	0	4)	Offset	of	double	b	=	8	5)	Offset	of	char	c	=	16	6)	Size	of	struct	A	=	24			7)
Offset	of	char	a	=	0	8)	Offset	of	char	b	=	1	9)	Offset	of	double	c	=	8	A)	Size	of	struct	B	=	16			B)	T-65	X-wing	starfighter	[edit]	Defect	reports	The	following	behavior-changing	defect	reports	were	applied	retroactively	to	previously	published	C	standards.	DR	Applied	to	Behavior	as	published	Correct	behavior	DR	499	C11	members	of	anonymous
structs/unions	were	considered	members	of	the	enclosing	struct/union	they	retain	their	memory	layout	[edit]	References	C23	standard	(ISO/IEC	9899:2024):	6.7.2.1	Structure	and	union	specifiers	(p:	TBD)	C17	standard	(ISO/IEC	9899:2018):	6.7.2.1	Structure	and	union	specifiers	(p:	81-84)	C11	standard	(ISO/IEC	9899:2011):	6.7.2.1	Structure	and
union	specifiers	(p:	112-117)	C99	standard	(ISO/IEC	9899:1999):	6.7.2.1	Structure	and	union	specifiers	(p:	101-104)	C89/C90	standard	(ISO/IEC	9899:1990):	3.5.2.1	Structure	and	union	specifiers	[edit]	See	also	struct	and	union	member	access	bit-field	struct	initialization	C++	documentation	for	Class	declaration	MASTERCLASSALUMNI	Hello,
aspiring	programmers!	Today,	we're	going	to	dive	into	the	fascinating	world	of	structures	in	C.	Don't	worry	if	you've	never	written	a	line	of	code	before	–	I'll	guide	you	through	this	journey	step	by	step,	just	as	I've	done	for	countless	students	over	my	years	of	teaching.	So,	let's	embark	on	this	adventure	together!	What	are	Structures	in	C?	Imagine
you're	building	a	digital	address	book.	For	each	person,	you'd	want	to	store	their	name,	phone	number,	and	email	address.	In	C,	a	structure	allows	you	to	group	these	related	pieces	of	information	together	under	a	single	name.	It's	like	creating	a	custom	data	type	that	can	hold	multiple	pieces	of	data	of	different	types.	Here's	a	simple	analogy:	think	of
a	structure	as	a	backpack.	Just	as	a	backpack	can	hold	different	items	like	books,	pens,	and	a	water	bottle,	a	structure	can	hold	different	types	of	data.	Declare	(Create)	a	Structure	Let's	start	by	creating	our	first	structure.	We'll	use	the	keyword	struct	to	do	this.	struct	Person	{	char	name[50];	int	age;	float	height;	};	In	this	example,	we've	created	a
structure	called	Person.	It	can	hold	a	name	(up	to	50	characters),	an	age	(an	integer),	and	a	height	(a	floating-point	number).	Structure	Variable	Declaration	Now	that	we've	defined	our	structure,	let's	create	a	variable	of	this	type.	struct	Person	john;	This	line	creates	a	variable	named	john	of	type	struct	Person.	It's	like	saying,	"Hey	C,	give	me	a
backpack	called	'john'	that	can	hold	a	name,	age,	and	height."	Structure	Initialization	Let's	put	some	data	into	our	structure:	struct	Person	john	=	{"John	Doe",	30,	5.9};	Here,	we're	filling	our	john	backpack	with	a	name	("John	Doe"),	an	age	(30),	and	a	height	(5.9).	Accessing	the	Structure	Members	To	access	or	modify	the	data	in	a	structure,	we	use
the	dot	(.)	operator:	printf("Name:	%s",	john.name);	printf("Age:	%d",	john.age);	printf("Height:	%.1f",	john.height);	john.age	=	31;	//	Happy	birthday,	John!	This	code	prints	John's	details	and	then	updates	his	age.	It's	like	reaching	into	specific	pockets	of	our	backpack.	Copying	Structures	In	C,	you	can	copy	one	structure	to	another	of	the	same	type:
struct	Person	jane	=	john;	This	creates	a	new	Person	called	jane	with	the	same	data	as	john.	It's	like	making	an	exact	copy	of	John's	backpack	for	Jane.	Structures	as	Function	Arguments	You	can	pass	structures	to	functions,	just	like	any	other	data	type:	void	printPerson(struct	Person	p)	{	printf("Name:	%s,	Age:	%d,	Height:	%.1f",	p.name,	p.age,
p.height);	}	//	Usage	printPerson(john);	This	function	takes	a	Person	structure	and	prints	its	contents.	It's	like	handing	your	backpack	to	someone	so	they	can	tell	you	what's	inside.	Pointers	to	Structures	Sometimes,	it's	more	efficient	to	use	pointers	to	structures,	especially	when	dealing	with	large	structures:	struct	Person	*pJohn	=	&john;
printf("Name:	%s",	(*pJohn).name);	//	Or,	more	commonly:	printf("Age:	%d",	pJohn->age);	The	arrow	operator	(->)	is	a	shorthand	for	dereferencing	a	pointer	and	accessing	a	member.	It's	like	having	a	map	that	points	to	where	your	backpack	is,	rather	than	carrying	the	backpack	itself.	Bit	Fields	Bit	fields	allow	you	to	specify	the	number	of	bits	to	be
