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First	published	Sat	Jan	25,	1997;	substantive	revision	Sun	Sep	3,	2023	Game	theory	in	the	form	known	to	economists,	social	scientists,	and	biologists,	was	given	its	first	general	mathematical	formulation	by	John	von	Neumann	and	Oskar	Morgenstern	(1944).	For	reasons	to	be	discussed	later,	limitations	in	their	formal	framework	initially	made	the
theory	applicable	only	under	special	and	limited	conditions.	This	situation	has	dramatically	changed,	in	ways	we	will	examine	as	we	go	along,	over	the	past	seven	decades,	as	the	framework	has	been	deepened	and	generalized.	Refinements	are	still	being	made,	and	we	will	review	a	few	outstanding	problems	that	lie	along	the	advancing	front	edge	of
these	developments	towards	the	end	of	the	article.	However,	since	at	least	the	late	1970s	it	has	been	possible	to	say	with	confidence	that	game	theory	is	the	most	important	and	useful	tool	in	the	analyst’s	kit	whenever	she	confronts	situations	in	which	what	counts	as	one	agent’s	best	action	(for	her)	depends	on	expectations	about	what	one	or	more
other	agents	will	do,	and	what	counts	as	their	best	actions	(for	them)	similarly	depend	on	expectations	about	her.	Despite	the	fact	that	game	theory	has	been	rendered	mathematically	and	logically	systematic	only	since	1944,	game-theoretic	insights	can	be	found	among	commentators	going	back	to	ancient	times.	For	example,	in	two	of	Plato’s	texts,
the	Laches	and	the	Symposium,	Socrates	recalls	an	episode	from	the	Battle	of	Delium	that	some	commentators	have	interpreted	(probably	anachronistically)	as	involving	the	following	situation.	Consider	a	soldier	at	the	front,	waiting	with	his	comrades	to	repulse	an	enemy	attack.	It	may	occur	to	him	that	if	the	defense	is	likely	to	be	successful,	then	it
isn’t	very	probable	that	his	own	personal	contribution	will	be	essential.	But	if	he	stays,	he	runs	the	risk	of	being	killed	or	wounded—apparently	for	no	point.	On	the	other	hand,	if	the	enemy	is	going	to	win	the	battle,	then	his	chances	of	death	or	injury	are	higher	still,	and	now	quite	clearly	to	no	point,	since	the	line	will	be	overwhelmed	anyway.	Based
on	this	reasoning,	it	would	appear	that	the	soldier	is	better	off	running	away	regardless	of	who	is	going	to	win	the	battle.	But	if	all	of	the	soldiers	reason	this	way—as	they	all	apparently	should,	since	they’re	all	in	identical	situations—then	this	will	certainly	bring	about	the	outcome	in	which	the	battle	is	lost.	Of	course,	this	point,	since	it	has	occurred
to	us	as	analysts,	can	occur	to	the	soldiers	too.	Does	this	give	them	a	reason	for	staying	at	their	posts?	Just	the	contrary:	the	greater	the	soldiers’	fear	that	the	battle	will	be	lost,	the	greater	their	incentive	to	get	themselves	out	of	harm’s	way.	And	the	greater	the	soldiers’	belief	that	the	battle	will	be	won,	without	the	need	of	any	particular	individual’s
contributions,	the	less	reason	they	have	to	stay	and	fight.	If	each	soldier	anticipates	this	sort	of	reasoning	on	the	part	of	the	others,	all	will	quickly	reason	themselves	into	a	panic,	and	their	horrified	commander	will	have	a	rout	on	his	hands	before	the	enemy	has	even	engaged.	Long	before	game	theory	had	come	along	to	show	analysts	how	to	think
about	this	sort	of	problem	systematically,	it	had	occurred	to	some	actual	military	leaders	and	influenced	their	strategies.	Thus	the	Spanish	conqueror	Cortez,	when	landing	in	Mexico	with	a	small	force	who	had	good	reason	to	fear	their	capacity	to	repel	attack	from	the	far	more	numerous	Aztecs,	removed	the	risk	that	his	troops	might	think	their	way
into	a	retreat	by	burning	the	ships	on	which	they	had	landed.	With	retreat	having	thus	been	rendered	physically	impossible,	the	Spanish	soldiers	had	no	better	course	of	action	than	to	stand	and	fight—and,	furthermore,	to	fight	with	as	much	determination	as	they	could	muster.	Better	still,	from	Cortez’s	point	of	view,	his	action	had	a	discouraging
effect	on	the	motivation	of	the	Aztecs.	He	took	care	to	burn	his	ships	very	visibly,	so	that	the	Aztecs	would	be	sure	to	see	what	he	had	done.	They	then	reasoned	as	follows:	Any	commander	who	could	be	so	confident	as	to	willfully	destroy	his	own	option	to	be	prudent	if	the	battle	went	badly	for	him	must	have	good	reasons	for	such	extreme	optimism.
It	cannot	be	wise	to	attack	an	opponent	who	has	a	good	reason	(whatever,	exactly,	it	might	be)	for	being	sure	that	he	can’t	lose.	The	Aztecs	therefore	retreated	into	the	surrounding	hills,	and	Cortez	had	the	easiest	possible	victory.	These	two	situations,	at	Delium	and	as	manipulated	by	Cortez,	have	a	common	and	interesting	underlying	logic.	Notice
that	the	soldiers	are	not	motivated	to	retreat	just,	or	even	mainly,	by	their	rational	assessment	of	the	dangers	of	battle	and	by	their	self-interest.	Rather,	they	discover	a	sound	reason	to	run	away	by	realizing	that	what	it	makes	sense	for	them	to	do	depends	on	what	it	will	make	sense	for	others	to	do,	and	that	all	of	the	others	can	notice	this	too.	Even	a
quite	brave	soldier	may	prefer	to	run	rather	than	heroically,	but	pointlessly,	die	trying	to	stem	the	oncoming	tide	all	by	himself.	Thus	we	could	imagine,	without	contradiction,	a	circumstance	in	which	an	army,	all	of	whose	members	are	brave,	flees	at	top	speed	before	the	enemy	makes	a	move.	If	the	soldiers	really	are	brave,	then	this	surely	isn’t	the
outcome	any	of	them	wanted;	each	would	have	preferred	that	all	stand	and	fight.	What	we	have	here,	then,	is	a	case	in	which	the	interaction	of	many	individually	rational	decision-making	processes—one	process	per	soldier—produces	an	outcome	intended	by	no	one.	(Many	armies	try	to	avoid	this	problem	just	as	Cortez	did.	Since	they	can’t	usually
make	retreat	physically	impossible,	they	make	it	economically	irrational:	for	most	of	history,	it	was	standard	military	practice	to	execute	deserters.	In	that	context	standing	and	fighting	is	each	soldier’s	individually	rational	course	of	action	after	all,	because	the	expected	cost	of	running	is	at	least	as	high	as	the	cost	of	staying.)	Another	classic	source
that	invites	this	sequence	of	reasoning	is	found	in	Shakespeare’s	Henry	V.	During	the	Battle	of	Agincourt	Henry	decided	to	slaughter	his	French	prisoners,	in	full	view	of	the	enemy	and	to	the	surprise	of	his	subordinates,	who	describe	the	action	as	being	out	of	moral	character.	The	reasons	Henry	gives	allude	to	non-strategic	considerations:	he	is
afraid	that	the	prisoners	may	free	themselves	and	threaten	his	position.	However,	a	game	theorist	might	have	furnished	him	with	supplementary	strategic	(and	similarly	prudential,	though	perhaps	not	moral)	justification.	His	own	troops	observe	that	the	prisoners	have	been	killed,	and	observe	that	the	enemy	has	observed	this.	Therefore,	they	know
what	fate	will	await	them	at	the	enemy’s	hand	if	they	don’t	win.	Metaphorically,	but	very	effectively,	their	boats	have	been	burnt.	The	slaughter	of	the	prisoners	plausibly	sent	a	signal	to	the	soldiers	of	both	sides,	thereby	changing	their	incentives	in	ways	that	favoured	English	prospects	for	victory.	These	examples	might	seem	to	be	relevant	only	for
those	who	find	themselves	in	situations	of	cut-throat	competition.	Perhaps,	one	might	think,	it	is	important	for	generals,	politicians,	mafiosi,	sports	coaches	and	others	whose	jobs	involve	strategic	manipulation	of	others,	but	the	philosopher	should	only	deplore	its	amorality.	Such	a	conclusion	would	be	highly	premature,	however.	The	study	of	the	logic
that	governs	the	interrelationships	amongst	incentives,	strategic	interactions	and	outcomes	has	been	fundamental	in	modern	political	philosophy,	since	centuries	before	anyone	had	an	explicit	name	for	this	sort	of	logic.	Philosophers	share	with	social	scientists	the	need	to	be	able	to	represent	and	systematically	model	not	only	what	they	think	people
normatively	ought	to	do,	but	what	they	often	actually	do	in	interactive	situations.	Hobbes’s	Leviathan	is	often	regarded	as	the	founding	work	in	modern	political	philosophy,	the	text	that	began	the	continuing	round	of	analyses	of	the	function	and	justification	of	the	state	and	its	restrictions	on	individual	liberties.	The	core	of	Hobbes’s	reasoning	can	be
given	straightforwardly	as	follows.	The	best	situation	for	all	people	is	one	in	which	each	is	free	to	do	as	she	pleases.	(One	may	or	may	not	agree	with	this	as	a	matter	of	psychology	or	ideology,	but	it	is	Hobbes’s	assumption.)	Often,	such	free	people	will	wish	to	cooperate	with	one	another	in	order	to	carry	out	projects	that	would	be	impossible	for	an
individual	acting	alone.	But	if	there	are	any	immoral	or	amoral	agents	around,	they	will	notice	that	their	interests	might	at	least	sometimes	be	best	served	by	getting	the	benefits	from	cooperation	and	not	returning	them.	Suppose,	for	example,	that	you	agree	to	help	me	build	my	house	in	return	for	my	promise	to	help	you	build	yours.	After	my	house	is
finished,	I	can	make	your	labour	free	to	me	simply	by	reneging	on	my	promise.	I	then	realize,	however,	that	if	this	leaves	you	with	no	house,	you	will	have	an	incentive	to	take	mine.	This	will	put	me	in	constant	fear	of	you,	and	force	me	to	spend	valuable	time	and	resources	guarding	myself	against	you.	I	can	best	minimize	these	costs	by	striking	first
and	killing	you	at	the	first	opportunity.	Of	course,	you	can	anticipate	all	of	this	reasoning	by	me,	and	so	have	good	reason	to	try	to	beat	me	to	the	punch.	Since	I	can	anticipate	this	reasoning	by	you,	my	original	fear	of	you	was	not	paranoid;	nor	was	yours	of	me.	In	fact,	neither	of	us	actually	needs	to	be	immoral	to	get	this	chain	of	mutual	reasoning
going;	we	need	only	think	that	there	is	some	possibility	that	the	other	might	try	to	cheat	on	bargains.	Once	a	small	wedge	of	doubt	enters	any	one	mind,	the	incentive	induced	by	fear	of	the	consequences	of	being	preempted—hit	before	hitting	first—quickly	becomes	overwhelming	on	both	sides.	If	either	of	us	has	any	resources	of	our	own	that	the
other	might	want,	this	murderous	logic	can	take	hold	long	before	we	are	so	silly	as	to	imagine	that	we	could	ever	actually	get	as	far	as	making	deals	to	help	one	another	build	houses	in	the	first	place.	Left	to	their	own	devices,	agents	who	are	at	least	sometimes	narrowly	self-interested	can	repeatedly	fail	to	derive	the	benefits	of	cooperation,	and
instead	be	trapped	in	a	state	of	‘war	of	all	against	all’,	in	Hobbes’s	words.	In	these	circumstances,	human	life,	as	he	vividly	and	famously	put	it,	will	be	“solitary,	poor,	nasty,	brutish	and	short.”	Hobbes’s	proposed	solution	to	this	problem	was	tyranny.	The	people	can	hire	an	agent—a	government—whose	job	is	to	punish	anyone	who	breaks	any	promise.
So	long	as	the	threatened	punishment	is	sufficiently	dire	then	the	cost	of	reneging	on	promises	will	exceed	the	cost	of	keeping	them.	The	logic	here	is	identical	to	that	used	by	an	army	when	it	threatens	to	shoot	deserters.	If	all	people	know	that	these	incentives	hold	for	most	others,	then	cooperation	will	not	only	be	possible,	but	can	be	the	expected
norm,	so	that	the	war	of	all	against	all	becomes	a	general	peace.	Hobbes	pushes	the	logic	of	this	argument	to	a	very	strong	conclusion,	arguing	that	it	implies	not	only	a	government	with	the	right	and	the	power	to	enforce	cooperation,	but	an	‘undivided’	government	in	which	the	arbitrary	will	of	a	single	ruler	must	impose	absolute	obligation	on	all.
Few	contemporary	political	theorists	think	that	the	particular	steps	by	which	Hobbes	reasons	his	way	to	this	conclusion	are	both	sound	and	valid.	Working	through	these	issues	here,	however,	would	carry	us	away	from	our	topic	into	details	of	contractarian	political	philosophy.	What	is	important	in	the	present	context	is	that	these	details,	as	they	are
in	fact	pursued	in	contemporary	debates,	involve	sophisticated	interpretation	of	the	issues	using	the	resources	of	modern	game	theory	(see,	for	example,	Hampton	1986).	Furthermore,	Hobbes’s	most	basic	point,	that	the	fundamental	justification	for	the	coercive	authority	and	practices	of	governments	is	peoples’	own	need	to	protect	themselves	from
what	game	theorists	call	‘social	dilemmas’,	is	accepted	by	many,	if	not	most,	political	theorists.	Notice	that	Hobbes	has	not	argued	that	tyranny	is	a	desirable	thing	in	itself.	The	structure	of	his	argument	is	that	the	logic	of	strategic	interaction	leaves	only	two	general	political	outcomes	possible:	tyranny	and	anarchy.	Sensible	agents	then	choose
tyranny	as	the	lesser	of	two	evils.	The	reasoning	of	the	Athenian	soldiers,	of	Cortez,	and	of	Hobbes’s	political	agents	has	a	common	logic,	one	derived	from	their	situations.	In	each	case,	the	aspect	of	the	environment	that	is	most	important	to	the	agents’	achievement	of	their	preferred	outcomes	is	the	set	of	expectations	and	possible	reactions	to	their
strategies	by	other	agents.	The	distinction	between	acting	parametrically	on	a	passive	world	and	acting	non-parametrically	on	a	world	that	tries	to	act	in	anticipation	of	these	actions	is	fundamental.	If	you	want	to	kick	a	rock	down	a	hill,	you	need	only	concern	yourself	with	the	rock’s	mass	relative	to	the	force	of	your	blow,	the	extent	to	which	it	is
bonded	with	its	supporting	surface,	the	slope	of	the	ground	on	the	other	side	of	the	rock,	and	the	expected	impact	of	the	collision	on	your	foot.	The	values	of	all	of	these	variables	are	independent	of	your	plans	and	intentions,	since	the	rock	has	no	interests	of	its	own	and	takes	no	actions	to	attempt	to	assist	or	thwart	you.	By	contrast,	if	you	wish	to	kick
a	person	down	the	hill,	then	unless	that	person	is	unconscious,	bound	or	otherwise	incapacitated,	you	will	likely	not	succeed	unless	you	can	disguise	your	plans	until	it’s	too	late	for	him	to	take	either	evasive	or	forestalling	action.	Furthermore,	his	probable	responses	should	be	expected	to	visit	costs	upon	you,	which	you	would	be	wise	to	consider.
Finally,	the	relative	probabilities	of	his	responses	will	depend	on	his	expectations	about	your	probable	responses	to	his	responses.	(Consider	the	difference	it	will	make	to	both	of	your	reasoning	if	one	or	both	of	you	are	armed,	or	one	of	you	is	bigger	than	the	other,	or	one	of	you	is	the	other’s	boss.)	The	logical	issues	associated	with	the	second	sort	of
situation	(kicking	the	person	as	opposed	to	the	rock)	are	typically	much	more	complicated,	as	a	simple	hypothetical	example	will	illustrate.	Suppose	first	that	you	wish	to	cross	a	river	that	is	spanned	by	three	bridges.	(Assume	that	swimming,	wading	or	boating	across	are	impossible.)	The	first	bridge	is	known	to	be	safe	and	free	of	obstacles;	if	you	try
to	cross	there,	you	will	succeed.	The	second	bridge	lies	beneath	a	cliff	from	which	large	rocks	sometimes	fall.	The	third	is	inhabited	by	deadly	cobras.	Now	suppose	you	wish	to	rank-order	the	three	bridges	with	respect	to	their	preferability	as	crossing-points.	Unless	you	get	positive	enjoyment	from	risking	your	life—which,	without	violating	any
economist’s	conception	of	rationality,	you	might	well	(a	complication	we’ll	take	up	later	in	this	article)—then	your	decision	problem	here	is	straightforward.	The	first	bridge	is	obviously	best,	since	it	is	safest.	To	rank-order	the	other	two	bridges,	you	require	information	about	their	relative	levels	of	danger.	If	you	can	study	the	frequency	of	rock-falls
and	the	movements	of	the	cobras	for	awhile,	you	might	be	able	to	calculate	that	the	probability	of	your	being	crushed	by	a	rock	at	the	second	bridge	is	10%	and	of	being	struck	by	a	cobra	at	the	third	bridge	is	20%.	Your	reasoning	here	is	strictly	parametric	because	neither	the	rocks	nor	the	cobras	are	trying	to	influence	your	actions,	by,	for	example,
concealing	their	typical	patterns	of	behaviour	because	they	know	you	are	studying	them.	It	is	obvious	what	you	should	do	here:	cross	at	the	safe	bridge.	Now	let	us	complicate	the	situation	a	bit.	Suppose	that	the	bridge	with	the	rocks	is	immediately	before	you,	while	the	safe	bridge	is	a	day’s	difficult	hike	upstream.	Your	decision-making	situation	here
is	slightly	more	complicated,	but	it	is	still	strictly	parametric.	You	have	to	decide	whether	the	cost	of	the	long	hike	is	worth	exchanging	for	the	penalty	of	a	10%	chance	of	being	hit	by	a	rock.	However,	this	is	all	you	must	decide,	and	your	probability	of	a	successful	crossing	is	entirely	up	to	you;	the	environment	is	not	interested	in	your	plans.	However,
if	we	now	complicate	the	situation	by	adding	a	non-parametric	element,	it	becomes	more	challenging.	Suppose	that	you	are	a	fugitive	of	some	sort,	and	waiting	on	the	other	side	of	the	river	with	a	gun	is	your	pursuer.	She	will	catch	and	shoot	you,	let	us	suppose,	only	if	she	waits	at	the	bridge	you	try	to	cross;	otherwise,	you	will	escape.	As	you	reason
through	your	choice	of	bridge,	it	occurs	to	you	that	she	is	over	there	trying	to	anticipate	your	reasoning.	It	will	seem	that,	surely,	choosing	the	safe	bridge	straight	away	would	be	a	mistake,	since	that	is	just	where	she	will	expect	you,	and	your	chances	of	death	rise	to	certainty.	So	perhaps	you	should	risk	the	rocks,	since	these	odds	are	much	better.
But	wait	…	if	you	can	reach	this	conclusion,	your	pursuer,	who	is	just	as	well-informed	as	you	are,	can	anticipate	that	you	will	reach	it,	and	will	be	waiting	for	you	if	you	evade	the	rocks.	So	perhaps	you	must	take	your	chances	with	the	cobras;	that	is	what	she	must	least	expect.	But,	then,	no	…	if	she	expects	that	you	will	expect	that	she	will	least
expect	this,	then	she	will	most	expect	it.	This	dilemma,	you	realize	with	dread,	is	general:	you	must	do	what	your	pursuer	least	expects;	but	whatever	you	most	expect	her	to	least	expect	is	automatically	what	she	will	most	expect.	You	appear	to	be	trapped	in	indecision.	But	what	should	console	you	somewhat	here	is	that,	on	the	other	side	of	the	river,
your	pursuer	is	trapped	in	exactly	the	same	quandary,	unable	to	decide	which	bridge	to	wait	at	because	as	soon	as	she	imagines	committing	to	one,	she	will	notice	that	if	she	can	find	a	best	reason	to	pick	a	bridge,	you	can	anticipate	that	same	reason	and	then	avoid	her.	We	know	from	experience	that,	in	situations	such	as	this,	people	do	not	usually
stand	and	dither	in	circles	forever.	As	we’ll	see	later,	there	is	a	unique	best	solution	available	to	each	player.	However,	until	the	1940s	neither	philosophers	nor	economists	knew	how	to	find	it	mathematically.	As	a	result,	economists	were	forced	to	treat	non-parametric	influences	as	if	they	were	complications	on	parametric	ones.	This	is	likely	to	strike
the	reader	as	odd,	since,	as	our	example	of	the	bridge-crossing	problem	was	meant	to	show,	non-parametric	features	are	often	fundamental	features	of	decision-making	problems.	Part	of	the	explanation	for	game	theory’s	relatively	late	entry	into	the	field	lies	in	the	problems	with	which	economists	had	historically	been	concerned.	Classical	economists,
such	as	Adam	Smith	and	David	Ricardo,	were	mainly	interested	in	the	question	of	how	agents	in	very	large	markets—whole	nations—could	interact	so	as	to	bring	about	maximum	monetary	wealth	for	themselves.	Smith’s	basic	insight,	that	efficiency	is	best	maximized	by	agents	first	differentiating	their	potential	contributions	and	then	freely	seeking
mutually	advantageous	bargains,	was	mathematically	verified	in	the	twentieth	century.	However,	the	demonstration	of	this	fact	applies	only	in	conditions	of	‘perfect	competition,’	that	is,	when	individuals	or	firms	face	no	costs	of	entry	or	exit	into	markets,	when	there	are	no	economies	of	scale,	and	when	no	agents’	actions	have	unintended	side-effects
on	other	agents’	well-being.	Economists	always	recognized	that	this	set	of	assumptions	is	purely	an	idealization	for	purposes	of	analysis,	not	a	possible	state	of	affairs	anyone	could	try	(or	should	want	to	try)	to	institutionally	establish.	But	until	the	mathematics	of	game	theory	matured	near	the	end	of	the	1970s,	economists	had	to	hope	that	the	more
closely	a	market	approximates	perfect	competition,	the	more	efficient	it	will	be.	No	such	hope,	however,	can	be	mathematically	or	logically	justified	in	general;	indeed,	as	a	strict	generalization	the	assumption	was	shown	to	be	false	as	far	back	as	the	1950s.	This	article	is	not	about	the	foundations	of	economics,	but	it	is	important	for	understanding	the
origins	and	scope	of	game	theory	to	know	that	perfectly	competitive	markets	have	built	into	them	a	feature	that	renders	them	susceptible	to	parametric	analysis.	Because	agents	face	no	entry	costs	to	markets,	they	will	open	shop	in	any	given	market	until	competition	drives	all	profits	to	zero.	This	implies	that	if	production	costs	are	fixed	and	demand
is	exogenous,	then	agents	have	no	options	about	how	much	to	produce	if	they	are	trying	to	maximize	the	differences	between	their	costs	and	their	revenues.	These	production	levels	can	be	determined	separately	for	each	agent,	so	none	need	pay	attention	to	what	the	others	are	doing;	each	agent	treats	her	counterparts	as	passive	features	of	the
environment.	The	other	kind	of	situation	to	which	classical	economic	analysis	can	be	applied	without	recourse	to	game	theory	is	that	of	a	monopoly	facing	many	customers.	Here,	as	long	as	no	customer	has	a	share	of	demand	large	enough	to	exert	strategic	leverage,	non-parametric	considerations	drop	out	and	the	firm’s	task	is	only	to	identify	the
combination	of	price	and	production	quantity	at	which	it	maximizes	profit.	However,	both	perfect	and	monopolistic	competition	are	very	special	and	unusual	market	arrangements.	Prior	to	the	advent	of	game	theory,	therefore,	economists	were	severely	limited	in	the	class	of	circumstances	to	which	they	could	straightforwardly	apply	their	models.
Philosophers	share	with	economists	a	professional	interest	in	the	conditions	and	techniques	for	the	maximization	of	welfare.	In	addition,	philosophers	have	a	special	concern	with	the	logical	justification	of	actions,	and	often	actions	are	justified	by	reference	to	their	expected	outcomes.	(One	tradition	in	moral	philosophy,	utilitarianism,	is	based	on	the
idea	that	all	morally	significant	actions	are	best	justified	in	this	way.)	Without	game	theory,	both	of	these	problems	resist	analysis	wherever	non-parametric	aspects	are	relevant.	We	will	demonstrate	this	shortly	by	reference	to	the	most	famous	(though	not	the	most	typical)	game,	the	so-called	Prisoner’s	Dilemma,	and	to	other,	more	typical,	games.	In
doing	this,	we	will	need	to	introduce,	define	and	illustrate	the	basic	elements	and	techniques	of	game	theory.	2.	Basic	Elements	and	Assumptions	of	Game	Theory	2.1	Utility	An	economic	agent	is,	by	definition,	an	entity	with	preferences.	Game	theorists,	like	economists	and	philosophers	who	study	practical	choice,	describe	these	by	means	of	an
abstract	concept	called	utility.	This	refers	to	some	ranking,	on	some	specified	scale,	of	the	subjective	welfare	or	change	in	subjective	welfare	that	an	agent	derives	from	an	event.	By	‘welfare’	we	refer	to	some	normative	index	of	relative	alignment	between	states	of	the	world	and	agents’	valuations	of	the	states	in	question,	justified	by	reference	to
some	background	framework.	For	example,	we	might	evaluate	the	relative	welfare	of	countries	(which	we	might	model	as	agents	for	some	purposes)	by	reference	to	their	per	capita	incomes,	and	we	might	evaluate	the	relative	welfare	of	an	animal,	in	the	context	of	predicting	and	explaining	its	behavioral	dispositions,	by	reference	to	its	expected
evolutionary	fitness.	In	the	case	of	people,	it	is	most	typical	in	economics	and	applications	of	game	theory	to	evaluate	their	relative	welfare	by	reference	to	their	own	implicit	or	explicit	judgments	of	it.	This	is	why	we	referred	above	to	subjective	welfare.	Consider	a	person	who	adores	the	taste	of	pickles	but	dislikes	onions.	She	might	be	said	to
associate	higher	utility	with	states	of	the	world	in	which,	all	else	being	equal,	she	consumes	more	pickles	and	fewer	onions	than	with	states	in	which	she	consumes	more	onions	and	fewer	pickles.	Examples	of	this	kind	suggest	that	‘utility’	denotes	a	measure	of	subjective	psychological	fulfillment,	and	this	is	indeed	how	the	concept	was	originally
interpreted	by	economists	and	philosophers	influenced	by	the	utilitarianism	of	Jeremy	Bentham.	However,	economists	in	the	early	20th	century	recognized	increasingly	clearly	that	their	main	interest	was	in	the	market	property	of	decreasing	marginal	demand,	regardless	of	whether	that	was	produced	by	satiated	individual	consumers	or	by	some
other	factors.	In	the	1930s	this	motivation	of	economists	fit	comfortably	with	the	dominance	of	behaviourism	and	radical	empiricism	in	psychology	and	in	the	philosophy	of	science	respectively.	Behaviourists	and	radical	empiricists	objected	to	the	theoretical	use	of	such	unobservable	entities	as	‘psychological	fulfillment	quotients.’	The	intellectual
climate	was	thus	receptive	to	the	efforts	of	the	economist	Paul	Samuelson	(1938)	to	redefine	utility	in	such	a	way	that	it	becomes	a	purely	technical	concept	rather	than	one	rooted	in	speculative	psychology.	Since	Samuelson’s	redefinition	became	standard	in	the	1950s,	when	we	say	that	an	agent	acts	so	as	to	maximize	her	utility,	we	mean	by	‘utility’
simply	whatever	it	is	that	the	agent’s	behavior	suggests	her	to	consistently	act	so	as	to	make	more	probable.	If	this	looks	circular	to	you,	it	should:	theorists	who	follow	Samuelson	intend	the	statement	‘agents	act	so	as	to	maximize	their	utility’	as	a	tautology,	where	an	‘(economic)	agent’	is	any	entity	that	can	be	accurately	described	as	acting	to
maximize	a	utility	function,	an	‘action’	is	any	utility-maximizing	selection	from	a	set	of	possible	alternatives,	and	a‘utility	function’	is	what	an	economic	agent	maximizes.	Like	other	tautologies	occurring	in	the	foundations	of	scientific	theories,	this	interlocking	(recursive)	system	of	definitions	is	useful	not	in	itself,	but	because	it	helps	to	fix	our	contexts
of	inquiry.	Though	the	behaviourism	of	the	1930s	has	since	been	displaced	by	widespread	interest	in	cognitive	processes,	many	theorists	continue	to	follow	Samuelson’s	way	of	understanding	utility	because	they	think	it	important	that	game	theory	apply	to	any	kind	of	agent—a	person,	a	bear,	a	bee,	a	firm	or	a	country—and	not	just	to	agents	with
human	minds.	When	such	theorists	say	that	agents	act	so	as	to	maximize	their	utility,	they	want	this	to	be	part	of	the	definition	of	what	it	is	to	be	an	agent,	not	an	empirical	claim	about	possible	inner	states	and	motivations.	Samuelson’s	conception	of	utility,	defined	by	way	of	Revealed	Preference	Theory	(RPT)	introduced	in	his	classic	paper
(Samuelson	(1938))	satisfies	this	demand.	Economists	and	others	who	interpret	game	theory	in	terms	of	RPT	should	not	think	of	game	theory	as	an	empirical	account	of	the	motivations	of	some	flesh-and-blood	actors	(such	as	actual	people).	Rather,	they	should	regard	game	theory	as	part	of	the	body	of	mathematics	that	is	used	to	model	those	entities
who	consistently	select	elements	from	mutually	exclusive	action	sets,	resulting	in	patterns	of	choices,	which,	allowing	for	some	stochasticity	and	noise,	can	be	statistically	modeled	as	maximization	of	utility	functions.	On	this	interpretation,	game	theory	could	not	be	refuted	by	any	empirical	observations,	since	it	is	not	an	empirical	theory	in	the	first
place.	Of	course,	observation	and	experience	could	lead	someone	favoring	this	interpretation	to	conclude	that	game	theory	is	of	little	help	in	describing	actual	human	behavior.	Some	other	theorists	understand	the	point	of	game	theory	differently.	They	view	game	theory	as	providing	an	explanatory	account	of	actual	human	strategic	reasoning
processes.	For	this	idea	to	be	applicable,	we	must	suppose	that	agents	at	least	sometimes	do	what	they	do	in	non-parametric	settings	because	game-theoretic	logic	recommends	certain	actions	as	the	‘rational’	ones.	Such	an	understanding	of	game	theory	incorporates	a	normative	aspect,	since	‘rationality’	is	taken	to	denote	a	property	that	an	agent
should	at	least	generally	want	to	have.	These	two	very	general	ways	of	thinking	about	the	possible	uses	of	game	theory	are	compatible	with	the	tautological	interpretation	of	utility	maximization.	The	philosophical	difference	is	not	idle	from	the	perspective	of	the	working	game	theorist,	however.	As	we	will	see	in	a	later	section,	those	who	hope	to	use
game	theory	to	explain	strategic	reasoning,	as	opposed	to	merely	strategic	behavior,	face	some	special	philosophical	and	practical	problems.	Since	game	theory	is	a	technology	for	formal	modeling,	we	must	have	a	device	for	thinking	of	utility	maximization	in	mathematical	terms.	Such	a	device	is	called	a	utility	function.	We	will	introduce	the	general
idea	of	a	utility	function	through	the	special	case	of	an	ordinal	utility	function.	(Later,	we	will	encounter	utility	functions	that	incorporate	more	information.)	The	utility-map	for	an	agent	is	called	a	‘function’	because	it	maps	ordered	preferences	onto	the	real	numbers.	Suppose	that	agent	\(x\)	prefers	bundle	\(a\)	to	bundle	\(b\)	and	bundle	\(b\)	to
bundle	\(c\).	We	then	map	these	onto	a	list	of	numbers,	where	the	function	maps	the	highest-ranked	bundle	onto	the	largest	number	in	the	list,	the	second-highest-ranked	bundle	onto	the	next-largest	number	in	the	list,	and	so	on,	thus:	\[\begin{align}	\text{bundle	}	a	&\gg	3	\\	\text{bundle	}	b	&\gg	2	\\	\text{bundle	}	c	&\gg	1	\end{align}\]	The	only
property	mapped	by	this	function	is	order.	The	magnitudes	of	the	numbers	are	irrelevant;	that	is,	it	must	not	be	inferred	that	\(x\)	gets	3	times	as	much	utility	from	bundle	\(a\)	as	she	gets	from	bundle	\(c\).	Thus	we	could	represent	exactly	the	same	utility	function	as	that	above	by	\[\begin{align}	\text{bundle	}	a	&\gg	7,326	\\	\text{bundle	}	b	&\gg
12.6	\\	\text{bundle	}	c	&\gg	-1,000,000	\end{align}\]	The	numbers	featuring	in	an	ordinal	utility	function	are	thus	not	measuring	any	quantity	of	anything.	A	utility-function	in	which	magnitudes	do	matter	is	called	‘cardinal’.	Whenever	someone	refers	to	a	utility	function	without	specifying	which	kind	is	meant,	you	should	assume	that	it’s	ordinal.
These	are	the	sorts	we’ll	need	for	the	first	set	of	games	we’ll	examine.	Later,	when	we	come	to	seeing	how	to	solve	games	that	involve	(ex	ante)	uncertainty—our	river-crossing	game	from	Part	1	above,	for	example—we’ll	need	to	build	cardinal	utility	functions.	The	technique	for	doing	this	was	given	by	von	Neumann	&	Morgenstern	(1944),	and	was	an
essential	aspect	of	their	invention	of	game	theory.	For	the	moment,	however,	we	will	need	only	ordinal	functions.	2.2	Games	and	Rationality	All	situations	in	which	at	least	one	agent	can	only	act	to	maximize	her	utility	through	anticipating	(either	consciously,	or	just	implicitly	in	his	behavior)	the	responses	to	her	actions	by	one	or	more	other	agents	is
called	a	game.	Agents	involved	in	games	are	referred	to	as	players.	If	all	agents	have	optimal	actions	regardless	of	what	the	others	do,	as	in	purely	parametric	situations	or	conditions	of	monopoly	or	perfect	competition	(see	Section	1	above)	we	can	model	this	without	appeal	to	game	theory;	otherwise,	we	need	it.	Game	theorists	assume	that	players
have	sets	of	capacities	that	are	typically	referred	to	in	the	literature	of	economics	as	comprising	‘rationality’.	Usually	this	is	formulated	by	simple	statements	such	as	‘it	is	assumed	that	players	are	rational’.	In	literature	critical	of	economics	in	general,	or	of	the	importation	of	game	theory	into	humanistic	disciplines,	this	kind	of	rhetoric	has
increasingly	become	a	magnet	for	attack.	There	is	a	dense	and	intricate	web	of	connections	associated	with	‘rationality’	in	the	Western	cultural	tradition,	and	historically	the	word	was	often	used	to	normatively	marginalize	characteristics	as	normal	and	important	as	emotion,	femininity	and	empathy.	Game	theorists’	use	of	the	concept	need	not,	and
generally	does	not,	implicate	such	ideology.	For	present	purposes	we	will	use	‘economic	rationality’	as	a	strictly	technical,	not	normative,	term	to	refer	to	a	narrow	and	specific	set	of	restrictions	on	preferences	that	are	shared	by	von	Neumann	and	Morgenstern’s	original	version	of	game	theory,	and	RPT.	Economists	use	a	second,	equally	important	(to
them)	concept	of	rationality	when	they	are	modeling	markets,	which	they	call	‘rational	expectations’.	In	this	phrase,	‘rationality’	refers	not	to	restrictions	on	preferences	but	to	non-restrictions	on	information	processing:	rational	expectations	are	idealized	beliefs	that	reflect	statistically	accurately	weighted	use	of	all	information	available	to	an	agent.
The	reader	should	note	that	these	two	uses	of	one	word	within	the	same	discipline	are	technically	unconnected.	Furthermore,	original	RPT	has	been	specified	over	the	years	by	several	different	sets	of	axioms	for	different	modeling	purposes.	Once	we	decide	to	treat	rationality	as	a	technical	concept,	each	time	we	adjust	the	axioms	we	effectively
modify	the	concept.	Consequently,	in	any	discussion	involving	economists	and	philosophers	together,	we	can	find	ourselves	in	a	situation	where	different	participants	use	the	same	word	to	refer	to	something	different.	For	readers	new	to	economics,	game	theory,	decision	theory	and	the	philosophy	of	action,	this	situation	naturally	presents	a	challenge.
In	this	article,	‘economic	rationality’	will	be	used	in	the	technical	sense	shared	within	game	theory,	microeconomics	and	formal	decision	theory,	as	follows.	An	economically	rational	player	is	one	who	can	(i)	assess	outcomes,	in	the	sense	of	rank-ordering	them	with	respect	to	their	contributions	to	her	welfare;	(ii)	calculate	paths	to	outcomes,	in	the
sense	of	recognizing	which	sequences	of	actions	are	probabilistically	associated	with	which	outcomes;	and	(iii)	select	actions	from	sets	of	alternatives	(which	we’ll	describe	as	‘choosing’	actions)	that	yield	her	most-preferred	outcomes,	given	the	actions	of	the	other	players.	We	might	summarize	the	intuition	behind	all	this	as	follows:	an	entity	is
usefully	modeled	as	an	economically	rational	agent	to	the	extent	that	it	has	alternatives,	and	chooses	from	amongst	these	in	a	way	that	is	motivated,	at	least	more	often	than	not,	by	what	seems	best	for	its	purposes.	For	readers	who	are	antecedently	familiar	with	the	work	of	the	philosopher	Daniel	Dennett,	we	could	equate	the	idea	of	an	economically
rational	agent	with	the	kind	of	entity	Dennett	characterizes	as	intentional,	and	then	say	that	we	can	usefully	predict	an	economically	rational	agent’s	behavior	from	‘the	intentional	stance’.	As	will	be	discussed	later,	the	intentional	stance	can	be	made	precise	for	application	to	quantitatively	specified	choices	by	drawing,	sometimes	with	special
modifications,	on	the	subjective	rationality	axioms	of	Savage	(1954)	(Harrison	and	Ross	forthcoming).	Economic	rationality	might	in	some	cases	be	satisfied	by	internal	computations	performed	by	an	agent,	and	she	might	or	might	not	be	aware	of	computing	or	having	computed	its	conditions	and	implications.	In	other	cases,	economic	rationality	might
simply	be	embodied	in	behavioral	dispositions	built	by	natural,	cultural	or	market	selection.	In	particular,	in	calling	an	action	‘chosen’	we	imply	no	necessary	deliberation,	conscious	or	otherwise.	We	mean	merely	that	the	action	was	taken	when	an	alternative	action	was	available,	in	some	sense	of	‘available’	normally	established	by	the	context	of	the
particular	analysis.	(‘Available’,	as	used	by	game	theorists	and	economists,	should	never	be	read	as	if	it	meant	merely	‘metaphysically’	or	‘logically’	available;	it	is	almost	always	pragmatic,	contextual	and	revisable	by	more	refined	modeling.)	Each	player	in	a	game	faces	a	choice	among	two	or	more	possible	strategies.	A	strategy	is	a	predetermined
‘program	of	play’	that	tells	her	what	actions	to	take	in	response	to	every	possible	strategy	other	players	might	use.	The	significance	of	the	italicized	phrase	here	will	become	clear	when	we	take	up	some	sample	games	below.	A	crucial	aspect	of	the	specification	of	a	game	involves	the	information	that	players	have	when	they	choose	strategies.	The
simplest	games	(from	the	perspective	of	logical	structure)	are	those	in	which	agents	have	perfect	information,	meaning	that	at	every	point	where	each	agent’s	strategy	tells	her	to	take	an	action,	she	knows	everything	that	has	happened	in	the	game	up	to	that	point.	A	board-game	of	sequential	moves	in	which	both	players	watch	all	the	action	(and
know	the	rules	in	common),	such	as	chess,	is	an	instance	of	such	a	game.	By	contrast,	the	example	of	the	bridge-crossing	game	from	Section	1	above	illustrates	a	game	of	imperfect	information,	since	the	fugitive	must	choose	a	bridge	to	cross	without	knowing	the	bridge	at	which	the	pursuer	has	chosen	to	wait,	and	the	pursuer	similarly	makes	her
decision	in	ignorance	of	the	choices	of	her	quarry.	Since	game	theory	is	about	economically	rational	action	given	the	strategically	significant	actions	of	others,	it	should	not	surprise	you	to	be	told	that	what	agents	in	games	believe,	or	fail	to	believe,	about	each	others’	actions	makes	a	considerable	difference	to	the	logic	of	our	analyses,	as	we	will	see.