used	for	structure	members:	struct	PackedData	{	unsigned	int	flag	:	1;	unsigned	int	data	:	31;	};	This	structure	uses	only	32	bits	of	memory:	1	bit	for	flag	and	31	bits	for	data.	It's	like	having	a	tiny,	specialized	compartment	in	your	backpack	for	very	small	items.	Methods	Table	Here's	a	quick	reference	table	of	the	methods	we've	covered:	Method
Description	Example	Structure	Declaration	Define	a	new	structure	struct	Person	{	...	};	Variable	Declaration	Create	a	variable	of	a	structure	type	struct	Person	john;	Initialization	Set	initial	values	for	a	structure	struct	Person	john	=	{"John",	30,	5.9};	Member	Access	Access	or	modify	structure	members	john.age	=	31;	Structure	Copying	Copy	one
structure	to	another	struct	Person	jane	=	john;	Function	Arguments	Pass	structures	to	functions	void	printPerson(struct	Person	p)	{	...	}	Pointers	to	Structures	Use	pointers	for	efficient	handling	struct	Person	*pJohn	=	&john;	Bit	Fields	Specify	bit	sizes	for	members	struct	PackedData	{	unsigned	int	flag	:	1;	};	And	there	you	have	it!	We've	unpacked
the	basics	of	structures	in	C.	Remember,	like	learning	to	organize	your	backpack	efficiently,	mastering	structures	takes	practice.	Don't	be	discouraged	if	it	doesn't	click	immediately	–	keep	coding,	keep	experimenting,	and	soon	you'll	be	structuring	your	data	like	a	pro!	Happy	coding,	future	C	wizards!	Credits:	Image	by	storyset	C	allows	programmers
to	create	user-defined	data	types	by	grouping	data	of	different	types	together	using	struct	keywords,	such	data	types	are	called	structures.	Like	any	other	data	type	in	C,	variables	of	user-defined	structure	occupy	addresses	in	a	memory	block,	and	pointers	can	be	used	to	point	them.	A	pointer	pointing	to	a	structure	is	called	structure	pointer.
Structures	and	pointers	in	C	together	help	in	accessing	structure	members	efficiently.Structure	pointer	declaration	is	similar	to	declaring	a	structure	variable	using	the	struct	keyword	followed	by	the	type	of	structure	it	will	point	to.	A	structure	pointer	can	only	hold	the	address	of	the	structure	used	at	the	time	of	its	declaration.	Structures	and
pointers	in	C	together	make	accessing	structure	value	and	passing	to	functions	easier.	C	allows	programmers	to	create	their	data	type	by	grouping	different	types	together	into	one	using	structures.	For	example,	if	we	want	to	store	information	about	our	classmates,	each	student	variable	should	hold	information	about	the	student's	name,	roll	number,
and	grades.	No	pre-defined	data	type	in	C	can	alone	store	all	this	information.For	such	cases	where	we	want	to	store	information	that	no	data	type	can	hold,	we	create	our	data	types	using	structure	to	hold	the	required	information.Different	components	of	a	structure	are	called	members	for	example,	in	the	above	case,	student	name	and	roll	number
are	members	of	the	structure.	Like	every	other	data	type,	structure	variables	are	stored	in	memory,	and	we	can	use	pointers	to	store	their	addresses.Structure	pointer	points	to	the	address	of	the	structure	variable	in	the	memory	block	to	which	it	points.	This	pointer	can	be	used	to	access	and	change	the	value	of	structure	members.	This	way,
structures	and	pointers	in	C	can	be	used	to	create	and	access	user-defined	data	types	conveniently.Before	understanding	how	to	use	structures	and	pointers	in	C	together,	let	us	understand	how	structures	are	defined	and	accessed	using	the	variable	name.	C	struct	keyword	is	used	to	create	a	new	data	type,	followed	by	the	structure	name.	We	define
different	members	of	the	structure	inside	parenthesis.	Once	a	structure	is	defined,	its	name	structure_name	can	be	used	to	declare	variables	asTo	access	the	value	of	members	of	a	structure,	the	dot	(.)	operator	and	the	structure	variable	name	followed	by	the	member's	name	are	used.	For	example,	if	we	want	the	value	of	member_variable_1	from	a
structure	variable	structure_variable	syntax	will	bestructure_variable	is	the	structure	variable,	and	member_variable_1	is	one	of	its	members.	Note:The	structure	members	do	not	occupy	space	in	memory	until	they	are	associated	with	a	structure	variable.	Now	that	we	know	how	structures	are	declared	and	accessed	let	us	create	a	structure	User	that
holds	information	about	user	name,	his	role	and	his	age.	Here	name,	role,	age	are	members	of	the	structure	User.OutputExplanationHere,	we	have	created	a	user-defined	data	type,	User	using	the	struct	keyword,	this	structure	has	three	members	that	are	name	(string),	age	(int),	and	role	(string).	To	store	information	of	two	users,	we	have	declared