2.3	Trees	and	Matrices	The	difference	between	games	of	perfect	and	of	imperfect	information	is	related	to	(though	certainly	not	identical	with!)	a	distinction	between	ways	of	representing	games	that	is	based	on	order	of	play.	Let	us	begin	by	distinguishing	between	sequential-move	and	simultaneous-move	games	in	terms	of	information.	It	is	natural,
as	a	first	approximation,	to	think	of	sequential-move	games	as	being	ones	in	which	players	choose	their	strategies	one	after	the	other,	and	of	simultaneous-move	games	as	ones	in	which	players	choose	their	strategies	at	the	same	time.	This	isn’t	quite	right,	however,	because	what	is	of	strategic	importance	is	not	the	temporal	order	of	events	per	se,
but	whether	and	when	players	know	about	other	players’	actions	relative	to	having	to	choose	their	own.	For	example,	if	two	competing	businesses	are	both	planning	marketing	campaigns,	one	might	commit	to	its	strategy	months	before	the	other	does;	but	if	neither	knows	what	the	other	has	committed	to	or	will	commit	to	when	they	make	their
decisions,	this	is	a	simultaneous-move	game.	Chess,	by	contrast,	is	normally	played	as	a	sequential-move	game:	you	see	what	your	opponent	has	done	before	choosing	your	own	next	action.	(Chess	can	be	turned	into	a	simultaneous-move	game	if	the	players	each	call	moves	on	a	common	board	while	isolated	from	one	another;	but	this	is	a	very
different	game	from	conventional	chess.)	It	was	said	above	that	the	distinction	between	sequential-move	and	simultaneous-move	games	is	not	identical	to	the	distinction	between	perfect-information	and	imperfect-information	games.	Explaining	why	this	is	so	is	a	good	way	of	establishing	full	understanding	of	both	sets	of	concepts.	As	simultaneous-
move	games	were	characterized	in	the	previous	paragraph,	it	must	be	true	that	all	simultaneous-move	games	are	games	of	imperfect	information.	However,	some	games	may	contain	mixes	of	sequential	and	simultaneous	moves.	For	example,	two	firms	might	commit	to	their	marketing	strategies	independently	and	in	secrecy	from	one	another,	but
thereafter	engage	in	pricing	competition	in	full	view	of	one	another.	If	the	optimal	marketing	strategies	were	partially	or	wholly	dependent	on	what	was	expected	to	happen	in	the	subsequent	pricing	game,	then	the	two	stages	would	need	to	be	analyzed	as	a	single	game,	in	which	a	stage	of	sequential	play	followed	a	stage	of	simultaneous	play.	Whole
games	that	involve	mixed	stages	of	this	sort	are	games	of	imperfect	information,	however	temporally	staged	they	might	be.	Games	of	perfect	information	(as	the	name	implies)	denote	cases	where	no	moves	are	simultaneous	(and	where	no	player	ever	forgets	what	has	gone	before).	As	previously	noted,	games	of	perfect	information	are	the	(logically)
simplest	sorts	of	games.	This	is	so	because	in	such	games	(as	long	as	the	games	are	finite,	that	is,	terminate	after	a	known	number	of	actions)	players	and	analysts	can	use	a	straightforward	procedure	for	predicting	outcomes.	A	player	in	such	a	game	chooses	her	first	action	by	considering	each	series	of	responses	and	counter-responses	that	will
result	from	each	action	open	to	her.	She	then	asks	herself	which	of	the	available	final	outcomes	brings	her	the	highest	utility,	and	chooses	the	action	that	starts	the	chain	leading	to	this	outcome.	This	process	is	called	backward	induction	(because	the	reasoning	works	backwards	from	eventual	outcomes	to	present	choice	problems).	There	will	be	much
more	to	be	said	about	backward	induction	and	its	properties	in	a	later	section	(when	we	come	to	discuss	equilibrium	and	equilibrium	selection).	For	now,	it	has	been	described	just	so	we	can	use	it	to	introduce	one	of	the	two	types	of	mathematical	objects	used	to	represent	games:	game	trees.	A	game	tree	is	an	example	of	what	mathematicians	call	a
directed	graph.	That	is,	it	is	a	set	of	connected	nodes	in	which	the	overall	graph	has	a	direction.	We	can	draw	trees	from	the	top	of	the	page	to	the	bottom,	or	from	left	to	right.	In	the	first	case,	nodes	at	the	top	of	the	page	are	interpreted	as	coming	earlier	in	the	sequence	of	actions.	In	the	case	of	a	tree	drawn	from	left	to	right,	leftward	nodes	are
prior	in	the	sequence	to	rightward	ones.	An	unlabelled	tree	has	a	structure	of	the	following	sort:	Figure	1	The	point	of	representing	games	using	trees	can	best	be	grasped	by	visualizing	the	use	of	them	in	supporting	backward-induction	reasoning.	Just	imagine	the	player	(or	analyst)	beginning	at	the	end	of	the	tree,	where	outcomes	are	displayed,	and
then	working	backwards	from	these,	looking	for	sets	of	strategies	that	describe	paths	leading	to	them.	Since	a	player’s	utility	function	indicates	which	outcomes	she	prefers	to	which,	we	also	know	which	paths	she	will	prefer.	Of	course,	not	all	paths	will	be	possible	because	the	other	player	has	a	role	in	selecting	paths	too,	and	won’t	take	actions	that
lead	to	less	preferred	outcomes	for	her.	We	will	present	some	examples	of	this	interactive	path	selection,	and	detailed	techniques	for	reasoning	through	these	examples,	after	we	have	described	a	situation	we	can	use	a	tree	to	model.	Trees	are	used	to	represent	sequential	games,	because	they	show	the	order	in	which	actions	are	taken	by	the	players.
However,	games	are	sometimes	represented	on	matrices	rather	than	trees.	This	is	the	second	type	of	mathematical	object	used	to	represent	games.	Matrices,	unlike	trees,	simply	show	the	outcomes,	represented	in	terms	of	the	players’	utility	functions,	for	every	possible	combination	of	strategies	the	players	might	use.	For	example,	it	makes	sense	to
display	the	river-crossing	game	from	Section	1	on	a	matrix,	since	in	that	game	both	the	fugitive	and	the	hunter	have	just	one	move	each,	and	each	chooses	their	move	in	ignorance	of	what	the	other	has	decided	to	do.	Here,	then,	is	part	of	the	matrix:	Hunter	Safe	Bridge	Rocky	Bridge	Cobra	Bridge	Fugitive	Safe	Bridge	0,1	1,0	1,0	Rocky	Bridge	?	0,1	?
Cobra	Bridge	?	?	0,1	Figure	2	The	fugitive’s	three	possible	strategies—cross	at	the	safe	bridge,	risk	the	rocks,	or	risk	the	cobras—form	the	rows	of	the	matrix.	Similarly,	the	hunter’s	three	possible	strategies—waiting	at	the	safe	bridge,	waiting	at	the	rocky	bridge	and	waiting	at	the	cobra	bridge—form	the	columns	of	the	matrix.	Each	cell	of	the	matrix
shows—or,	rather	would	show	if	our	matrix	was	complete—an	outcome	defined	in	terms	of	the	players’	payoffs.	A	player’s	payoff	is	simply	the	number	assigned	by	her	ordinal	utility	function	to	the	state	of	affairs	corresponding	to	the	outcome	in	question.	For	each	outcome,	Row’s	payoff	is	always	listed	first,	followed	by	Column’s.	Thus,	for	example,
the	upper	left-hand	corner	above	shows	that	when	the	fugitive	crosses	at	the	safe	bridge	and	the	hunter	is	waiting	there,	the	fugitive	gets	a	payoff	of	0	and	the	hunter	gets	a	payoff	of	1.	We	interpret	these	by	reference	to	the	two	players’	utility	functions,	which	in	this	game	are	very	simple.	If	the	fugitive	gets	safely	across	the	river	he	receives	a	payoff
of	1;	if	he	doesn’t	he	gets	0.	If	the	fugitive	doesn’t	make	it,	either	because	he’s	shot	by	the	hunter	or	hit	by	a	rock	or	bitten	by	a	cobra,	then	the	hunter	gets	a	payoff	of	1	and	the	fugitive	gets	a	payoff	of	0.	We’ll	briefly	explain	the	parts	of	the	matrix	that	have	been	filled	in,	and	then	say	why	we	can’t	yet	complete	the	rest.	Whenever	the	hunter	waits	at
the	bridge	chosen	by	the	fugitive,	the	fugitive	is	shot.	These	outcomes	all	deliver	the	payoff	vector	(0,	1).	You	can	find	them	descending	diagonally	across	the	matrix	above	from	the	upper	left-hand	corner.	Whenever	the	fugitive	chooses	the	safe	bridge	but	the	hunter	waits	at	another,	the	fugitive	gets	safely	across,	yielding	the	payoff	vector	(1,	0).
These	two	outcomes	are	shown	in	the	second	two	cells	of	the	top	row.	All	of	the	other	cells	are	marked,	for	now,	with	question	marks.	Why?	The	problem	here	is	that	if	the	fugitive	crosses	at	either	the	rocky	bridge	or	the	cobra	bridge,	he	introduces	parametric	factors	into	the	game.	In	these	cases,	he	takes	on	some	risk	of	getting	killed,	and	so
producing	the	payoff	vector	(0,	1),	that	is	independent	of	anything	the	hunter	does.	We	don’t	yet	have	enough	concepts	introduced	to	be	able	to	show	how	to	represent	these	outcomes	in	terms	of	utility	functions—but	by	the	time	we’re	finished	we	will,	and	this	will	provide	the	key	to	solving	our	puzzle	from	Section	1.	Matrix	games	are	referred	to	as
‘normal-form’	or	‘strategic-form’	games,	and	games	as	trees	are	referred	to	as	‘extensive-form’	games.	The	two	sorts	of	games	are	not	equivalent,	because	extensive-form	games	contain	information—about	sequences	of	play	and	players’	levels	of	information	about	the	game	structure—that	strategic-form	games	do	not.	In	general,	a	strategic-form
game	could	represent	any	one	of	several	extensive-form	games,	so	a	strategic-form	game	is	best	thought	of	as	being	a	set	of	extensive-form	games.	When	order	of	play	is	irrelevant	to	a	game’s	outcome,	then	you	should	study	its	strategic	form,	since	it’s	the	whole	set	you	want	to	know	about.	Where	order	of	play	is	relevant,	the	extensive	form	must	be
specified	or	your	conclusions	will	be	unreliable.	2.4	The	Prisoner’s	Dilemma	as	an	Example	of	Strategic-Form	vs.	Extensive-Form	Representation	The	distinctions	described	above	are	difficult	to	fully	grasp	if	all	one	has	to	go	on	are	abstract	descriptions.	They’re	best	illustrated	by	means	of	an	example.	For	this	purpose,	we’ll	use	the	most	famous	of	all
games:	the	Prisoner’s	Dilemma.	It	in	fact	gives	the	logic	of	the	problem	faced	by	Cortez’s	and	Henry	V’s	soldiers	(see	Section	1	above),	and	by	Hobbes’s	agents	before	they	empower	the	tyrant.	However,	for	reasons	which	will	become	clear	a	bit	later,	you	should	not	take	the	PD	as	a	typical	game;	it	isn’t.	We	use	it	as	an	extended	example	here	only
because	it’s	particularly	helpful	for	illustrating	the	relationship	between	strategic-form	and	extensive-form	games	(and	later,	for	illustrating	the	relationships	between	one-shot	and	repeated	games;	see	Section	4	below).	The	name	of	the	Prisoner’s	Dilemma	game	is	derived	from	the	following	situation	typically	used	to	exemplify	it.	Suppose	that	the
police	have	arrested	two	people	whom	they	know	have	committed	an	armed	robbery	together.	Unfortunately,	they	lack	enough	admissible	evidence	to	get	a	jury	to	convict.	They	do,	however,	have	enough	evidence	to	send	each	prisoner	away	for	two	years	for	theft	of	the	getaway	car.	The	chief	inspector	now	makes	the	following	offer	to	each	prisoner:
If	you	will	confess	to	the	robbery,	implicating	your	partner,	and	she	does	not	also	confess,	then	you’ll	go	free	and	she’ll	get	ten	years.	If	you	both	confess,	you’ll	each	get	5	years.	If	neither	of	you	confess,	then	you’ll	each	get	two	years	for	the	auto	theft.	Our	first	step	in	modeling	the	two	prisoners’	situation	as	a	game	is	to	represent	it	in	terms	of	utility
functions.	Following	the	usual	convention,	let	us	name	the	prisoners	‘Player	I’	and	‘Player	II’.	Both	Player	I’s	and	Player	II’s	ordinal	utility	functions	are	identical:	\[\begin{align}	\text{Go	free	}	&\gg	4	\\	2	\text{	years	}	&\gg	3	\\	5	\text{	years	}	&\gg	2	\\	10	\text{	years	}	&\gg	0	\end{align}\]	The	numbers	in	the	function	above	are	now	used	to	express
each	player’s	payoffs	in	the	various	outcomes	possible	in	the	situation.	We	can	represent	the	problem	faced	by	both	of	them	on	a	single	matrix	that	captures	the	way	in	which	their	separate	choices	interact;	this	is	the	strategic	form	of	their	game:	Player	II	Confess	Refuse	Player	I	Confess	2,2	4,0	Refuse	0,4	3,3	Figure	3	Each	cell	of	the	matrix	gives	the
payoffs	to	both	players	for	each	combination	of	actions.	Player	I’s	payoff	appears	as	the	first	number	of	each	pair,	Player	II’s	as	the	second.	So,	if	both	players	confess	then	they	each	get	a	payoff	of	2	(5	years	in	prison	each).	This	appears	in	the	upper-left	cell.	If	neither	of	them	confess,	they	each	get	a	payoff	of	3	(2	years	in	prison	each).	This	appears
as	the	lower-right	cell.	If	Player	I	confesses	and	Player	II	doesn’t	then	Player	I	gets	a	payoff	of	4	(going	free)	and	Player	II	gets	a	payoff	of	0	(ten	years	in	prison).	This	appears	in	the	upper-right	cell.	The	reverse	situation,	in	which	Player	II	confesses	and	Player	I	refuses,	appears	in	the	lower-left	cell.	Each	player	evaluates	his	or	her	two	possible
actions	here	by	comparing	their	personal	payoffs	in	each	column,	since	this	shows	you	which	of	their	actions	is	preferable,	just	to	themselves,	for	each	possible	action	by	their	partner.	So,	observe:	If	Player	II	confesses	then	Player	I	gets	a	payoff	of	2	by	confessing	and	a	payoff	of	0	by	refusing.	If	Player	II	refuses,	then	Player	I	gets	a	payoff	of	4	by
confessing	and	a	payoff	of	3	by	refusing.	Therefore,	Player	I	is	better	off	confessing	regardless	of	what	Player	II	does.	Player	II,	meanwhile,	evaluates	her	actions	by	comparing	her	payoffs	down	each	row,	and	she	comes	to	exactly	the	same	conclusion	that	Player	I	does.	Wherever	one	action	for	a	player	is	superior	to	her	other	actions	for	each	possible
action	by	the	opponent,	we	say	that	the	first	action	strictly	dominates	the	second	one.	In	the	PD,	then,	confessing	strictly	dominates	refusing	for	both	players.	Both	players	know	this	about	each	other,	thus	entirely	eliminating	any	temptation	to	depart	from	the	strictly	dominated	path.	Thus	both	players	will	confess,	and	both	will	go	to	prison	for	5
years.	The	players,	and	analysts,	can	predict	this	outcome	using	a	mechanical	procedure,	known	as	iterated	elimination	of	strictly	dominated	strategies.	Player	1	can	see	by	examining	the	matrix	that	his	payoffs	in	each	cell	of	the	top	row	are	higher	than	his	payoffs	in	each	corresponding	cell	of	the	bottom	row.	Therefore,	it	can	never	be	utility-
maximizing	for	him	to	play	his	bottom-row	strategy,	viz.,	refusing	to	confess,	regardless	of	what	Player	II	does.	Since	Player	I’s	bottom-row	strategy	will	never	be	played,	we	can	simply	delete	the	bottom	row	from	the	matrix.	Now	it	is	obvious	that	Player	II	will	not	refuse	to	confess,	since	her	payoff	from	confessing	in	the	two	cells	that	remain	is	higher
than	her	payoff	from	refusing.	So,	once	again,	we	can	delete	the	one-cell	column	on	the	right	from	the	game.	We	now	have	only	one	cell	remaining,	that	corresponding	to	the	outcome	brought	about	by	mutual	confession.	Since	the	reasoning	that	led	us	to	delete	all	other	possible	outcomes	depended	at	each	step	only	on	the	premise	that	both	players
are	economically	rational—that	is,	will	choose	strategies	that	lead	to	higher	payoffs	over	strategies	that	lead	to	lower	ones—there	are	strong	grounds	for	viewing	joint	confession	as	the	solution	to	the	game,	the	outcome	on	which	its	play	must	converge	to	the	extent	that	economic	rationality	correctly	models	the	behavior	of	the	players.	You	should
note	that	the	order	in	which	strictly	dominated	rows	and	columns	are	deleted	doesn’t	matter.	Had	we	begun	by	deleting	the	right-hand	column	and	then	deleted	the	bottom	row,	we	would	have	arrived	at	the	same	solution.	It’s	been	said	a	couple	of	times	that	the	PD	is	not	a	typical	game	in	many	respects.	One	of	these	respects	is	that	all	its	rows	and
columns	are	either	strictly	dominated	or	strictly	dominant.	In	any	strategic-form	game	where	this	is	true,	iterated	elimination	of	strictly	dominated	strategies	is	guaranteed	to	yield	a	unique	solution.	Later,	however,	we	will	see	that	for	many	games	this	condition	does	not	apply,	and	then	our	analytic	task	is	less	straightforward.	The	reader	will
probably	have	noticed	something	disturbing	about	the	outcome	of	the	PD.	Had	both	players	refused	to	confess,	they’d	have	arrived	at	the	lower-right	outcome	in	which	they	each	go	to	prison	for	only	2	years,	thereby	both	earning	higher	utility	than	either	receives	when	both	confess.	This	is	the	most	important	fact	about	the	PD,	and	its	significance	for
game	theory	is	quite	general.	We’ll	therefore	return	to	it	below	when	we	discuss	equilibrium	concepts	in	game	theory.	For	now,	however,	let	us	stay	with	our	use	of	this	particular	game	to	illustrate	the	difference	between	strategic	and	extensive	forms.	When	people	introduce	the	PD	into	popular	discussions,	one	will	often	hear	them	say	that	the	police
inspector	must	lock	his	prisoners	into	separate	rooms	so	that	they	can’t	communicate	with	one	another.	The	reasoning	behind	this	idea	seems	obvious:	if	the	players	could	communicate,	they’d	surely	see	that	they’re	each	better	off	if	both	refuse,	and	could	make	an	agreement	to	do	so,	no?	This,	one	presumes,	would	remove	each	player’s	conviction
that	he	or	she	must	confess	because	they’ll	otherwise	be	sold	up	the	river	by	their	partner.	In	fact,	however,	this	intuition	is	misleading	and	its	conclusion	is	false.	When	we	represent	the	PD	as	a	strategic-form	game,	we	implicitly	assume	that	the	prisoners	can’t	attempt	collusive	agreement	since	they	choose	their	actions	simultaneously.	In	this	case,
agreement	before	the	fact	can’t	help.	If	Player	I	is	convinced	that	his	partner	will	stick	to	the	bargain	then	he	can	seize	the	opportunity	to	go	scot-free	by	confessing.	Of	course,	he	realizes	that	the	same	temptation	will	occur	to	Player	II;	but	in	that	case	he	again	wants	to	make	sure	he	confesses,	as	this	is	his	only	means	of	avoiding	his	worst	outcome.
The	prisoners’	agreement	comes	to	naught	because	they	have	no	way	of	enforcing	it;	their	promises	to	each	other	constitute	what	game	theorists	call	‘cheap	talk’.	But	now	suppose	that	the	prisoners	do	not	move	simultaneously.	That	is,	suppose	that	Player	II	can	choose	after	observing	Player	I’s	action.	This	is	the	sort	of	situation	that	people	who
think	non-communication	important	must	have	in	mind.	Now	Player	II	will	be	able	to	see	that	Player	I	has	remained	steadfast	when	it	comes	to	her	choice,	and	she	need	not	be	concerned	about	being	suckered.	However,	this	doesn’t	change	anything,	a	point	that	is	best	made	by	re-representing	the	game	in	extensive	form.	This	gives	us	our	opportunity
to	introduce	game-trees	and	the	method	of	analysis	appropriate	to	them.	First,	however,	here	are	definitions	of	some	concepts	that	will	be	helpful	in	analyzing	game-trees:	Node:	a	point	at	which	a	player	chooses	an	action.	Initial	node:	the	point	at	which	the	first	action	in	the	game	occurs.	Terminal	node:	any	node	which,	if	reached,	ends	the	game.
Each	terminal	node	corresponds	to	an	outcome.	Subgame:	any	connected	set	of	nodes	and	branches	descending	uniquely	from	one	node.	Payoff:	an	ordinal	utility	number	assigned	to	a	player	at	an	outcome.	Outcome:	an	assignment	of	a	set	of	payoffs,	one	to	each	player	in	the	game.	Strategy:	a	program	instructing	a	player	which	action	to	take	at
every	node	in	the	tree	where	she	could	possibly	be	called	on	to	make	a	choice.	These	quick	definitions	may	not	mean	very	much	to	you	until	you	follow	them	being	put	to	use	in	our	analyses	of	trees	below.	It	will	probably	be	best	if	you	scroll	back	and	forth	between	them	and	the	examples	as	we	work	through	them.	By	the	time	you	understand	each
example,	you’ll	find	the	concepts	and	their	definitions	natural	and	intuitive.	To	make	this	exercise	maximally	instructive,	let’s	suppose	that	Players	I	and	II	have	studied	the	matrix	above	and,	seeing	that	they’re	both	better	off	in	the	outcome	represented	by	the	lower-right	cell,	have	formed	an	agreement	to	cooperate.	Player	I	is	to	commit	to	refusal
first,	after	which	Player	II	will	reciprocate	when	the	police	ask	for	her	choice.	We	will	refer	to	a	strategy	of	keeping	the	agreement	as	‘cooperation’,	and	will	denote	it	in	the	tree	below	with	‘C’.	We	will	refer	to	a	strategy	of	breaking	the	agreement	as	‘defection’,	and	will	denote	it	on	the	tree	below	with	‘D’.	Each	node	is	numbered	1,	2,	3,	…	,	from	top
to	bottom,	for	ease	of	reference	in	discussion.	Here,	then,	is	the	tree:	Figure	4	Look	first	at	each	of	the	terminal	nodes	(those	along	the	bottom).	These	represent	possible	outcomes.	Each	is	identified	with	an	assignment	of	payoffs,	just	as	in	the	strategic-form	game,	with	Player	I’s	payoff	appearing	first	in	each	set	and	Player	II’s	appearing	second.
Each	of	the	structures	descending	from	the	nodes	1,	2	and	3	respectively	is	a	subgame.	We	begin	our	backward-induction	analysis—using	a	technique	called	Zermelo’s	algorithm—with	the	sub-games	that	arise	last	in	the	sequence	of	play.	If	the	subgame	descending	from	node	3	is	played,	then	Player	II	will	face	a	choice	between	a	payoff	of	4	and	a
payoff	of	3.	(Consult	the	second	number,	representing	her	payoff,	in	each	set	at	a	terminal	node	descending	from	node	3.)	II	earns	her	higher	payoff	by	playing	D.	We	may	therefore	replace	the	entire	subgame	with	an	assignment	of	the	payoff	(0,4)	directly	to	node	3,	since	this	is	the	outcome	that	will	be	realized	if	the	game	reaches	that	node.	Now
consider	the	subgame	descending	from	node	2.	Here,	II	faces	a	choice	between	a	payoff	of	2	and	one	of	0.	She	obtains	her	higher	payoff,	2,	by	playing	D.	We	may	therefore	assign	the	payoff	(2,2)	directly	to	node	2.	Now	we	move	to	the	subgame	descending	from	node	1.	(This	subgame	is,	of	course,	identical	to	the	whole	game;	all	games	are	subgames
of	themselves.)	Player	I	now	faces	a	choice	between	outcomes	(2,2)	and	(0,4).	Consulting	the	first	numbers	in	each	of	these	sets,	he	sees	that	he	gets	his	higher	payoff—2—by	playing	D.	D	is,	of	course,	the	option	of	confessing.	So	Player	I	confesses,	and	then	Player	II	also	confesses,	yielding	the	same	outcome	as	in	the	strategic-form	representation.
What	has	happened	here	intuitively	is	that	Player	I	realizes	that	if	he	plays	C	(refuse	to	confess)	at	node	1,	then	Player	II	will	be	able	to	maximize	her	utility	by	suckering	him	and	playing	D.	(On	the	tree,	this	happens	at	node	3.)	This	leaves	Player	I	with	a	payoff	of	0	(ten	years	in	prison),	which	he	can	avoid	only	by	playing	D	to	begin	with.	He	therefore
defects	from	the	agreement.	We	have	thus	seen	that	in	the	case	of	the	Prisoner’s	Dilemma,	the	simultaneous	and	sequential	versions	yield	the	same	outcome.	This	will	often	not	be	true	of	other	games,	however.	Furthermore,	only	finite	extensive-form	(sequential)	games	of	perfect	information	can	be	solved	using	Zermelo’s	algorithm.	As	noted	earlier
in	this	section,	sometimes	we	must	represent	simultaneous	moves	within	games	that	are	otherwise	sequential.	(In	all	such	cases	the	game	as	a	whole	will	be	one	of	imperfect	information,	so	we	won’t	be	able	to	solve	it	using	Zermelo’s	algorithm.)	We	represent	such	games	using	the	device	of	information	sets.	Consider	the	following	tree:	Figure	5	The
oval	drawn	around	nodes	\(b\)	and	\(c\)	indicates	that	they	lie	within	a	common	information	set.	This	means	that	at	these	nodes	players	cannot	infer	back	up	the	path	from	whence	they	came;	Player	II	does	not	know,	in	choosing	her	strategy,	whether	she	is	at	\(b\)	or	\(c\).	(For	this	reason,	what	properly	bear	numbers	in	extensive-form	games	are
information	sets,	conceived	as	‘action	points’,	rather	than	nodes	themselves;	this	is	why	the	nodes	inside	the	oval	are	labelled	with	letters	rather	than	numbers.)	Put	another	way,	Player	II,	when	choosing,	does	not	know	what	Player	I	has	done	at	node	\(a\).	But	you	will	recall	from	earlier	in	this	section	that	this	is	just	what	defines	two	moves	as
simultaneous.	We	can	thus	see	that	the	method	of	representing	games	as	trees	is	entirely	general.	If	no	node	after	the	initial	node	is	alone	in	an	information	set	on	its	tree,	so	that	the	game	has	only	one	subgame	(itself),	then	the	whole	game	is	one	of	simultaneous	play.	If	at	least	one	node	shares	its	information	set	with	another,	while	others	are	alone,
the	game	involves	both	simultaneous	and	sequential	play,	and	so	is	still	a	game	of	imperfect	information.	Only	if	all	information	sets	are	inhabited	by	just	one	node	do	we	have	a	game	of	perfect	information.	2.5	Solution	Concepts	and	Equilibria	In	the	Prisoner’s	Dilemma,	the	outcome	we’ve	represented	as	(2,2),	indicating	mutual	defection,	was	said	to
be	the	‘solution’	to	the	game.	Following	the	general	practice	in	economics,	game	theorists	refer	to	the	solutions	of	games	as	equilibria.	Philosophically	minded	readers	will	want	to	pose	a	conceptual	question	right	here:	What	is	‘equilibrated’	about	some	game	outcomes	such	that	we	are	motivated	to	call	them	‘solutions’?	When	we	say	that	a	physical
system	is	in	equilibrium,	we	mean	that	it	is	in	a	stable	state,	one	in	which	all	the	causal	forces	internal	to	the	system	balance	each	other	out	and	so	leave	it	‘at	rest’	until	and	unless	it	is	perturbed	by	the	intervention	of	some	exogenous	(that	is,	‘external’)	force.	This	is	what	economists	have	traditionally	meant	in	talking	about	‘equilibria’;	they	read
economic	systems	as	being	networks	of	mutually	constraining	(often	causal)	relations,	just	like	physical	systems,	and	the	equilibria	of	such	systems	are	then	their	endogenously	stable	states.	(Note	that,	in	both	physical	and	economic	systems,	endogenously	stable	states	might	never	be	directly	observed	because	the	systems	in	question	are	never
isolated	from	exogenous	influences	that	move	and	destabilize	them.	In	both	classical	mechanics	and	in	economics,	equilibrium	concepts	are	tools	for	analysis,	not	predictions	of	what	we	expect	to	observe.)	As	we	will	see	in	later	sections,	it	is	possible	to	maintain	this	understanding	of	equilibria	in	the	case	of	game	theory.	However,	as	we	noted	in
Section	2.1,	some	people	interpret	game	theory	as	being	an	explanatory	theory	of	strategic	reasoning.	For	them,	a	solution	to	a	game	must	be	an	outcome	that	a	rational	agent	would	predict	using	the	mechanisms	of	rational	computation	alone.	Such	theorists	face	some	puzzles	about	solution	concepts	that	are	less	important	to	the	theorist	who	isn’t
trying	to	use	game	theory	to	under-write	a	general	analysis	of	rationality.	The	interest	of	philosophers	in	game	theory	is	more	often	motivated	by	this	ambition	than	is	that	of	the	economist	or	other	scientist.	It’s	useful	to	start	the	discussion	here	from	the	case	of	the	Prisoner’s	Dilemma	because	it’s	unusually	simple	from	the	perspective	of	the	puzzles
about	solution	concepts.	What	we	referred	to	as	its	‘solution’	is	the	unique	Nash	equilibrium	of	the	game.	(The	‘Nash’	here	refers	to	John	Nash,	the	Nobel	Laureate	mathematician	who	in	Nash	(1950)	did	most	to	extend	and	generalize	von	Neumann	&	Morgenstern’s	pioneering	work.)	Nash	equilibrium	(henceforth	‘NE’)	applies	(or	fails	to	apply,	as	the
case	may	be)	to	whole	sets	of	strategies,	one	for	each	player	in	a	game.	A	set	of	strategies	is	a	NE	just	in	case	no	player	could	improve	her	payoff,	given	the	strategies	of	all	other	players	in	the	game,	by	changing	her	strategy.	Notice	how	closely	this	idea	is	related	to	the	idea	of	strict	dominance:	no	strategy	could	be	a	NE	strategy	if	it	is	strictly
dominated.	Therefore,	if	iterative	elimination	of	strictly	dominated	strategies	takes	us	to	a	unique	outcome,	we	know	that	the	vector	of	strategies	that	leads	to	it	is	the	game’s	unique	NE.	Now,	almost	all	theorists	agree	that	avoidance	of	strictly	dominated	strategies	is	a	minimum	requirement	of	economic	rationality.	A	player	who	knowingly	chooses	a
strictly	dominated	strategy	directly	violates	clause	(iii)	of	the	definition	of	economic	agency	as	given	in	Section	2.2.	This	implies	that	if	a	game	has	an	outcome	that	is	a	unique	NE,	as	in	the	case	of	joint	confession	in	the	PD,	that	must	be	its	unique	solution.	This	is	one	of	the	most	important	respects	in	which	the	PD	is	an	‘easy’	(and	atypical)	game.	We
can	specify	one	class	of	games	in	which	NE	is	always	not	only	necessary	but	sufficient	as	a	solution	concept.	These	are	finite	perfect-information	games	that	are	also	zero-sum.	A	zero-sum	game	(in	the	case	of	a	game	involving	just	two	players)	is	one	in	which	one	player	can	only	be	made	better	off	by	making	the	other	player	worse	off.	(Tic-tac-toe	is	a
simple	example	of	such	a	game:	any	move	that	brings	one	player	closer	to	winning	brings	her	opponent	closer	to	losing,	and	vice-versa.)	We	can	determine	whether	a	game	is	zero-sum	by	examining	players’	utility	functions:	in	zero-sum	games	these	will	be	mirror-images	of	each	other,	with	one	player’s	highly	ranked	outcomes	being	low-ranked	for
the	other	and	vice-versa.	In	such	a	game,	if	I	am	playing	a	strategy	such	that,	given	your	strategy,	I	can’t	do	any	better,	and	if	you	are	also	playing	such	a	strategy,	then,	since	any	change	of	strategy	by	me	would	have	to	make	you	worse	off	and	vice-versa,	it	follows	that	our	game	can	have	no	solution	compatible	with	our	mutual	economic	rationality



other	than	its	unique	NE.	We	can	put	this	another	way:	in	a	zero-sum	game,	my	playing	a	strategy	that	maximizes	my	minimum	payoff	if	you	play	the	best	you	can,	and	your	simultaneously	doing	the	same	thing,	is	just	equivalent	to	our	both	playing	our	best	strategies,	so	this	pair	of	so-called	‘maximin’	procedures	is	guaranteed	to	find	the	unique
solution	to	the	game,	which	is	its	unique	NE.	(In	tic-tac-toe,	this	is	a	draw.	You	can’t	do	any	better	than	drawing,	and	neither	can	I,	if	both	of	us	are	trying	to	win	and	trying	not	to	lose.)	However,	most	games	do	not	have	this	property.	It	won’t	be	possible,	in	this	one	article,	to	enumerate	all	of	the	ways	in	which	games	can	be	problematic	from	the
perspective	of	their	possible	solutions.	(For	one	thing,	it	is	highly	unlikely	that	theorists	have	yet	discovered	all	of	the	possible	problems.)	However,	we	can	try	to	generalize	the	issues	a	bit.	First,	there	is	the	problem	that	in	most	non-zero-sum	games,	there	is	more	than	one	NE,	but	not	all	NE	look	equally	plausible	as	the	solutions	upon	which
strategically	alert	players	would	hit.	Consider	the	strategic-form	game	below	(taken	from	(Kreps	1990,	p.	403)	(and	which	we’ll	encounter	again	later	under	the	name	‘Hi-lo’):	II	\(t_1\)	\(t_2\)	I	\(s_1\)	10,10	0,0	\(s_2\)	0,0	1,1	Figure	6	This	game	has	two	NE:	\(s_1\)-\(t_1\)	and	\(s_2\)-\(t_2\).	(Note	that	no	rows	or	columns	are	strictly	dominated	here.	But	if
Player	I	is	playing	\(s_1\)	then	Player	II	can	do	no	better	than	\(t_1,\)	and	vice-versa;	and	similarly	for	the	\(s_2\)-\(t_2\)	pair.)	If	NE	is	our	only	solution	concept,	then	we	shall	be	forced	to	say	that	either	of	these	outcomes	is	equally	persuasive	as	a	solution.	However,	if	game	theory	is	regarded	as	an	explanatory	and/or	normative	theory	of	strategic
reasoning,	this	seems	to	be	leaving	something	out:	surely	sensible	players	with	perfect	information	would	converge	on	\(s_1\)-\(t_1\)?	(Note	that	this	is	not	like	the	situation	in	the	PD,	where	the	socially	superior	situation	is	unachievable	because	it	is	not	a	NE.	In	the	case	of	the	game	above,	both	players	have	every	reason	to	try	to	converge	on	the	NE
in	which	they	are	better	off.)	This	illustrates	the	fact	that	NE	is	a	relatively	(logically)	weak	solution	concept,	often	failing	to	predict	intuitively	sensible	solutions	because,	if	applied	alone,	it	refuses	to	allow	players	to	use	principles	of	equilibrium	selection	that,	if	not	demanded	by	economic	rationality—or	a	more	ambitious	philosopher’s	concept	of
rationality—at	least	seem	both	sensible	and	computationally	accessible.	Consider	another	example	from	Kreps	(1990),	p.	397:	II	\(t_1\)	\(t_2\)	I	\(s_1\)	10,0	5,2	\(s_2\)	10,1	2,0	Figure	7	Here,	no	strategy	strictly	dominates	another.	However,	Player	I’s	top	row,	\(s_1,\)	weakly	dominates	\(s_2,\)	since	I	does	at	least	as	well	using	\(s_1\)	as	\(s_2\)	for	any
reply	by	Player	II,	and	on	one	reply	by	II	(\(t_2\)),	I	does	better.	So	should	not	the	players	(and	the	analyst)	delete	the	weakly	dominated	row	\(s_2\)?	When	they	do	so,	column	\(t_1\)	is	then	strictly	dominated,	and	the	NE	\(s_1\)-\(t_2\)	is	selected	as	the	unique	solution.	However,	as	Kreps	goes	on	to	show	using	this	example,	the	idea	that	weakly
dominated	strategies	should	be	deleted	just	like	strict	ones	has	odd	consequences.	Suppose	we	change	the	payoffs	of	the	game	just	a	bit,	as	follows:	II	\(t_1\)	\(t_2\)	I	\(s_1\)	10,10	5,2	\(s_2\)	10,11	2,0	Figure	8	\(s_2\)	is	still	weakly	dominated	as	before;	but	of	our	two	NE,	\(s_2\)-\(t_1\)	is	now	the	most	attractive	for	both	players;	so	why	should	the	analyst
eliminate	its	possibility?	(Note	that	this	game,	again,	does	not	replicate	the	logic	of	the	PD.	There,	it	makes	sense	to	eliminate	the	most	attractive	outcome,	joint	refusal	to	confess,	because	both	players	have	incentives	to	unilaterally	deviate	from	it,	so	it	is	not	an	NE.	This	is	not	true	of	\(s_2\)-\(t_1\)	in	the	present	game.	You	should	be	starting	to	clearly
see	why	we	called	the	PD	game	‘atypical’.)	The	argument	for	eliminating	weakly	dominated	strategies	is	that	Player	1	may	be	nervous,	fearing	that	Player	II	is	not	completely	sure	to	be	economically	rational	(or	that	Player	II	fears	that	Player	I	isn’t	completely	reliably	economically	rational,	or	that	Player	II	fears	that	Player	I	fears	that	Player	II	isn’t
completely	reliably	economically	rational,	and	so	on	ad	infinitum)	and	so	might	play	\(t_2\)	with	some	positive	probability.	If	the	possibility	of	departures	from	reliable	economic	rationality	is	taken	seriously,	then	we	have	an	argument	for	eliminating	weakly	dominated	strategies:	Player	I	thereby	insures	herself	against	her	worst	outcome,	\(s_2\)-\(t_2\).
Of	course,	she	pays	a	cost	for	this	insurance,	reducing	her	expected	payoff	from	10	to	5.	On	the	other	hand,	we	might	imagine	that	the	players	could	communicate	before	playing	the	game	and	agree	to	coordinate	on	\(s_2\)-\(t_1\),	thereby	removing	some,	most	or	all	of	the	uncertainty	that	encourages	elimination	of	the	weakly	dominated	row	\(s_1\),
and	eliminating	\(s_1\)-\(t_2\)	as	a	viable	solution	instead!	Any	proposed	principle	for	solving	games	that	may	have	the	effect	of	eliminating	one	or	more	NE	from	consideration	as	solutions	is	referred	to	as	a	refinement	of	NE.	In	the	case	just	discussed,	elimination	of	weakly	dominated	strategies	is	one	possible	refinement,	since	it	refines	away	the	NE	\
(s_2\)-\(t_1\),	and	correlation	is	another,	since	it	refines	away	the	other	NE,	\(s_1\)-\(t_2\),	instead.	So	which	refinement	is	more	appropriate	as	a	solution	concept?	People	who	think	of	game	theory	as	an	explanatory	and/or	normative	theory	of	strategic	rationality	have	generated	a	substantial	literature	in	which	the	merits	and	drawbacks	of	a	large
number	of	refinements	are	debated.	In	principle,	there	seems	to	be	no	limit	on	the	number	of	refinements	that	could	be	considered,	since	there	may	also	be	no	limits	on	the	set	of	philosophical	intuitions	about	what	principles	a	rational	agent	might	or	might	not	see	fit	to	follow	or	to	fear	or	hope	that	other	players	are	following.	We	now	digress	briefly
to	make	a	point	about	terminology.	Theorists	who	adopt	the	revealed	preference	interpretation	of	the	utility	functions	in	game	theory	are	sometimes	referred	to	in	the	philosophy	of	economics	literature	as	‘behaviorists’.	This	reflects	the	fact	the	revealed	preference	approaches	equate	choices	with	economically	consistent	actions,	rather	than	being
intended	to	refer	to	mental	constructs.	Historically,	there	was	a	relationship	of	comfortable	alignment,	though	not	direct	theoretical	co-construction,	between	revealed	preference	in	economics	and	the	methodological	and	ontological	behaviorism	that	dominated	scientific	psychology	during	the	middle	decades	of	the	twentieth	century.	However,	this
usage	is	increasingly	likely	to	cause	confusion	due	to	the	more	recent	rise	of	behavioral	game	theory	(Camerer	2003).	This	program	of	research	aims	to	directly	incorporate	into	game-theoretic	models	generalizations,	derived	mainly	from	experiments	with	people,	about	ways	in	which	people	differ	from	purer	economic	agents	in	the	inferences	they
draw	from	information	(‘framing’).	Applications	also	typically	incorporate	special	assumptions	about	utility	functions,	also	derived	from	experiments.	For	example,	players	may	be	taken	to	be	willing	to	make	trade-offs	between	the	magnitudes	of	their	own	payoffs	and	inequalities	in	the	distribution	of	payoffs	among	the	players.	We	will	turn	to	some
discussion	of	behavioral	game	theory	in	Section	8.1,	Section	8.2	and	Section	8.3.	For	the	moment,	note	that	this	use	of	game	theory	crucially	rests	on	assumptions	about	psychological	representations	of	value	thought	to	be	common	among	people.	Thus	it	would	be	misleading	to	refer	to	behavioral	game	theory	as	‘behaviorist’.	But	then	it	just	would
invite	confusion	to	continue	referring	to	conventional	economic	game	theory	that	relies	on	revealed	preference	as	‘behaviorist’	game	theory.	We	will	therefore	refer	to	it	as	‘non-psychological’	game	theory.	We	mean	by	this	the	kind	of	game	theory	used	by	most	economists	who	are	not	revisionist	behavioral	economists.	(We	use	the	qualifier
‘revisionist’	to	reflect	the	further	complication	that	increasingly	many	economists	who	apply	revealed	preference	concepts	conduct	experiments,	and	some	of	them	call	themselves	‘behavioral	economists’!	For	a	proposed	new	set	of	conventions	to	reduce	this	labeling	chaos,	see	Ross	(2014),	pp.	200–201.)	These	‘establishment’	economists	treat	game
theory	as	the	abstract	mathematics	of	strategic	interaction,	rather	than	as	an	attempt	to	directly	characterize	special	psychological	dispositions	that	might	be	typical	in	humans.	Non-psychological	game	theorists	tend	to	take	a	dim	view	of	much	of	the	refinement	program.	This	is	for	the	obvious	reason	that	it	relies	on	intuitions	about	which	kinds	of
inferences	people	should	find	sensible.	Like	most	scientists,	non-psychological	game	theorists	are	suspicious	of	the	force	and	basis	of	philosophical	assumptions	as	guides	to	empirical	and	mathematical	modeling.	Behavioral	game	theory,	by	contrast,	can	be	understood	as	a	refinement	of	game	theory,	though	not	necessarily	of	its	solution	concepts,	in
a	different	sense.	It	restricts	the	theory’s	underlying	axioms	for	application	to	a	special	class	of	agents,	individual,	psychologically	typical	humans.	It	motivates	this	restriction	by	reference	to	inferences,	along	with	preferences,	that	people	do	find	natural,	regardless	of	whether	these	seem	rational,	which	they	frequently	do	not.	Non-psychological	and
behavioral	game	theory	have	in	common	that	neither	is	intended	to	be	normative—though	both	are	often	used	to	try	to	describe	norms	that	prevail	in	groups	of	players,	as	well	to	explain	why	norms	might	persist	in	groups	of	players	even	when	they	appear	to	be	less	than	fully	rational	to	philosophical	intuitions.	Both	see	the	job	of	applied	game	theory
as	being	to	predict	outcomes	of	empirical	games	given	some	distribution	of	strategic	dispositions,	and	some	distribution	of	expectations	about	the	strategic	dispositions	of	others,	that	are	shaped	by	dynamics	in	players’	environments,	including	institutional	pressures	and	structures	and	evolutionary	selection.	Let	us	therefore	group	non-psychological
and	behavioral	game	theorists	together,	just	for	purposes	of	contrast	with	normative	game	theorists,	as	descriptive	game	theorists.	Descriptive	game	theorists	are	often	inclined	to	doubt	that	the	goal	of	seeking	a	general	theory	of	rationality	makes	sense	as	a	project.	Institutions	and	evolutionary	processes	build	many	environments,	and	what	counts
as	rational	procedure	in	one	environment	may	not	be	favoured	in	another.	On	the	other	hand,	an	entity	that	does	not	at	least	stochastically	(i.e.,	perhaps	noisily	but	statistically	more	often	than	not)	satisfy	the	minimal	restrictions	of	economic	rationality	cannot,	except	by	accident,	be	accurately	characterized	as	aiming	to	maximize	a	utility	function.	To
such	entities	game	theory	has	no	application	in	the	first	place.	This	does	not	imply	that	non-psychological	game	theorists	abjure	all	principled	ways	of	restricting	sets	of	NE	to	subsets	based	on	their	relative	probabilities	of	arising.	In	particular,	non-psychological	game	theorists	tend	to	be	sympathetic	to	approaches	that	shift	emphasis	from	rationality
onto	considerations	of	the	informational	dynamics	of	games.	We	should	perhaps	not	be	surprised	that	NE	analysis	alone	often	fails	to	tell	us	much	of	applied,	empirical	interest	about	strategic-form	games	(e.g.,	Figure	6	above),	in	which	informational	structure	is	suppressed.	Equilibrium	selection	issues	are	often	more	fruitfully	addressed	in	the
context	of	extensive-form	games.	2.6	Subgame	Perfection	In	order	to	deepen	our	understanding	of	extensive-form	games,	we	need	an	example	with	more	interesting	structure	than	the	PD	offers.	Consider	the	game	described	by	this	tree:	Figure	9	This	game	is	not	intended	to	fit	any	preconceived	situation;	it	is	simply	a	mathematical	object	in	search	of
an	application.	(L	and	R	here	just	denote	‘left’	and	‘right’	respectively.)	Now	consider	the	strategic	form	of	this	game:	II	LL	LR	RL	RR	LL	3,3	3,3	0,5	0,5	LR	3,3	3,3	0,5	0,5	RL	−1,0	4,5	−1,0	4,5	RR	−1,0	5,−1	−1,0	5,−1	Figure	10	If	you	are	confused	by	this,	remember	that	a	strategy	must	tell	a	player	what	to	do	at	every	information	set	where	that
player	has	an	action.	Since	each	player	chooses	between	two	actions	at	each	of	two	information	sets	here,	each	player	has	four	strategies	in	total.	The	first	letter	in	each	strategy	designation	tells	each	player	what	to	do	if	he	or	she	reaches	their	first	information	set,	the	second	what	to	do	if	their	second	information	set	is	reached.	I.e.,	LR	for	Player	II
tells	II	to	play	L	if	information	set	5	is	reached	and	R	if	information	set	6	is	reached.	If	you	examine	the	matrix	in	Figure	10,	you	will	discover	that	(LL,	RL)	is	among	the	NE.	This	is	a	bit	puzzling,	since	if	Player	I	reaches	her	second	information	set	(7)	in	the	extensive-form	game,	she	would	hardly	wish	to	play	L	there;	she	earns	a	higher	payoff	by
playing	R	at	node	7.	Mere	NE	analysis	doesn’t	notice	this	because	NE	is	insensitive	to	what	happens	off	the	path	of	play.	Player	I,	in	choosing	L	at	node	4,	ensures	that	node	7	will	not	be	reached;	this	is	what	is	meant	by	saying	that	it	is	‘off	the	path	of	play’.	In	analyzing	extensive-form	games,	however,	we	should	care	what	happens	off	the	path	of	play,
because	consideration	of	this	is	crucial	to	what	happens	on	the	path.	For	example,	it	is	the	fact	that	Player	I	would	play	R	if	node	7	were	reached	that	would	cause	Player	II	to	play	L	if	node	6	were	reached,	and	this	is	why	Player	I	won’t	choose	R	at	node	4.	We	are	throwing	away	information	relevant	to	game	solutions	if	we	ignore	off-path	outcomes,	as