two	structure	variables	user_1	and	user_2	of	type	User	and	later	initialized	and	accessed	their	value	in	the	main()	function	using	the	variable	name	and	dot	(.)	operator.	As	shown	in	the	above	figure,	a	structure	pointer	stores	the	memory	address	of	a	structure	variable.	This	is	the	reason	why	in	the	figure	ptr	stores	the	location	3000	inside	it,	which	is
the	address	of	the	variable	student1.We	now	know	how	structures	are	defined	and	used	in	a	C	code	let	us	see	how	we	can	use	structures	with	pointers	to	access	structure	variables	and	their	members.	Declaration	of	structure	pointer	is	similar	to	the	declaration	of	structure	variables,	and	the	only	difference	is	that	the	pointer	name	is	prefixed	with	an
asterisk	*	symbol.SyntaxStructure	pointer	in	C	is	declared	using	the	keyword	struct	followed	by	structure	name	to	which	the	pointer	will	point	to	followed	by	pointer	name.	A	structure	pointer	can	only	hold	the	address	of	a	variable	of	the	same	structure	type	used	in	its	declaration.This	way	structures	and	pointers	in	C	are	used	together	to	create	a
pointer	pointing	to	the	structure.	After	a	structure	pointer	is	declared,	we	need	to	initialize	it	to	a	variable	before	using	it.	To	initialize	a	variable,	we	need	to	provide	the	address	of	the	structure	variable	using	the	&	operator.Also,	the	structure	pointer	can	be	initialized	during	the	time	of	declaration.	There	are	two	ways	to	access	the	values	of
structure	members	using	pointers	-1.	Using	asterisk	(*)	and	dot	(.)	operator	with	the	structure	pointer.	2.	Using	membership	or	arrow	(->)	operator.ExamplesLet	us	see	some	examples	to	understand	how	we	can	access	structure	members	using	two	different	approaches.Example	1:	Accessing	structure	members	using	the	dot
operatorOutputExplanationHere,	cp	is	a	pointer	that	points	to	the	structure	variable	first_point.	This	means	dereferencing	the	pointer	gives	us	the	content	of	first_point.	Hence,	*cp	and	first_point	are	functionally	identical.	To	access	members	of	the	structure	dot	operator	can	be	used	followed	by	the	member	name.For	example,	in	the	example	above:
(*cp).x	refers	to	member	x	of	first_point.	(*cp).y	refers	to	member	y	of	first_point.	Note:	Parentheses	around	the	pointer	is	important	because	the	precedence	of	dot	operator	is	greater	than	indirection	(*)	operator.	Example	2:	Accessing	structure	members	using	the	arrow	operatorAnother	way	to	access	structure	members	in	C	is	using	the	(->)
operator.	Using	this	way,	we	don't	need	an	asterisk	and	dot	operator	with	the	pointer.	To	access	members	of	the	structure	using	(->)	operator	we	write	pointer	name	with	->	followed	by	the	name	of	the	member	that	isLet	us	see	an	example	to	understand	how	we	can	use	an	arrow	operator	to	access	structure	members	using	structures	and	pointers	in
C.OutputAccessing	members	of	the	structure	using	the	membership	operator	on	structure	pointer	makes	code	more	readable	when	compared	to	the	other	approach.Example	3:	Structure	pointer	in	function	argumentsOutputHere,	we	have	defined	function	arguments	as	structure	pointers	and	when	we	are	creating	function	calls	instead	of	passing
structure	variables,	we	are	passing	reference	of	them	to	function.	Because	reference	of	variable	is	passed	to	the	function	any	changes	made	on	structure	members	inside	function	body	will	persist	outside	the	function	scope.	Structures	in	C	allow	programmers	to	create	user-defined	data	types	by	grouping	different	defined	data	types	into	one.	Different
individual	components	in	the	structure	are	called	members.	To	create	a	new	structure	struct	keyword	is	used	and	similarly,	when	a	structure	variable	is	created	struct	keyword	is	used	followed	by	structure	type	and	variable	name.	Pointer	pointing	to	a	structure	variable	is	called	a	structure	pointer,	and	structures	and	pointers	in	C	together	can	be
used	to	access	and	change	the	values	of	members	of	the	structure	they	are	pointing.	Declaring	a	structure	pointer	is	similar	to	the	declaration	of	a	structure	variable.	To	declare	a	structure	pointer	struct	keyword	is	used	followed	by	the	structure	name	and	pointer	name	with	an	asterisk	*	symbol.	Members	of	a	structure	can	be	accessed	from	pointers
using	two	ways	that	are.	Using	dot	and	asterisk	operator	on	a	pointer.	Using	arrow	operator	(->)	on	a	pointer.