mere	NE	analysis	does.	Notice	that	this	reason	for	doubting	that	NE	is	a	wholly	satisfactory	equilibrium	concept	in	itself	has	nothing	to	do	with	intuitions	about	rationality,	as	in	the	case	of	the	refinement	concepts	discussed	in	Section	2.5.	Now	apply	Zermelo’s	algorithm	to	the	extensive	form	of	our	current	example.	Begin,	again,	with	the	last
subgame,	that	descending	from	node	7.	This	is	Player	I’s	move,	and	she	would	choose	R	because	she	prefers	her	payoff	of	5	to	the	payoff	of	4	she	gets	by	playing	L.	Therefore,	we	assign	the	payoff	\((5,	-1)\)	to	node	7.	Thus	at	node	6	II	faces	a	choice	between	\((-1,	0)\)	and	\((5,	-1)\).	He	chooses	L.	At	node	5	II	chooses	R.	At	node	4	I	is	thus	choosing
between	(0,	5)	and	\((-1,	0)\),	and	so	plays	L.	Note	that,	as	in	the	PD,	an	outcome	appears	at	a	terminal	node—(4,	5)	from	node	7—that	is	Pareto	superior	to	the	NE.	Again,	however,	the	dynamics	of	the	game	prevent	it	from	being	reached.	The	fact	that	Zermelo’s	algorithm	picks	out	the	strategy	vector	(LR,	RL)	as	the	unique	solution	to	the	game	shows
that	it’s	yielding	something	other	than	just	an	NE.	In	fact,	it	is	generating	the	game’s	subgame	perfect	equilibrium	(SPE).	It	gives	an	outcome	that	yields	a	NE	not	just	in	the	whole	game	but	in	every	subgame	as	well.	This	is	a	persuasive	solution	concept	because,	again	unlike	the	refinements	of	Section	2.5,	it	does	not	demand	‘extra’	rationality	of
agents	in	the	sense	of	expecting	them	to	have	and	use	philosophical	intuitions	about	‘what	makes	sense’.	It	does,	however,	assume	that	players	not	only	know	everything	strategically	relevant	to	their	situation	but	also	use	all	of	that	information.	In	arguments	about	the	foundations	of	economics,	this	is	often	referred	to	as	an	aspect	of	rationality,	as	in
the	phrase	‘rational	expectations’.	But,	as	noted	earlier,	it	is	best	to	be	careful	not	to	confuse	the	general	normative	idea	of	rationality	with	computational	power	and	the	possession	of	budgets,	in	time	and	energy,	to	make	the	most	of	it.	An	agent	playing	a	subgame	perfect	strategy	simply	chooses,	at	every	node	she	reaches,	the	path	that	brings	her	the
highest	payoff	in	the	subgame	emanating	from	that	node.	SPE	predicts	a	game’s	outcome	just	in	case,	in	solving	the	game,	the	players	foresee	that	they	will	all	do	that.	A	main	value	of	analyzing	extensive-form	games	for	SPE	is	that	this	can	help	us	to	locate	structural	barriers	to	social	optimization.	In	our	current	example,	Player	I	would	be	better	off,
and	Player	II	no	worse	off,	at	the	left-hand	node	emanating	from	node	7	than	at	the	SPE	outcome.	But	Player	I’s	economic	rationality,	and	Player	II’s	awareness	of	this,	blocks	the	socially	efficient	outcome.	If	our	players	wish	to	bring	about	the	more	socially	efficient	outcome	(4,	5)	here,	they	must	do	so	by	redesigning	their	institutions	so	as	to	change
the	structure	of	the	game.	The	enterprise	of	changing	institutional	and	informational	structures	so	as	to	make	efficient	outcomes	more	likely	in	the	games	that	agents	(that	is,	people,	corporations,	governments,	etc.)	actually	play	is	known	as	mechanism	design,	and	is	one	of	the	leading	areas	of	application	of	game	theory.	The	main	techniques	are
reviewed	in	Hurwicz	and	Reiter	(2006),	the	first	author	of	which	was	awarded	the	Nobel	Prize	for	his	pioneering	work	in	the	area.	2.7	On	Interpreting	Payoffs:	Morality	and	Efficiency	in	Games	Many	readers,	but	especially	philosophers,	might	wonder	why,	in	the	case	of	the	example	taken	up	in	the	previous	section,	mechanism	design	should	be
necessary	unless	players	are	morbidly	selfish	sociopaths.	Surely,	the	players	might	be	able	to	just	see	that	outcome	(4,	5)	is	socially	and	morally	superior;	and	since	the	whole	problem	also	takes	for	granted	that	they	can	also	see	the	path	of	actions	that	leads	to	this	efficient	outcome,	who	is	the	game	theorist	to	announce	that,	unless	their	game	is
changed,	it’s	unattainable?	This	objection,	which	applies	the	distinctive	idea	of	rationality	urged	by	Immanuel	Kant,	indicates	the	leading	way	in	which	many	philosophers	mean	more	by	‘rationality’	than	descriptive	game	theorists	do.	This	theme	is	explored	with	great	liveliness	and	polemical	force	in	Binmore	(1994,	1998).	This	weighty	philosophical
controversy	about	rationality	is	sometimes	confused	by	misinterpretation	of	the	meaning	of	‘utility’	in	non-psychological	game	theory.	To	root	out	this	mistake,	consider	the	Prisoner’s	Dilemma	again.	We	have	seen	that	in	the	unique	NE	of	the	PD,	both	players	get	less	utility	than	they	could	have	through	mutual	cooperation.	This	may	strike	you,	even	if
you	are	not	a	Kantian	(as	it	has	struck	many	commentators)	as	perverse.	Surely,	you	may	think,	it	simply	results	from	a	combination	of	selfishness	and	paranoia	on	the	part	of	the	players.	To	begin	with	they	have	no	regard	for	the	social	good,	and	then	they	shoot	themselves	in	the	feet	by	being	too	untrustworthy	to	respect	agreements.	This	way	of
thinking	is	very	common	in	popular	discussions,	and	badly	mixed	up.	To	dispel	its	influence,	let	us	first	introduce	some	terminology	for	talking	about	outcomes.	Welfare	economists	typically	measure	social	good	in	terms	of	Pareto	efficiency.	A	distribution	of	utility	\(\beta\)	is	said	to	be	Pareto	superior	over	another	distribution	\(\delta\)	just	in	case	from
state	\(\delta\)	there	is	a	possible	redistribution	of	utility	to	\(\beta\)	such	that	at	least	one	player	is	better	off	in	\(\beta\)	than	in	\(\delta\)	and	no	player	is	worse	off.	Failure	to	move	from	a	Pareto-inferior	to	a	Pareto-superior	distribution	is	inefficient	because	the	existence	of	\(\beta\)	as	a	possibility,	at	least	in	principle,	shows	that	in	\(\delta\)	some
utility	is	being	wasted.	Now,	the	outcome	(3,3)	that	represents	mutual	cooperation	in	our	model	of	the	PD	is	clearly	Pareto	superior	to	mutual	defection;	at	(3,3)	both	players	are	better	off	than	at	(2,2).	So	it	is	true	that	PDs	lead	to	inefficient	outcomes.	This	was	true	of	our	example	in	Section	2.6	as	well.	However,	inefficiency	should	not	be	associated
with	immorality.	A	utility	function	for	a	player	is	supposed	to	represent	everything	that	player	cares	about,	which	may	be	anything	at	all.	As	we	have	described	the	situation	of	our	prisoners	they	do	indeed	care	only	about	their	own	relative	prison	sentences,	but	there	is	nothing	essential	in	this.	What	makes	a	game	an	instance	of	the	PD	is	strictly	and
only	its	payoff	structure.	Thus	we	could	have	two	Mother	Theresa	types	here,	both	of	whom	care	little	for	themselves	and	wish	only	to	feed	starving	children.	But	suppose	the	original	Mother	Theresa	wishes	to	feed	the	children	of	Calcutta	while	Mother	Juanita	wishes	to	feed	the	children	of	Bogota.	And	suppose	that	the	international	aid	agency	will
maximize	its	donation	if	the	two	saints	nominate	the	same	city,	will	give	the	second-highest	amount	if	they	nominate	each	others’	cities,	and	the	lowest	amount	if	they	each	nominate	their	own	city.	Our	saints	are	in	a	PD	here,	though	hardly	selfish	or	unconcerned	with	the	social	good.	To	return	to	our	prisoners,	suppose	that,	contrary	to	our
assumptions,	they	do	value	each	other’s	well-being	as	well	as	their	own.	In	that	case,	this	must	be	reflected	in	their	utility	functions,	and	hence	in	their	payoffs.	If	their	payoff	structures	are	changed	so	that,	for	example,	they	would	feel	so	badly	about	contributing	to	inefficiency	that	they’d	rather	spend	extra	years	in	prison	than	endure	the	shame,
then	they	will	no	longer	be	in	a	PD.	But	all	this	shows	is	that	not	every	possible	situation	is	a	PD;	it	does	not	show	that	selfishness	is	among	the	assumptions	of	game	theory.	It	is	the	logic	of	the	prisoners’	situation,	not	their	psychology,	that	traps	them	in	the	inefficient	outcome,	and	if	that	really	is	their	situation	then	they	are	stuck	in	it	(barring
further	complications	to	be	discussed	below).	Agents	who	wish	to	avoid	inefficient	outcomes	are	best	advised	to	prevent	certain	games	from	arising;	the	defender	of	the	possibility	of	Kantian	rationality	is	really	proposing	that	they	try	to	dig	themselves	out	of	such	games	by	turning	themselves	into	different	agents.	In	general,	then,	a	game	is	partly
defined	by	the	payoffs	assigned	to	the	players.	In	any	application,	such	assignments	should	be	based	on	sound	empirical	evidence.	If	a	proposed	solution	involves	tacitly	changing	these	payoffs,	then	this	‘solution’	is	in	fact	a	disguised	way	of	changing	the	subject	and	evading	the	implications	of	best	modeling	practice.	2.8	Trembling	Hands	and	Quantal
Response	Equilibria	Our	last	point	above	opens	the	way	to	a	philosophical	puzzle,	one	of	several	that	still	preoccupy	those	concerned	with	the	logical	foundations	of	game	theory.	It	can	be	raised	with	respect	to	any	number	of	examples,	but	we	will	borrow	an	elegant	one	from	C.	Bicchieri	(1993).	Consider	the	following	game:	Figure	11	The	NE
outcome	here	is	at	the	single	leftmost	node	descending	from	node	8.	To	see	this,	backward	induct	again.	At	node	10,	I	would	play	L	for	a	payoff	of	3,	giving	II	a	payoff	of	1.	II	can	do	better	than	this	by	playing	L	at	node	9,	giving	I	a	payoff	of	0.	I	can	do	better	than	this	by	playing	L	at	node	8;	so	that	is	what	I	does,	and	the	game	terminates	without	II
getting	to	move.	A	puzzle	is	then	raised	by	Bicchieri	(along	with	other	authors,	including	Binmore	(1987)	and	Pettit	and	Sugden	(1989))	by	way	of	the	following	reasoning.	Player	I	plays	L	at	node	8	because	she	knows	that	Player	II	is	economically	rational,	and	so	would,	at	node	9,	play	L	because	Player	II	knows	that	Player	I	is	economically	rational
and	so	would,	at	node	10,	play	L.	But	now	we	have	the	following	paradox:	Player	I	must	suppose	that	Player	II,	at	node	9,	would	predict	Player	I’s	economically	rational	play	at	node	10	despite	having	arrived	at	a	node	(9)	that	could	only	be	reached	if	Player	I	is	not	economically	rational!	If	Player	I	is	not	economically	rational	then	Player	II	is	not
justified	in	predicting	that	Player	I	will	not	play	R	at	node	10,	in	which	case	it	is	not	clear	that	Player	II	shouldn’t	play	R	at	9;	and	if	Player	II	plays	R	at	9,	then	Player	I	is	guaranteed	of	a	better	payoff	then	she	gets	if	she	plays	L	at	node	8.	Both	players	use	backward	induction	to	solve	the	game;	backward	induction	requires	that	Player	I	know	that
Player	II	knows	that	Player	I	is	economically	rational;	but	Player	II	can	solve	the	game	only	by	using	a	backward	induction	argument	that	takes	as	a	premise	the	failure	of	Player	I	to	behave	in	accordance	with	economic	rationality.	This	is	the	paradox	of	backward	induction.	A	standard	way	around	this	paradox	in	the	literature	is	to	invoke	the	so-called
‘trembling	hand’	due	to	Selten	(1975).	The	idea	here	is	that	a	decision	and	its	consequent	act	may	‘come	apart’	with	some	nonzero	probability,	however	small.	That	is,	a	player	might	intend	to	take	an	action	but	then	slip	up	in	the	execution	and	send	the	game	down	some	other	path	instead.	If	there	is	even	a	remote	possibility	that	a	player	may	make	a
mistake—that	her	‘hand	may	tremble’—then	no	contradiction	is	introduced	by	a	player’s	using	a	backward	induction	argument	that	requires	the	hypothetical	assumption	that	another	player	has	taken	a	path	that	an	economically	rational	player	could	not	choose.	In	our	example,	Player	II	could	reason	about	what	to	do	at	node	9	conditional	on	the
assumption	that	Player	I	chose	L	at	node	8	but	then	slipped.	Gintis	(2009a)	points	out	that	the	apparent	paradox	does	not	arise	merely	from	our	supposing	that	both	players	are	economically	rational.	It	rests	crucially	on	the	additional	premise	that	each	player	must	know,	and	reasons	on	the	basis	of	knowing,	that	the	other	player	is	economically
rational.	This	is	the	premise	with	which	each	player’s	conjectures	about	what	would	happen	off	the	equilibrium	path	of	play	are	inconsistent.	A	player	has	reason	to	consider	out-of-equilibrium	possibilities	if	she	either	believes	that	her	opponent	is	economically	rational	but	his	hand	may	tremble	or	she	attaches	some	nonzero	probability	to	the
possibility	that	he	is	not	economically	rational	or	she	attaches	some	doubt	to	her	conjecture	about	his	utility	function.	As	Gintis	also	stresses,	this	issue	with	solving	extensive-form	games	for	SEP	by	Zermelo’s	algorithm	generalizes:	a	player	has	no	reason	to	play	even	a	Nash	equilibrium	strategy	unless	she	expects	other	players	to	also	play	Nash
equilibrium	strategies.	We	will	return	to	this	issue	in	Section	7	below.	The	paradox	of	backward	induction,	like	the	puzzles	raised	by	equilibrium	refinement,	is	mainly	a	problem	for	those	who	view	game	theory	as	contributing	to	a	normative	theory	of	rationality	(specifically,	as	contributing	to	that	larger	theory	the	theory	of	strategic	rationality).	The
non-psychological	game	theorist	can	give	a	different	sort	of	account	of	apparently	“irrational”	play	and	the	prudence	it	encourages.	This	involves	appeal	to	the	empirical	fact	that	actual	agents,	including	people,	must	learn	the	equilibrium	strategies	of	games	they	play,	at	least	whenever	the	games	are	at	all	complicated.	Research	shows	that	even	a
game	as	simple	as	the	Prisoner’s	Dilemma	requires	learning	by	people	(Ledyard	1995,	Sally	1995,	Camerer	2003,	p.	265).	What	it	means	to	say	that	people	must	learn	equilibrium	strategies	is	that	we	must	be	a	bit	more	sophisticated	than	was	indicated	earlier	in	constructing	utility	functions	from	behavior	in	application	of	Revealed	Preference
Theory.	Instead	of	constructing	utility	functions	on	the	basis	of	single	episodes,	we	must	do	so	on	the	basis	of	observed	runs	of	behavior	once	it	has	stabilized,	signifying	maturity	of	learning	for	the	subjects	in	question	and	the	game	in	question.	Once	again,	the	Prisoner’s	Dilemma	makes	a	good	example.	People	encounter	few	one-shot	Prisoner’s
Dilemmas	in	everyday	life,	but	they	encounter	many	repeated	PD’s	with	non-strangers.	As	a	result,	when	set	into	what	is	intended	to	be	a	one-shot	PD	in	the	experimental	laboratory,	people	tend	to	initially	play	as	if	the	game	were	a	single	round	of	a	repeated	PD.	The	repeated	PD	has	many	Nash	equilibria	that	involve	cooperation	rather	than
defection.	Thus	experimental	subjects	tend	to	cooperate	at	first	in	these	circumstances,	but	learn	after	some	number	of	rounds	to	defect.	The	experimenter	cannot	infer	that	she	has	successfully	induced	a	one-shot	PD	with	her	experimental	setup	until	she	sees	this	behavior	stabilize.	If	players	of	games	realize	that	other	players	may	need	to	learn
game	structures	and	equilibria	from	experience,	this	gives	them	reason	to	take	account	of	what	happens	off	the	equilibrium	paths	of	extensive-form	games.	Of	course,	if	a	player	fears	that	other	players	have	not	learned	equilibrium,	this	may	well	remove	her	incentive	to	play	an	equilibrium	strategy	herself.	This	raises	a	set	of	deep	problems	about
social	learning	(Fudenberg	and	Levine	1998).	How	can	ignorant	players	learn	to	play	equilibria	if	sophisticated	players	don’t	show	them,	because	the	sophisticated	are	not	incentivized	to	play	equilibrium	strategies	until	the	ignorant	have	learned?	The	crucial	answer	in	the	case	of	applications	of	game	theory	to	interactions	among	people	is	that	young
people	are	socialized	by	growing	up	in	networks	of	institutions,	including	cultural	norms.	Most	complex	games	that	people	play	are	already	in	progress	among	people	who	were	socialized	before	them—that	is,	have	learned	game	structures	and	equilibria	(Ross	2008a).	Novices	must	then	only	copy	those	whose	play	appears	to	be	expected	and
understood	by	others.	Institutions	and	norms	are	rich	with	reminders,	including	homilies	and	easily	remembered	rules	of	thumb,	to	help	people	remember	what	they	are	doing	(Clark	1997).	As	noted	in	Section	2.7	above,	when	observed	behavior	does	not	stabilize	around	equilibria	in	a	game,	and	there	is	no	evidence	that	learning	is	still	in	process,	the
analyst	should	infer	that	she	has	incorrectly	modeled	the	situation	she	is	studying.	Chances	are	that	she	has	either	mis-specified	players’	utility	functions,	the	strategies	available	to	the	players,	or	the	information	that	is	available	to	them.	Given	the	complexity	of	many	of	the	situations	that	social	scientists	study,	we	should	not	be	surprised	that	mis-
specification	of	models	happens	frequently.	Applied	game	theorists	must	do	lots	of	learning,	just	like	their	subjects.	The	paradox	of	backward	induction	is	one	of	a	family	of	paradoxes	that	arise	if	one	builds	possession	and	use	of	literally	complete	information	into	a	concept	of	rationality.	(Consider,	by	analogy,	the	stock	market	paradox	that	arises	if	we
suppose	that	economically	rational	investment	incorporates	literally	rational	expectations:	assume	that	no	individual	investor	can	beat	the	market	in	the	long	run	because	the	market	always	knows	everything	the	investor	knows;	then	no	one	has	incentive	to	gather	knowledge	about	asset	values;	then	no	one	will	ever	gather	any	such	information	and	so
from	the	assumption	that	the	market	knows	everything	it	follows	that	the	market	cannot	know	anything!)As	we	will	see	in	detail	in	various	discussions	below,	most	applications	of	game	theory	explicitly	incorporate	uncertainty	and	prospects	for	learning	by	players.	The	extensive-form	games	with	SPE	that	we	looked	at	above	are	really	conceptual	tools
to	help	us	prepare	concepts	for	application	to	situations	where	complete	and	perfect	information	is	unusual.	We	cannot	avoid	the	paradox	if	we	think,	as	some	philosophers	and	normative	game	theorists	do,	that	one	of	the	conceptual	tools	we	want	to	use	game	theory	to	sharpen	is	a	fully	general	idea	of	rationality	itself.	But	this	is	not	a	concern
entertained	by	economists	and	other	scientists	who	put	game	theory	to	use	in	empirical	modeling.	In	real	cases,	unless	players	have	experienced	play	at	equilibrium	with	one	another	in	the	past,	even	if	they	are	all	economically	rational	and	all	believe	this	about	one	another,	we	should	predict	that	they	will	attach	some	positive	probability	to	the
conjecture	that	understanding	of	game	structures	among	some	players	is	imperfect.	This	then	explains	why	people,	even	if	they	are	economically	rational	agents,	may	often,	or	even	usually,	play	as	if	they	believe	in	trembling	hands.	Learning	of	equilibria	may	take	various	forms	for	different	agents	and	for	games	of	differing	levels	of	complexity	and
risk.	Incorporating	it	into	game-theoretic	models	of	interactions	thus	introduces	an	extensive	new	set	of	technicalities.	For	the	most	fully	developed	general	theory,	the	reader	is	referred	to	Fudenberg	and	Levine	(1998);	the	same	authors	provide	a	non-technical	overview	of	the	issues	in	Fudenberg	and	Levine	(2016).	A	first	important	distinction	is
between	learning	specific	parameters	between	rounds	of	a	repeated	game	(see	Section	4)	with	common	players,	and	learning	about	general	strategic	expectations	across	different	games.	The	latter	can	include	learning	about	players	if	the	learner	is	updating	expectations	based	on	her	models	of	types	of	players	she	recurrently	encounters.	Then	we
can	distinguish	between	passive	learning,	in	which	a	player	merely	updates	her	subjective	priors	based	on	her	observation	of	moves	and	outcomes,	and	strategic	choices	she	infers	from	these,	and	active	learning,	in	which	she	probes—in	technical	language	screens—for	information	about	other	players’	strategies	by	choosing	strategies	that	test	her
conjectures	about	what	will	occur	off	what	she	believes	to	be	the	game’s	equilibrium	path.	A	major	difficulty	for	both	players	and	modelers	is	that	screening	moves	might	be	misinterpreted	if	players	are	also	incentivized	to	make	moves	to	signal	information	to	one	another	(see	Section	4).	In	other	words:	trying	to	learn	about	strategies	can	under	some
circumstances	interfere	with	players’	abilities	to	learn	equilibria.	Finally,	the	discussion	so	far	has	assumed	that	all	possible	learning	in	a	game	is	about	the	structure	of	the	game	itself.	Wilcox	(2008)	shows	that	if	players	are	learning	new	information	about	causal	processes	occurring	outside	a	game	while	simultaneously	trying	to	update	expectations
about	other	players’	strategies,	the	modeler	can	find	herself	reaching	beyond	the	current	limits	of	technical	knowledge.	It	was	said	above	that	people	might	usually	play	as	if	they	believe	in	trembling	hands.	A	very	general	reason	for	this	is	that	when	people	interact,	the	world	does	not	furnish	them	with	cue-cards	advising	them	about	the	structures	of
the	games	they’re	playing.	They	must	make	and	test	conjectures	about	this	from	their	social	contexts.	Sometimes,	contexts	are	fixed	by	institutional	rules.	For	example,	when	a	person	walks	into	a	retail	shop	and	sees	a	price	tag	on	something	she’d	like	to	have,	she	knows	without	needing	to	conjecture	or	learn	anything	that	she’s	involved	in	a	simple
‘take	it	or	leave	it’	game.	In	other	markets,	she	might	know	she	is	expected	to	haggle,	and	know	the	rules	for	that	too.	Given	the	unresolved	complex	relationship	between	learning	theory	and	game	theory,	the	reasoning	above	might	seem	to	imply	that	game	theory	can	never	be	applied	to	situations	involving	human	players	that	are	novel	for	them.
Fortunately,	however,	we	face	no	such	impasse.	In	a	pair	of	influential	papers,	McKelvey	and	Palfrey	(1995,	1998)	developed	the	solution	concept	of	quantal	response	equilibrium	(QRE).	QRE	is	not	a	refinement	of	NE,	in	the	sense	of	being	a	philosophically	motivated	effort	to	strengthen	NE	by	reference	to	normative	standards	of	rationality.	It	is,
rather,	a	method	for	calculating	the	equilibrium	properties	of	choices	made	by	players	whose	conjectures	about	possible	errors	in	the	choices	of	other	players	are	uncertain.	QRE	is	thus	standard	equipment	in	the	toolkit	of	experimental	economists	who	seek	to	estimate	the	distribution	of	utility	functions	in	populations	of	real	people	placed	in
situations	modeled	as	games.	QRE	would	not	have	been	practically	serviceable	in	this	way	before	the	development	of	econometrics	packages	such	as	Stata	(TM)	allowed	computation	of	QRE	given	adequately	powerful	observation	records	from	interestingly	complex	games.	QRE	is	rarely	utilized	by	behavioral	economists,	and	is	almost	never	used	by
psychologists,	in	analyzing	laboratory	data.	In	consequence,	many	studies	by	researchers	of	these	types	make	dramatic	rhetorical	points	by	‘discovering’	that	real	people	often	fail	to	converge	on	NE	in	experimental	games.	But	NE,	though	it	is	a	minimalist	solution	concept	in	one	sense	because	it	abstracts	away	from	much	informational	structure,	is
simultaneously	a	demanding	empirical	expectation	if	it	is	imposed	categorically	(that	is,	if	players	are	expected	to	play	as	if	they	are	all	certain	that	all	others	are	playing	NE	strategies).	Predicting	play	consistent	with	QRE	is	consistent	with—indeed,	is	motivated	by—the	view	that	NE	captures	the	core	general	concept	of	a	strategic	equilibrium.	One
way	of	framing	the	philosophical	relationship	between	NE	and	QRE	is	as	follows.	NE	defines	a	logical	principle	that	is	well	adapted	for	disciplining	thought	and	for	conceiving	new	strategies	for	generic	modeling	of	new	classes	of	social	phenomena.	For	purposes	of	estimating	real	empirical	data	one	needs	to	be	able	to	define	equilibrium	statistically.
QRE	represents	one	way	of	doing	this,	consistently	with	the	logic	of	NE.	The	idea	is	sufficiently	rich	that	its	depths	remain	an	open	domain	of	investigation	by	game	theorists.	The	current	state	of	understanding	of	QRE	is	comprehensively	reviewed	in	Goeree,	Holt	and	Palfrey	(2016).	3.	Uncertainty,	Risk	and	Sequential	Equilibria	The	games	we’ve
modeled	to	this	point	have	all	involved	players	choosing	from	amongst	pure	strategies,	in	which	each	seeks	a	single	optimal	course	of	action	at	each	node	that	constitutes	a	best	reply	to	the	actions	of	others.	Often,	however,	a	player’s	utility	is	optimized	through	use	of	a	mixed	strategy,	in	which	she	flips	a	weighted	coin	amongst	several	possible
actions.	(We	will	see	later	that	there	is	an	alternative	interpretation	of	mixing,	not	involving	randomization	at	a	particular	information	set;	but	we	will	start	here	from	the	coin-flipping	interpretation	and	then	build	on	it	in	Section	3.1.)	Mixing	is	called	for	whenever	no	pure	strategy	maximizes	the	player’s	utility	against	all	opponent	strategies.	Our
river-crossing	game	from	Section	1	exemplifies	this.	As	we	saw,	the	puzzle	in	that	game	consists	in	the	fact	that	if	the	fugitive’s	reasoning	selects	a	particular	bridge	as	optimal,	his	pursuer	must	be	assumed	to	be	able	to	duplicate	that	reasoning.	The	fugitive	can	escape	only	if	his	pursuer	cannot	reliably	predict	which	bridge	he’ll	use.	Symmetry	of
logical	reasoning	power	on	the	part	of	the	two	players	ensures	that	the	fugitive	can	surprise	the	pursuer	only	if	it	is	possible	for	him	to	surprise	himself.	Suppose	that	we	ignore	rocks	and	cobras	for	a	moment,	and	imagine	that	the	bridges	are	equally	safe.	Suppose	also	that	the	fugitive	has	no	special	knowledge	about	his	pursuer	that	might	lead	him
to	venture	a	specially	conjectured	probability	distribution	over	the	pursuer’s	available	strategies.	In	this	case,	the	fugitive’s	best	course	is	to	roll	a	three-sided	die,	in	which	each	side	represents	a	different	bridge	(or,	more	conventionally,	a	six-sided	die	in	which	each	bridge	is	represented	by	two	sides).	He	must	then	pre-commit	himself	to	using
whichever	bridge	is	selected	by	this	randomizing	device.	This	fixes	the	odds	of	his	survival	regardless	of	what	the	pursuer	does;	but	since	the	pursuer	has	no	reason	to	prefer	any	available	pure	or	mixed	strategy,	and	since	in	any	case	we	are	presuming	her	epistemic	situation	to	be	symmetrical	to	that	of	the	fugitive,	we	may	suppose	that	she	will	roll	a
three-sided	die	of	her	own.	The	fugitive	now	has	a	2/3	probability	of	escaping	and	the	pursuer	a	1/3	probability	of	catching	him.	Neither	the	fugitive	nor	the	pursuer	can	improve	their	chances	given	the	other’s	randomizing	mix,	so	the	two	randomizing	strategies	are	in	Nash	equilibrium.	Note	that	if	one	player	is	randomizing	then	the	other	does
equally	well	on	any	mix	of	probabilities	over	bridges,	so	there	are	infinitely	many	combinations	of	best	replies.	However,	each	player	should	worry	that	anything	other	than	a	random	strategy	might	be	coordinated	with	some	factor	the	other	player	can	detect	and	exploit.	Since	any	non-random	strategy	is	exploitable	by	another	non-random	strategy,	in
a	zero-sum	game	such	as	our	example,	only	the	vector	of	randomized	strategies	is	a	NE.	Now	let	us	re-introduce	the	parametric	factors,	that	is,	the	falling	rocks	at	bridge	#2	and	the	cobras	at	bridge	#3.	Again,	suppose	that	the	fugitive	is	sure	to	get	safely	across	bridge	#1,	has	a	90%	chance	of	crossing	bridge	#2,	and	an	80%	chance	of	crossing
bridge	#3.	We	can	solve	this	new	game	if	we	make	certain	assumptions	about	the	two	players’	utility	functions.	Suppose	that	Player	1,	the	fugitive,	cares	only	about	living	or	dying	(preferring	life	to	death)	while	the	pursuer	simply	wishes	to	be	able	to	report	that	the	fugitive	is	dead,	preferring	this	to	having	to	report	that	he	got	away.	(In	other	words,
neither	player	cares	about	how	the	fugitive	lives	or	dies.)	Suppose	also	for	now	that	neither	player	gets	any	utility	or	disutility	from	taking	more	or	less	risk.	In	this	case,	the	fugitive	simply	takes	his	original	randomizing	formula	and	weights	it	according	to	the	different	levels	of	parametric	danger	at	the	three	bridges.	Each	bridge	should	be	thought	of
as	a	lottery	over	the	fugitive’s	possible	outcomes,	in	which	each	lottery	has	a	different	expected	payoff	in	terms	of	the	items	in	his	utility	function.	Consider	matters	from	the	pursuer’s	point	of	view.	She	will	be	using	her	NE	strategy	when	she	chooses	the	mix	of	probabilities	over	the	three	bridges	that	makes	the	fugitive	indifferent	among	his	possible
pure	strategies.	The	bridge	with	rocks	is	1.1	times	more	dangerous	for	him	than	the	safe	bridge.	Therefore,	he	will	be	indifferent	between	the	two	when	the	pursuer	is	1.1	times	more	likely	to	be	waiting	at	the	safe	bridge	than	the	rocky	bridge.	The	cobra	bridge	is	1.2	times	more	dangerous	for	the	fugitive	than	the	safe	bridge.	Therefore,	he	will	be
indifferent	between	these	two	bridges	when	the	pursuer’s	probability	of	waiting	at	the	safe	bridge	is	1.2	times	higher	than	the	probability	that	she	is	at	the	cobra	bridge.	Suppose	we	use	\(s_1\),	\(s_2\)	and	\(s_3\)	to	represent	the	fugitive’s	parametric	survival	rates	at	each	bridge.	Then	the	pursuer	minimizes	the	net	survival	rate	across	any	pair	of
bridges	by	adjusting	the	probabilities	p1	and	p2	that	she	will	wait	at	them	so	that	\[	s_1	(1	-	p_1)	=	s_2	(1	-	p_2)	\]	Since	\(p_1	+	p_2	=	1\),	we	can	rewrite	this	as	\[	s_1	\times	p_2	=	s_2	\times	p_1	\]	so	\[	\frac{p_1}{s_1}	=	\frac{p_2}{s_2}.	\]	Thus	the	pursuer	finds	her	NE	strategy	by	solving	the	following	simultaneous	equations:	\[\begin{align}	1(1-
p_1)	&=	0.9(1-p_2)	\\	&=0.8(1-p_3)	\end{align}\]	\[	p_1	+	p_2	+	p_3	=	1	\]	Then	\[\begin{align}	p_1	&=	\frac{49}{121}	\\	p_2	&=	\frac{41}{121}	\\	p_3	&=	\frac{31}{121}	\end{align}\]	Now	let	\(f_1\),	\(f_2\),	\(f_3\)	represent	the	probabilities	with	which	the	fugitive	chooses	each	respective	bridge.	Then	the	fugitive	finds	his	NE	strategy	by	solving	\
[\begin{align}	s_1	\times	f_1	&=	s_2	\times	f_2	\\	&=	s_3	\times	f_3	\end{align}\]	so	\[\begin{align}	1	\times	f_1	&=	0.9	\times	f_2	\\	&=	0.8	\times	f_3	\end{align}\]	simultaneously	with	\[	f_1	+	f_2	+	f_3	=	1	\]	Then	\[\begin{align}	f_1	&=	\frac{36}{121}	\\	f_2	&=	\frac{40}{121}	\\	f_3	&=	\frac{45}{121}	\end{align}\]	These	two	sets	of	NE
probabilities	tell	each	player	how	to	weight	his	or	her	die	before	throwing	it.	Note	the—perhaps	surprising—result	that	the	fugitive,	though	by	hypothesis	he	gets	no	enjoyment	from	gambling,	uses	riskier	bridges	with	higher	probability.	This	is	the	only	way	of	making	the	pursuer	indifferent	over	which	bridge	she	stakes	out,	which	in	turn	is	what
maximizes	the	fugitive’s	probability	of	survival.	We	were	able	to	solve	this	game	straightforwardly	because	we	set	the	utility	functions	in	such	a	way	as	to	make	it	zero-sum,	or	strictly	competitive.	That	is,	every	gain	in	expected	utility	by	one	player	represents	a	precisely	symmetrical	loss	by	the	other.	However,	this	condition	may	often	not	hold.
Suppose	now	that	the	utility	functions	are	more	complicated.	The	pursuer	most	prefers	an	outcome	in	which	she	shoots	the	fugitive	and	so	claims	credit	for	his	apprehension	to	one	in	which	he	dies	of	rockfall	or	snakebite;	and	she	prefers	this	second	outcome	to	his	escape.	The	fugitive	prefers	a	quick	death	by	gunshot	to	the	pain	of	being	crushed	or
the	terror	of	an	encounter	with	a	cobra.	Most	of	all,	of	course,	he	prefers	to	escape.	Suppose,	plausibly,	that	the	fugitive	cares	more	strongly	about	surviving	than	he	does	about	getting	killed	one	way	rather	than	another.	We	cannot	solve	this	game,	as	before,	simply	on	the	basis	of	knowing	the	players’	ordinal	utility	functions,	since	the	intensities	of
their	respective	preferences	will	now	be	relevant	to	their	strategies.	Prior	to	the	work	of	von	Neumann	&	Morgenstern	(1947),	situations	of	this	sort	were	inherently	baffling	to	analysts.	This	is	because	utility	does	not	denote	a	hidden	psychological	variable	such	as	pleasure.	As	we	discussed	in	Section	2.1,	utility	is	merely	a	measure	of	relative
behavioural	dispositions	given	certain	consistency	assumptions	about	relations	between	preferences	and	choices.	It	therefore	makes	no	sense	to	imagine	comparing	our	players’	cardinal—that	is,	intensity-sensitive—preferences	with	one	another’s,	since	there	is	no	independent,	interpersonally	constant	yardstick	we	could	use.	How,	then,	can	we	model
games	in	which	cardinal	information	is	relevant?	After	all,	modeling	games	requires	that	all	players’	utilities	be	taken	simultaneously	into	account,	as	we’ve	seen.	A	crucial	aspect	of	von	Neumann	&	Morgenstern’s	(1947)	work	was	the	solution	to	this	problem.	Here,	we	will	provide	a	brief	outline	of	their	ingenious	technique	for	building	cardinal	utility
functions	out	of	ordinal	ones.	It	is	emphasized	that	what	follows	is	merely	an	outline,	so	as	to	make	cardinal	utility	non-mysterious	to	you	as	a	student	who	is	interested	in	knowing	about	the	philosophical	foundations	of	game	theory,	and	about	the	range	of	problems	to	which	it	can	be	applied.	Providing	a	manual	you	could	follow	in	building	your	own
cardinal	utility	functions	would	require	many	pages.	Such	manuals	are	available	in	many	textbooks.	Suppose	that	we	now	assign	the	following	ordinal	utility	function	to	the	river-crossing	fugitive:	\[\begin{align}	\text{Escape}	&\gg	4	\\	\text{Death	by	shooting}	&\gg	3	\\	\text{Death	by	rockfall}	&\gg	2	\\	\text{Death	by	snakebite}	&\gg	1	\end{align}\]
We	are	supposing	that	his	preference	for	escape	over	any	form	of	death	is	stronger	than	his	preferences	between	causes	of	death.	This	should	be	reflected	in	his	choice	behaviour	in	the	following	way.	In	a	situation	such	as	the	river-crossing	game,	he	should	be	willing	to	run	greater	risks	to	increase	the	relative	probability	of	escape	over	shooting	than
he	is	to	increase	the	relative	probability	of	shooting	over	snakebite.	This	bit	of	logic	is	the	crucial	insight	behind	von	Neumann	&	Morgenstern’s	(1947)	solution	to	the	cardinalization	problem.	Suppose	we	asked	the	fugitive	to	pick,	from	the	available	set	of	outcomes,	a	best	one	and	a	worst	one.	‘Best’	and	‘worst’	are	defined	in	terms	of	expected
payoffs	as	illustrated	in	our	current	zero-sum	game	example:	a	player	maximizes	his	expected	payoff	if,	when	choosing	among	lotteries	that	contain	only	two	possible	prizes,	he	always	chooses	so	as	to	maximize	the	probability	of	the	best	outcome—call	this	\(\mathbf{W}\)—and	to	minimize	the	probability	of	the	worst	outcome—call	this	\(\mathbf{L}\).
Now	imagine	expanding	the	set	of	possible	prizes	so	that	it	includes	prizes	that	the	agent	values	as	intermediate	between	\(\mathbf{W}\)	and	\(\mathbf{L}\).	We	find,	for	a	set	of	outcomes	containing	such	prizes,	a	lottery	over	them	such	that	our	agent	is	indifferent	between	that	lottery	and	a	lottery	including	only	\(\mathbf{W}\)	and	\(\mathbf{L}\).	In
our	example,	this	is	a	lottery	that	includes	being	shot	and	being	crushed	by	rocks.	Call	this	lottery	\(\mathbf{T}\)	.	We	define	a	utility	function	\(q	=	u(\mathbf{T})\)	from	outcomes	to	the	real	(as	opposed	to	ordinal)	number	line	such	that	if	\(q\)	is	the	expected	prize	in	\(\mathbf{T}\),	the	agent	is	indifferent	between	winning	\(\mathbf{T}\)	and	winning
a	lottery	\(\mathbf{T}^*\)	in	which	\(\mathbf{W}\)	occurs	with	probability	\(u(\mathbf{T})\)	and	\(\mathbf{L}\)	occurs	with	probability	\(1-u(\mathbf{T})\).	Assuming	that	the	agent’s	behaviour	respects	the	principle	of	reduction	of	compound	lotteries	(ROCL)—that	is,	he	does	not	gain	or	lose	utility	from	considering	more	complex	lotteries	rather	than
simple	ones—the	set	of	mappings	of	outcomes	in	\(\mathbf{T}\)	to	\(u\mathbf{T}^*\)	gives	a	von	Neumann-Morgenstern	utility	function	(vNMuf)	with	cardinal	structure	over	all	outcomes	in	\(\mathbf{T}\).	What	exactly	have	we	done	here?	We’ve	given	our	agent	choices	over	lotteries,	instead	of	directly	over	resolved	outcomes,	and	observed	how
much	extra	risk	of	death	he’s	willing	to	run	to	change	the	odds	of	getting	one	form	of	death	relative	to	an	alternative	form	of	death.	Note	that	this	cardinalizes	the	agent’s	preference	structure	only	relative	to	agent-specific	reference	points	\(\mathbf{W}\)	and	\(\mathbf{L}\);	the	procedure	reveals	nothing	about	comparative	extra-ordinal	preferences
between	agents,	which	helps	to	make	clear	that	constructing	a	vNMuf	does	not	introduce	a	potentially	objective	psychological	element.	Furthermore,	two	agents	in	one	game,	or	one	agent	under	different	sorts	of	circumstances,	may	display	varying	attitudes	to	risk.	Perhaps	in	the	river-crossing	game	the	pursuer,	whose	life	is	not	at	stake,	will	enjoy
gambling	with	her	glory	while	our	fugitive	is	cautious.	In	analyzing	the	river-crossing	game,	however,	we	don’t	have	to	be	able	to	compare	the	pursuer’s	cardinal	utilities	with	the	fugitive’s.	Both	agents,	after	all,	can	find	their	NE	strategies	if	they	can	estimate	the	probabilities	each	will	assign	to	the	actions	of	the	other.	This	means	that	each	must
know	both	vNMufs;	but	neither	need	try	to	comparatively	value	the	outcomes	over	which	they’re	choosing.	We	can	now	fill	in	the	rest	of	the	matrix	for	the	bridge-crossing	game	that	we	started	to	draw	in	Section	2.	If	both	players	are	risk-neutral	and	their	revealed	preferences	respect	ROCL,	then	we	have	enough	information	to	be	able	to	assign
expected	utilities,	expressed	by	multiplying	the	original	payoffs	by	the	relevant	probabilities,	as	outcomes	in	the	matrix.	Suppose	that	the	hunter	waits	at	the	cobra	bridge	with	probability	\(x\)	and	at	the	rocky	bridge	with	probability	\(y\).	Since	her	probabilities	across	the	three	bridges	must	sum	to	1,	this	implies	that	she	must	wait	at	the	safe	bridge
with	probability	\(1	-	(x	+	y)\).	Then,	continuing	to	assign	the	fugitive	a	payoff	of	0	if	he	dies	and	1	if	he	escapes,	and	the	hunter	the	reverse	payoffs,	our	complete	matrix	is	as	follows:	Hunter	Safe	Bridge	Rocky	Bridge	Cobra	Bridge	Fugitive	Safe	Bridge	0,1	1,0	1,0	Rocky	Bridge	0.9,0.1	0,1	0.9,0.1	Cobra	Bridge	0.8,0.2	0.8,0.2	0,1	Figure	12	We	can	now
read	the	following	facts	about	the	game	directly	from	the	matrix.	No	pair	of	pure	strategies	is	a	pair	of	best	replies	to	the	other.	Therefore,	the	game’s	only	NE	require	at	least	one	player	to	use	a	mixed	strategy.	3.1	Beliefs	and	Subjective	Probabilities	In	all	of	our	examples	and	workings	to	this	point,	we	have	presupposed	that	players’	beliefs	about
probabilities	in	lotteries	match	objective	probabilities.	But	in	real	interactive	choice	situations,	agents	must	often	rely	on	their	subjective	estimations	or	perceptions	of	probabilities.	In	one	of	the	greatest	contributions	to	twentieth-century	behavioral	and	social	science,	Savage	(1954)	showed	how	to	incorporate	subjective	probabilities,	and	their
relationships	to	preferences	over	risk,	within	the	framework	of	von	Neumann-Morgenstern	expected	utility	theory.	Indeed,	Savage’s	achievement	amounts	to	the	formal	completion	of	EUT.	Then,	just	over	a	decade	later,	Harsanyi	(1967)	showed	how	to	solve	games	involving	maximizers	of	Savage	expected	utility.	This	is	often	taken	to	have	marked	the
true	maturity	of	game	theory	as	a	tool	for	application	to	behavioral	and	social	science,	and	was	recognized	as	such	when	Harsanyi	joined	Nash	and	Selten	as	a	recipient	of	the	first	Nobel	prize	awarded	to	game	theorists	in	1994.	As	we	observed	in	considering	the	need	for	people	playing	games	to	learn	trembling	hand	equilibria	and	QRE,	when	we
model	the	strategic	interactions	of	people	we	must	allow	for	the	fact	that	people	are	typically	uncertain	about	their	models	of	one	another.	This	uncertainty	is	reflected	in	their	choices	of	strategies.	Furthermore,	some	actions	might	be	taken	specifically	for	the	sake	of	learning	about	the	accuracy	of	a	player’s	conjectures	about	other	players.
Harsanyi’s	extension	of	game	theory	incorporates	these	crucial	elements.	Consider	the	three-player	imperfect-information	game	below	known	as	‘Selten’s	horse’	(for	its	inventor,	Nobel	Laureate	Reinhard	Selten,	and	because	of	the	shape	of	its	tree;	taken	from	Kreps	(1990),	p.	426):	Figure	13	This	game	has	four	NE:	\((\mathrm{L},	l_2,	l_3),\)	\
((\mathrm{L},	r_2,	l_3),\)	\((\mathrm{R},	r_2,	l_3)\)	and	\((\mathrm{R},	r_2,	r_3).\)	Consider	the	fourth	of	these	NE.	It	arises	because	when	Player	I	plays	R	and	Player	II	plays	\(r_2\),	Player	III’s	entire	information	set	is	off	the	path	of	play,	and	it	doesn’t	matter	to	the	outcome	what	Player	III	does.	But	Player	I	would	not	play	R	if	Player	III	could	tell	the
difference	between	being	at	node	13	and	being	at	node	14.	The	structure	of	the	game	incentivizes	efforts	by	Player	I	to	supply	Player	III	with	information	that	would	open	up	her	closed	information	set.	Player	III	should	believe	this	information	because	the	structure	of	the	game	shows	that	Player	I	has	incentive	to	communicate	it	truthfully.	The	game’s
solution	would	then	be	the	SPE	of	the	(now)	perfect	information	game:	\((\mathrm{L},	r_2,	l_3).\)	Theorists	who	think	of	game	theory	as	part	of	a	normative	theory	of	general	rationality,	for	example	most	philosophers,	and	refinement	program	enthusiasts	among	economists,	have	pursued	a	strategy	that	would	identify	this	solution	on	general
principles.	Notice	what	Player	III	in	Selten’s	Horse	might	wonder	about	as	he	selects	his	strategy.	“Given	that	I	get	a	move,	was	my	action	node	reached	from	node	11	or	from	node	12?”	What,	in	other	words,	are	the	conditional	probabilities	that	Player	III	is	at	node	13	or	14	given	that	he	has	a	move?	Now,	if	conditional	probabilities	are	what	Player	III
wonders	about,	then	what	Players	I	and	II	might	make	conjectures	about	when	they	select	their	strategies	are	Player	III’s	beliefs	about	these	conditional	probabilities.	In	that	case,	Player	I	must	conjecture	about	Player	II’s	beliefs	about	Player	III’s	beliefs,	and	Player	III’s	beliefs	about	Player	II’s	beliefs	and	so	on.	The	relevant	beliefs	here	are	not
merely	strategic,	as	before,	since	they	are	not	just	about	what	players	will	do	given	a	set	of	payoffs	and	game	structures,	but	about	what	understanding	of	conditional	probability	they	should	expect	other	players	to	operate	with.	What	beliefs	about	conditional	probability	is	it	reasonable	for	players	to	expect	from	each	other?	If	we	follow	Savage	(1954)
we	would	suggest	as	a	normative	principle	that	they	should	reason	and	expect	others	to	reason	in	accordance	with	Bayes’s	rule.	This	tells	them	how	to	compute	the	probability	of	an	event	\(F\)	given	information	\(E\)	(written	‘\(pr(F\mid	E)\)’):	\[	pr(F\mid	E)	=	\frac{pr(E\mid	F)	\times	pr(F)}{pr(E)}	\]	We	will	put	Bayes’s	Rule	to	work	on	an	example
immediately	below.	But	first	some	theoretical	discussion	of	its	general	significance	in	game	theory	is	in	order.	In	Section	2.8	we	saw	that	a	range	of	complications	are	introduced	into	game	theory	when	players	have	scope	for	learning.	This	is	an	understatement:	the	majority	of	the	purely	theoretical	literature	in	game	theory	over	the	past	four	decades
has	concerned	the	complications	in	question.	This	is	partly	because	the	issues	are	deep	and	difficult,	and	partly	because	most	actual	strategic	situations	to	which	game	theory	is	most	usefully	applied	do	in	fact	call	upon	players	to	learn.	When	people	(or	other	animals)	get	embroiled	in	strategic	interactions,	the	world	doesn’t	typically	furnish
unambiguous	information	about	game	structures.	In	particular,	it	doesn’t,	so	to	speak,	stamp	players’	utility	functions	on	their	foreheads.	When	players	are	unsure	of	the	structure	of	the	games	they	play,	which	depends	on	the	utility	vectors	of	all	players,	we	say	that	their	information	is	incomplete.	In	addition,	players	might	not	know	some	parametric
probability	distributions	that	are	relevant	to	their	strategy	choices.	In	the	example	of	the	river-crossing	game	just	discussed,	we	supposed	that	both	players	know	ex	ante	(i.e.,	when	they	select	their	strategies)	the	probabilities	with	which	rocks	fall	and	cobras	strike.	In	an	actual	situation	of	the	kind	imagined,	this	is	unlikely.	Both	players	might	study
both	risk	bridges	for	awhile	to	gather	information	about	the	probability	distributions	of	the	dangerous	(to	the	fugitive)	events.	But	estimates	may	be	biased	unless	samples	are	very	large	and	probabilities	are	stationary	(e.g.,	rockfalls	don’t	become	less	frequent	as	more	exposed	rocks	fall).	When	players	are	uncertain	about	parametric	contingencies,
we	model	this	in	an	extensive-form	game	by	adding	an	additional	player,	usually	called	‘Nature’,	that	has	no	utility	function,	and	hence	no	stake	in	the	game’s	outcome,	and	that	draws	actions	randomly	relative	to	some	specified	probability	distribution.	We	can	allow	that	strategic	players	(i.e.,	players	other	than	Nature)	might	have	to	make	choices
without	knowing	what	Nature	has	drawn	for	them	by	putting	Nature’s	range	of	moves	within	a	single	information	set,	just	as	we	do	for	strategic	choices	in	an	extensive-form	game	where	some	moves	are	simultaneous,	as	in	Figure	13	above.	Then	players’uncertainty	about	parametric	factors	is	modelled	as	imperfect	information.	Finally,	if	strategic
players’estimates	of	uncertain	parameters	are	independent,	each	player’s	estimate	is	potentially	informative	to	the	other	player.	In	a	repeated	game,	players	can	acquire	information	about	one	anothers’estimates	of	the	parametric	probabilities	by	observing	one	anothers’choices.	Suppose,	for	example,	that	in	our	river-crossing	game	there	is	a
succession	of	fugitives,	and	successful	escapees	send	reports	back	to	those	who	follow	them.	Now	imagine	that	the	Pursuer	is	surprised	to	find	Fugitives	choosing	the	rocky	bridge	much	less	often	than	she	expected.	If	she	assumes	that	the	Fugitives	are	economically	rational,	then	she	should	update	her	estimate	of	the	probability	of	rockfalls;	evidently
it	was	too	low.	Then,	of	course,	she	should	adjust	her	strategy	accordingly.	This	information	is	available	to	both	the	Pursuer	and	the	Fugitives,	so	as	updating	is	effected	the	equilibria	of	the	game	change.	In	particular,	because	the	extent	of	prior	uncertainty	is	reduced	by	updating,	the	range	of	outcomes	compatible	with	equilibrium	shrinks,	and	so	an
equilibrium	is	more	likely	to	be	found	by	real-life	agents.	Because	Bayes’s	Rule	is	a	principle	to	govern	learning,	it	can	be	relevant	to	games	where	at	least	some	players	have	information	that	is	either	imperfect	or	incomplete.	Where	only	imperfect	information	is	concerned,	a	theory	of	subjective	expected	utility	that	follows	or	modifies	Savage’s	axioms
applies	directly.	This	is	the	subject	of	the	remainder	of	this	section.	Incomplete	information	raises	deeper	challenges,	which	we	will	consider	in	later	sections.	But	our	repeated-game	example	above	allows	for	a	particularly	interesting	and	powerful	application	of	Bayes’s	Rule.	If	players	know	that	other	players	follow	Bayes’s	Rule	in	updating	their
beliefs,	and	utility	depends	exclusively	on	information,	then	when	players	received	shared	signals	they	can	jointly	solve	their	strategic	problems	by	identifying	what	Aumann	(1974,	1987)	called	‘correlated	equilibrium’.	For	now,	to	illustrate	use	of	Bayes’s	Rule	in	the	most	straightforward	kind	of	case,	imperfect	information	without	Nature	in	extensive-
form	games,	we’ll	start	with	Selten’s	Horse	(i.e.,	Figure	13).	If	we	assume	that	players’	beliefs	are	consistent	with	Bayes’s	Rule,	then	we	may	define	a	sequential	equilibrium	as	a	solution	to	the	game.	A	SE	has	two	parts:	(1)	a	strategy	profile	§	for	each	player,	as	before,	and	(2)	a	system	of	beliefs	\(\mu\)	for	each	player.	\(\mu\)	assigns	to	each
information	set	\(h\)	a	probability	distribution	over	the	nodes	in	\(h\),	with	the	interpretation	that	these	are	the	beliefs	of	player	\(i(h)\)	about	where	in	her	information	set	she	is,	given	that	information	set	\(h\)	has	been	reached.	Then	a	sequential	equilibrium	is	a	profile	of	strategies	§	and	a	system	of	beliefs	\(\mu\)	consistent	with	Bayes’s	rule	such	that
starting	from	every	information	set	\(h\)	in	the	tree	player	\(i(h)\)	plays	optimally	from	then	on,	given	that	what	she	believes	to	have	transpired	previously	is	given	by	\(\mu(h)\)	and	what	will	transpire	at	subsequent	moves	is	given	by	§.	Consider	again	the	NE	that	we	previously	identified	for	Selten’s	Horse,	\((\mathrm{R},	r_2,	r_3).\)	Suppose	that
Player	III	assigns	pr(1)	to	her	belief	that	if	she	gets	a	move	she	is	at	node	13.	Then	Player	I,	given	a	consistent	\(\mu(I),\)	must	believe	that	Player	III	will	play	\(l_3\),	in	which	case	her	only	SE	strategy	is	L.	So	although	\((\mathrm{R},	r_2,	l_3)\)	is	a	NE,	it	is	not	a	SE.	The	use	of	the	consistency	requirement	in	this	example	is	somewhat	trivial,	so
consider	now	a	second	case	(also	taken	from	Kreps	(1990),	p.	429):	Figure	14	Suppose	that	Player	I	plays	L,	Player	II	plays	\(l_2\)	and	Player	III	plays	\(l_3\).	Suppose	also	that	\(\mu\)(II)	assigns	\(pr(.3)\)	to	node	16.	In	that	case,	\(l_2\)	is	not	a	SE	strategy	for	Player	II,	since	\(l_2\)	returns	an	expected	payoff	of	\(.3(4)	+	.7(2)	=	2.6,\)	while	\(r_2\)	brings
an	expected	payoff	of	3.1.	Notice	that	if	we	fiddle	the	strategy	profile	for	player	III	while	leaving	everything	else	fixed,	\(l_2\)	could	become	a	SE	strategy	for	Player	II.	If	§(III)	yielded	a	play	of	\(l_3\)	with	\(pr(.5)\)	and	\(r_3\)	with	\(pr(.5),\)	then	if	Player	II	plays	\(r_2\)	his	expected	payoff	would	now	be	2.2,	so	\((\mathrm{L},l_2,l_3)\)	would	be	a	SE.	Now
imagine	setting	\(\mu\)(III)	back	as	it	was,	but	change	\(\mu\)(II)	so	that	Player	II	thinks	the	conditional	probability	of	being	at	node	16	is	greater	than	.5;	in	that	case,	\(l_2\)	is	again	not	a	SE	strategy.	The	idea	of	SE	is	hopefully	now	clear.	We	can	apply	it	to	the	river-crossing	game	in	a	way	that	avoids	the	necessity	for	the	pursuer	to	flip	any	coins	if	we
modify	the	game	a	bit.	Suppose	now	that	the	pursuer	can	change	bridges	twice	during	the	fugitive’s	passage,	and	will	catch	him	just	in	case	she	meets	him	as	he	leaves	the	bridge.	Then	the	pursuer’s	SE	strategy	is	to	divide	her	time	at	the	three	bridges	in	accordance	with	the	proportion	given	by	the	equation	in	the	third	paragraph	of	Section	3	above.
It	must	be	noted	that	since	Bayes’s	rule	cannot	be	applied	to	events	with	probability	0,	its	application	to	SE	requires	that	players	assign	non-zero	probabilities	to	all	actions	available	in	extensive	form.	This	requirement	is	captured	by	supposing	that	all	strategy	profiles	be	strictly	mixed,	that	is,	that	every	action	at	every	information	set	be	taken	with
positive	probability.	You	will	see	that	this	is	just	equivalent	to	supposing	that	all	hands	sometimes	tremble,	or	alternatively	that	no	expectations	are	quite	certain.	A	SE	is	said	to	be	trembling-hand	perfect	if	all	strategies	played	at	equilibrium	are	best	replies	to	strategies	that	are	strictly	mixed.	You	should	also	not	be	surprised	to	be	told	that	no	weakly
dominated	strategy	can	be	trembling-hand	perfect,	since	the	possibility	of	trembling	hands	gives	players	the	most	persuasive	reason	for	avoiding	such	strategies.	How	can	the	non-psychological	game	theorist	understand	the	concept	of	an	NE	that	is	an	equilibrium	in	both	actions	and	beliefs?	Decades	of	experimental	study	have	shown	that	when
human	subjects	play	games,	especially	games	that	ideally	call	for	use	of	Bayes’s	rule	in	making	conjectures	about	other	players’	beliefs,	we	should	expect	significant	heterogeneity	in	strategic	responses.	Multiple	kinds	of	informational	channels	typically	link	different	agents	with	the	incentive	structures	in	their	environments.	Some	agents	may	actually
compute	equilibria,	with	more	or	less	error.	Others	may	settle	within	error	ranges	that	stochastically	drift	around	equilibrium	values	through	more	or	less	myopic	conditioned	learning.	Still	others	may	select	response	patterns	by	copying	the	behavior	of	other	agents,	or	by	following	rules	of	thumb	that	are	embedded	in	cultural	and	institutional
structures	and	represent	historical	collective	learning.	Note	that	the	issue	here	is	specific	to	game	theory,	rather	than	merely	being	a	reiteration	of	a	more	general	point,	which	would	apply	to	any	behavioral	science,	that	people	behave	noisily	from	the	perspective	of	ideal	theory.	In	a	given	game,	whether	it	would	be	rational	for	even	a	trained,	self-
aware,	computationally	well	resourced	agent	to	play	NE	would	depend	on	the	frequency	with	which	he	or	she	expected	others	to	do	likewise.	If	she	expects	some	other	players	to	stray	from	NE	play,	this	may	give	her	a	reason	to	stray	herself.	Instead	of	predicting	that	human	players	will	reveal	strict	NE	strategies,	the	experienced	experimenter	or
modeler	anticipates	that	there	will	be	a	relationship	between	their	play	and	the	expected	costs	of	departures	from	NE.	Consequently,	maximum	likelihood	estimation	of	observed	actions	typically	identifies	a	QRE	as	providing	a	better	fit	than	any	NE.	An	analyst	handling	empirical	data	in	this	way	should	not	be	interpreted	as	‘testing	the	hypothesis’
that	the	agents	under	analysis	are	‘rational’.	Rather,	she	conjectures	that	they	are	agents,	that	is,	that	there	is	a	systematic	relationship	between	changes	in	statistical	patterns	in	their	behavior	and	some	risk-weighted	cardinal	rankings	of	possible	goal-states.	If	the	agents	are	people	or	institutionally	structured	groups	of	people	that	monitor	one
another	and	are	incentivized	to	attempt	to	act	collectively,	these	conjectures	will	often	be	regarded	as	reasonable	by	critics,	or	even	as	pragmatically	beyond	question,	even	if	always	defeasible	given	the	non-zero	possibility	of	bizarre	unknown	circumstances	of	the	kind	philosophers	sometimes	consider	(e.g.,	the	apparent	people	are	pre-programmed
unintelligent	mechanical	simulacra	that	would	be	revealed	as	such	if	only	the	environment	incentivized	responses	not	written	into	their	programs).	The	analyst	might	assume	that	all	of	the	agents	respond	to	incentive	changes	in	accordance	with	Savage	expected-utility	theory,	particularly	if	the	agents	are	firms	that	have	learned	response
contingencies	under	normatively	demanding	conditions	of	market	competition	with	many	players.	If	the	analyst’s	subjects	are	individual	people,	and	especially	if	they	are	in	a	non-standard	environment	relative	to	their	cultural	and	institutional	experience,	she	might	more	wisely	estimate	a	maximum	likelihood	mixture	model	that	allows	that	a	range	of
different	utility	structures	govern	different	subsets	of	her	choice	data.	The	way	to	think	about	this	is	as	follows.	Each	utility	model	that	applies	to	some	people	in	the	sample	describes	a	data-generating	process	(DGP).	These	various	DGPs	interact	in	the	game	to	produce	outcomes.	When	the	data	are	used	to	estimate	the	mixture	model,	she	learns
which	proportions	of	the	data	are	best	estimated	by	which	of	her	hypothesised	DGPs	(provided	she	specified	her	models	well	enough	given	her	data	to	identify	them).	All	this	is	to	say	that	use	of	game	theory	does	not	force	a	scientist	to	empirically	apply	a	model	that	is	likely	to	be	too	precise	and	narrow	in	its	specifications	to	plausibly	fit	the	messy
complexities	of	real	strategic	interaction.	A	good	applied	game	theorist	should	also	be	a	well-schooled	econometrician.	One	crucial	caveat,	to	which	we	will	return	in	Section	8,	is	that	when	we	apply	game	theory	to	a	situation	in	which	agents	have	opportunities	to	learn,	because	their	information	is	imperfect	or	incomplete,	then	we	must	decide
whether	it	is	or	is	not	reasonable	to	expect	the	agents	to	update	their	beliefs	using	Bayes’s	Rule.	If	we	do	not	think	we	are	empirically	justified	in	such	an	expectation,	then	we	might	expect	agents	to	take	actions	that	have	no	strategic	purpose	other	than	to	directly	probe	the	parametric	or	strategic	environment.	This	presents	all	players	with	a	special
source	of	additional	uncertainty:	was	the	function	of	another	player’s	action’s	to	probe	or	to	directly	harvest	utility?	Handling	applications	that	must	allow	for	this	kind	of	uncertainty	requires	considerable	mathematical	expertise,	as	reviewed	in	Fudenberg	and	Levine	(1998)	and	updated	in	Fudenberg	and	Levine	(2008).	The	consequent	range	of
modelling	discretion	makes	situations	involving	non-Bayesian	learning	treacherous	for	the	applied	game	theorist	to	try	to	predict;	often,	the	best	she	can	expect	to	usefully	do	is	explain	what	happened	after	the	fact.	(It	should	be	added	that	such	explanation	is	often	essential	for	generalization	to	new	cases,	and,	at	least	as	importantly,	to	intervening	if
participants	or	regulators	want	to	change	outcomes.)	The	reader	might	suppose	that	this	must	be	the	standard	case:	how	likely	can	it	be	that	people,	most	of	whom	have	never	heard	of	Bayes’s	Rule,	let	alone	used	it	calculate	predictions,	will	both	learn	according	to	the	rule	and	anticipate	that	those	with	whom	they	interact	will	do	so	too?	But	there	is
a	response	to	this	basis	for	scepticism.	Most	animals,	including	people,	have	no	explicit	knowledge	of	why	they	behave	as	they	do.	Where	Bayesian	learning	specifically	is	concerned,	there	is	growing	evidence	from	neuroscience	that	what	distinguishes	neuro-cortical	learning	from	learning	in	older	brain	regions	is	that	the	former	is	fundamentally
Bayesian	(Clark	2016;	Parr	et	al	2022).	This	makes	explanatory	sense:	Bayesian	learning	is	situationally	flexible	learning,	and	supplying	capacity	for	such	learning	is	almost	certainly	the	function	that	caused	neocortex	to	grow	over	time	in	a	number	of	socially	intelligent	animals,	and	to	acquire	a	significantly	larger	battery	of	cerebral	cortical	neurons
in	the	case	of	modern	humans	(Godfrey-Smith	1996).	It	is	a	plausible	conjecture	that	people	are	Bayesian	learners	whether	they	know	it	or	not.	The	game	theorist	can	directly	exploit	Bayesian	learning	at	the	meta-level	of	her	own	modelling.	Above	it	was	suggested	that	applied	game	theorists	should	estimate	maximum-likelihood	mixture	models	to
capture	heterogeneous	risk-preference	structures	in	groups	of	people.	In	the	existing	literature	this	is	the	current	state	of	the	art.	But	it	has	a	limitation:	results	are	sensitive	to	the	modeller’s	discretion	concerning	which	models	she	includes	in	her	mixtures,	and	there	is	no	settled	typology	of	such	models.	The	need	for	such	unprincipled	discretion	is
potentially	eliminated	if	the	theorist	instead	uses	a	Hierarchical	Bayesian	model	(see	Kruschke	2014;	McElreath	2020).	Advice	to	take	up	this	resource	does	not	call	upon	the	game	theorist	to	become	an	expert	coder,	as	a	routine	for	such	models	is	now	included	in	the	economist’s	standard	econometrics	package,	Stata	(TM).	This	promises	a
substantial	potential	improvement	in	the	power	and	accuracy	of	game-theoretic	models	of	real	strategic	interactions,	and	is	an	attractive	target	for	future	research.	4.	Repeated	Games	and	Coordination	So	far	we’ve	restricted	our	attention	to	one-shot	games,	that	is,	games	in	which	players’	strategic	concerns	extend	no	further	than	the	terminal	nodes
of	their	single	interaction.	However,	games	are	often	played	with	future	games	in	mind,	and	this	can	significantly	alter	their	outcomes	and	equilibrium	strategies.	Our	topic	in	this	section	is	repeated	games,	that	is,	games	in	which	sets	of	players	expect	to	face	each	other	in	similar	situations	on	multiple	occasions.	We	approach	these	first	through	the
limited	context	of	repeated	prisoner’s	dilemmas.	We’ve	seen	that	in	the	one-shot	PD	the	only	NE	is	mutual	defection.	This	may	no	longer	hold,	however,	if	the	players	expect	to	meet	each	other	again	in	future	PDs.	Imagine	that	four	firms,	all	making	widgets,	agree	to	maintain	high	prices	by	jointly	restricting	supply.	(That	is,	they	form	a	cartel.)	This
will	only	work	if	each	firm	maintains	its	agreed	production	quota.	Typically,	each	firm	can	maximize	its	profit	by	departing	from	its	quota	while	the	others	observe	theirs,	since	it	then	sells	more	units	at	the	higher	market	price	brought	about	by	the	almost-intact	cartel.	In	the	one-shot	case,	all	firms	would	share	this	incentive	to	defect	and	the	cartel
would	immediately	collapse.	However,	the	firms	expect	to	face	each	other	in	competition	for	a	long	period.	In	this	case,	each	firm	knows	that	if	it	breaks	the	cartel	agreement,	the	others	can	punish	it	by	underpricing	it	for	a	period	long	enough	to	more	than	eliminate	its	short-term	gain.	Of	course,	the	punishing	firms	will	take	short-term	losses	too
during	their	period	of	underpricing.	But	these	losses	may	be	worth	taking	if	they	serve	to	reestablish	the	cartel	and	bring	about	maximum	long-term	prices.	One	simple,	and	famous	(but	not,	contrary	to	widespread	myth,	necessarily	optimal)	strategy	for	preserving	cooperation	in	repeated	PDs	is	called	Tit-for-tat.	This	strategy	tells	each	player	to
behave	as	follows:	Always	cooperate	in	the	first	round.	Thereafter,	take	whatever	action	your	opponent	took	in	the	previous	round.	A	group	of	players	all	playing	Tit-for-tat	will	never	see	any	defections.	Since,	in	a	population	where	others	play	tit-for-tat,	no	tit-for-tat	player	could	do	(strictly)	better	by	adopting	an	alternative	strategy,	everyone	playing
tit-for-tat	is	a	NE.	You	may	frequently	hear	people	who	know	a	little	(but	not	enough)	game	theory	talk	as	if	this	is	the	end	of	the	story.	It	is	not	at	all.	There	are	three	major	complications.	First,	and	most	fundamentally,	everyone	playing	Tit-for-tat	is	not	a	unique	NE.	Many	other	strategies,	such	as	Grim	(cooperate	until	defected	against	by	a	player,
then	defect	against	that	defector	unconditionally	forever)	and	Tit-for-two-tats	(cooperate	until	defected	against	twice	by	a	player,	then	defect	once	before	reverting	to	cooperation)	occur	in	various	NE	combinations.	In	general,	it	is	not	a	requirement	for	equilibrium	that	all	players	use	the	same	strategy.	The	more	limited	virtue	that	can	be	claimed	for
Tit-for-tat	is	that	it	is	a	simple	strategy	that	does	well	on	average	against	the	strategies	that	people	tend,	based	on	evidence	from	actual	tournaments	with	real	people,	to	choose.	But	this	can	also	be	claimed	for	Grim.	Whereas	Tit-for-tat	might	be	said	to	be	‘nice’	because	it	is	forgiving	of	offence,	the	opposite	is	true	of	Grim.	In	general,	there	is	an
infinite	set	of	combinations	of	strategies	in	a	large	population	that	are	equilibria	in	repeated	games	if	players	don’t	know	which	round	of	the	game	will	be	the	final	one	until	they	get	there.	This	last	point	is	the	second	complication	I	promised	to	indicate.	To	cooperate	in	a	repeated	PD	players	must	be	uncertain	as	to	when	their	interaction	ends.
Suppose	the	players	know	when	the	last	round	comes.	In	that	round,	it	will	be	utility-maximizing	for	players	to	defect,	since	no	punishment	will	be	possible.	Now	consider	the	second-last	round.	In	this	round,	players	also	face	no	punishment	for	defection,	since	they	expect	to	defect	in	the	last	round	anyway.	So	they	defect	in	the	second-last	round.	But



this	means	they	face	no	threat	of	punishment	in	the	third-last	round,	and	defect	there	too.	We	can	simply	iterate	this	backwards	through	the	game	tree	until	we	reach	the	first	round.	Since	cooperation	is	not	a	NE	strategy	in	that	round,	tit-for-tat	is	no	longer	a	NE	strategy	in	the	repeated	game,	and	we	get	the	same	outcome—mutual	defection—as	in
the	one-shot	PD.	Therefore,	cooperation	is	only	possible	in	repeated	PDs	where	the	expected	number	of	repetitions	is	indeterminate.	(Of	course,	this	does	apply	to	many	real-life	games.)	Note	that	in	this	context	any	amount	of	uncertainty	in	expectations,	or	possibility	of	trembling	hands,	will	be	conducive	to	cooperation,	at	least	for	awhile.	When
people	in	experiments	play	repeated	PDs	with	known	end-points,	they	indeed	tend	to	cooperate	for	awhile,	but	learn	to	defect	earlier	as	they	gain	experience.	Now	we	introduce	a	third	complication.	Suppose	that	players’	ability	to	distinguish	defection	from	cooperation	is	imperfect.	Consider	our	case	of	the	widget	cartel.	Suppose	the	players	observe
a	fall	in	the	market	price	of	widgets.	Perhaps	this	is	because	a	cartel	member	cheated.	Or	perhaps	it	has	resulted	from	an	exogenous	drop	in	demand.	If	Tit-for-tat	players	mistake	the	second	case	for	the	first,	they	will	defect,	thereby	setting	off	a	chain-reaction	of	mutual	defections	from	which	they	can	never	recover,	since	every	player	will	reply	to	the
first	encountered	defection	with	defection,	thereby	begetting	further	defections,	and	so	on.	If	players	know	that	such	miscommunication	is	possible,	they	have	incentive	to	resort	to	more	sophisticated	strategies.	In	particular,	they	may	be	prepared	to	sometimes	risk	following	defections	with	cooperation	in	order	to	test	their	inferences.	However,	if
they	are	too	forgiving,	then	other	players	can	exploit	them	through	additional	defections.	In	general,	as	strategies	become	more	sophisticated,	players	of	games	in	which	they	occur	encounter	more	difficult	learning	challenges.	Because	more	sophisticated	strategies	are	more	difficult	for	other	players	to	infer	(because	they	are	compatible	with	more
variable	and	complicated	patterns	of	observable	behavior),	their	use	increases	the	probability	of	miscommunication.	But	miscommunication	is	what	causes	repeated-game	cooperative	equilibria	to	unravel	in	the	first	place.	The	complexities	surrounding	information	signaling,	screening	and	inference	in	repeated	PDs	help	to	intuitively	explain	the	folk
theorem,	so	called	because	no	one	is	sure	who	first	recognized	it,	that	in	repeated	PDs,	for	any	strategy	\(S\)	there	exists	a	possible	distribution	of	strategies	among	other	players	such	that	the	vector	of	\(S\)	and	these	other	strategies	is	a	NE.	When	critics	of	applications	of	game	theory	to	behavioral	and	social	science	and	business	cases	complain	that
the	applications	in	question	assume	implausible	levels	of	inferential	capacity	on	the	part	of	people,	this	is	what	they	have	in	mind.	In	Section	5	we	will	consider	a	way	of	responding	to	this	kind	of	concern.	Real,	complex,	social	and	political	dramas	are	seldom	straightforward	instantiations	of	simple	games	such	as	PDs.	Hardin	(1995)	offers	an	analysis
of	two	tragically	real	political	cases,	the	Yugoslavian	civil	war	of	1991–95,	and	the	1994	Rwandan	genocide,	as	PDs	that	were	nested	inside	coordination	games.	A	coordination	game	occurs	whenever	the	utility	of	two	or	more	players	is	maximized	by	their	doing	the	same	thing	as	one	another,	and	where	such	correspondence	is	more	important	to	them
than	whatever	it	is,	in	particular,	that	they	both	do.	A	standard	example	arises	with	rules	of	the	road:	‘All	drive	on	the	left’	and	‘All	drive	on	the	right’	are	both	outcomes	that	are	NEs,	and	neither	is	more	efficient	than	the	other.	In	games	of	‘pure’	coordination,	it	doesn’t	even	help	to	use	more	selective	equilibrium	criteria.	For	example,	suppose	that
we	require	our	players	to	reason	in	accordance	with	Bayes’s	rule	(see	Section	3	above).	In	these	circumstances,	any	strategy	that	is	a	best	reply	to	any	vector	of	mixed	strategies	available	in	NE	is	said	to	be	rationalizable.	That	is,	a	player	can	find	a	set	of	systems	of	beliefs	for	the	other	players	such	that	any	history	of	the	game	along	an	equilibrium
path	is	consistent	with	that	set	of	systems.	Pure	coordination	games	are	characterized	by	non-unique	vectors	of	rationalizable	strategies.	The	Nobel	laureate	Thomas	Schelling	(1978)	conjectured,	and	empirically	demonstrated,	that	in	such	situations,	players	may	try	to	predict	equilibria	by	searching	for	focal	points,	that	is,	features	of	some	strategies
that	they	believe	will	be	salient	to	other	players,	and	that	they	believe	other	players	will	believe	to	be	salient	to	them.	For	example,	if	two	people	want	to	meet	on	a	given	day	in	a	big	city	but	can’t	contact	each	other	to	arrange	a	specific	time	and	place,	both	might	sensibly	go	to	the	city’s	most	prominent	downtown	plaza	at	noon.	In	general,	the	better
players	know	one	another,	or	the	more	often	they	have	been	able	to	observe	one	another’s	strategic	behavior,	the	more	likely	they	are	to	succeed	in	finding	focal	points	on	which	to	coordinate.	Coordination	was,	indeed,	the	first	topic	of	game-theoretic	application	that	came	to	the	widespread	attention	of	philosophers.	In	1969,	the	philosopher	David
Lewis	(1969)	published	Convention,	in	which	the	conceptual	framework	of	game-theory	was	applied	to	one	of	the	fundamental	issues	of	twentieth-century	epistemology,	the	nature	and	extent	of	conventions	governing	semantics	and	their	relationship	to	the	justification	of	propositional	beliefs.	The	basic	insight	can	be	captured	using	a	simple	example.
The	word	‘chicken’	denotes	chickens	and	‘ostrich’	denotes	ostriches.	We	would	not	be	better	or	worse	off	if	‘chicken’	denoted	ostriches	and	‘ostrich’	denoted	chickens;	however,	we	would	be	worse	off	if	half	of	us	used	the	pair	of	words	the	first	way	and	half	the	second,	or	if	all	of	us	randomized	between	them	to	refer	to	flightless	birds	generally.	This
insight,	of	course,	well	preceded	Lewis;	but	what	he	recognized	is	that	this	situation	has	the	logical	form	of	a	coordination	game.	Thus,	while	particular	conventions	may	be	arbitrary,	the	interactive	structures	that	stabilize	and	maintain	them	are	not.	Furthermore,	the	equilibria	involved	in	coordinating	on	noun	meanings	appear	to	have	an	arbitrary
element	only	because	we	cannot	Pareto-rank	them;	but	Millikan	(1984)	shows	implicitly	that	in	this	respect	they	are	atypical	of	linguistic	coordinations.	They	are	certainly	atypical	of	coordinating	conventions	in	general,	a	point	on	which	Lewis	was	misled	by	over-valuing	‘semantic	intuitions’	about	‘the	meaning’of	‘convention’	(Bacharach	2006,	Ross
2008a).	Ross	&	LaCasse	(1995)	present	the	following	example	of	a	real-life	coordination	game	in	which	the	NE	are	not	Pareto-indifferent,	but	the	Pareto-inferior	NE	is	more	frequently	observed.	In	a	city,	drivers	must	coordinate	on	one	of	two	NE	with	respect	to	their	behaviour	at	traffic	lights.	Either	all	must	follow	the	strategy	of	rushing	to	try	to	race
through	lights	that	turn	yellow	(or	amber)	and	pausing	before	proceeding	when	red	lights	shift	to	green,	or	all	must	follow	the	strategy	of	slowing	down	on	yellows	and	jumping	immediately	off	on	shifts	to	green.	Both	patterns	are	NE,	in	that	once	a	community	has	coordinated	on	one	of	them	then	no	individual	has	an	incentive	to	deviate:	those	who
slow	down	on	yellows	while	others	are	rushing	them	will	get	rear-ended,	while	those	who	rush	yellows	in	the	other	equilibrium	will	risk	collision	with	those	who	jump	off	straightaway	on	greens.	Therefore,	once	a	city’s	traffic	pattern	settles	on	one	of	these	equilibria	it	will	tend	to	stay	there.	And,	indeed,	these	are	the	two	patterns	that	are	observed	in
the	world’s	cities.	However,	the	two	equilibria	are	not	Pareto-indifferent,	since	the	second	NE	allows	more	cars	to	turn	left	on	each	cycle	in	a	left-hand-drive	jurisdiction,	and	right	on	each	cycle	in	a	right-hand	jurisdiction,	which	reduces	the	main	cause	of	bottlenecks	in	urban	road	networks	and	allows	all	drivers	to	expect	greater	efficiency	in	getting
about.	Unfortunately,	for	reasons	about	which	we	can	only	speculate	pending	further	empirical	work	and	analysis,	far	more	cities	are	locked	onto	the	Pareto-inferior	NE	than	on	the	Pareto-superior	one.	In	cases	such	as	this	one,	maintenance	of	coordination	game	equilibria	likely	must	be	supported	by	stable	social	norms,	because	players	are
anonymous	and	encounter	regular	opportunities	to	gain	once-off	advantages	by	defecting	from	supporting	the	prevailing	equilibrium.	As	many	authors	have	observed	(but	see	particularly	Bicchieri	2006	and	Binmore	2005a),	a	stable	norm	must	itself	describe	what	players	do	in	an	equilibrium	of	the	game,	or	at	least	one	player	would	be	incentivised	to
violate	the	norm.	But,	as	Guala	(2016)	argues,	to	perform	a	special	role	in	helping	players	jointly	find	equilibrium	in	a	coordination	game,	a	norm	must	be	more	than	an	equilibrium	description;	it	must	also	function	as	a	rule.	What	Guala	means	by	this	is	that	it	must	encode	expectations,	which	players	know,	about	which	behaviors	in	the	relevant
society	will	be	rewarded	by	social	approval	if	followed,	and	punished	by	social	sanctions	(e.g.	gossip,	ostracism,	prosecution,	vigilante	violence)	if	violated.	The	human	biological	inheritance	causes	most	people	to	internalize	some	norms,	that	is,	learn	to	experience	unpleasant	feelings	of	guilt	or	shame	when	they	violate	norms	they	endorse,	and
feelings	of	satisfaction	when	they	follow	norms	in	the	face	of	temptations	to	break	them	for	selfish	gain.	Thus	norms	can	help	people	find	equilibria	in	coordination	games	even	when	some	individual	choices	in	these	games	aren’t	observed	by	any	other	people.	Of	course,	norms	are	far	from	perfectly	reliable	mechanisms.	Every	real	society	has	many
norms	that	some	people	don’t	endorse,	and	therefore	probably	don’t	internalize,	and	therefore	might	break	whenever	they	think	they	can	do	so	unobserved,	or	in	return	for	a	punishment	they	don’t	consider	too	costly.	This	provides	endless	fuel	for	conflict	in	any	social	setting	with	much	degree	of	complexity.	In	addition,	if	its	norms	don’t	evolve	with
changing	technology	and	other	circumstances,	a	society	will	find	itself	trapped	by	conservatism	in	growing	inefficiencies.	But	evolution	of	norms	over	time	implies	disagreements	about	norms	at	at	time,	unless	everyone	switches	norms	at	the	same	time.	But	that	would	itself	require	solving	a	coordination	game	for	which	meta-norms	are	typically
absent!	As	Kuran	(1995)	empirically	reviews	and	models,	normative	change	often	works	through	cycles	of	preference	falsification	and	discovery.	That	is,	increasing	numbers	of	people	might	privately	come	to	dislike	a	norm	but	continue	to	publicly	support	and	follow	it	because	they	assume	that	most	others	still	support	it,	and	that	conforming	with	it,
and	even	helping	to	enforce	it,	is	their	equilibrium	strategy.	At	a	given	time,	a	majority	might	be	behaving	in	this	way,	which	prevents	anyone	from	recognizing	that	a	new	equilibrium	without	the	norm,	or	with	an	opposed	norm,	is	available.	Such	concealed	preferences	tend	to	leak,	however,	and	sooner	or	later	publicly	visible	signals	of	widespread
dissatisfaction	with	the	norm	will	be	publicly	observable.	This	often	has	the	effect	of	suggesting	that	a	whole	society	changed	its	mind	suddenly	and	dramatically	as	the	equilibrium	flips.	For	example,	in	North	American	business	culture,	executives	went	from	norms	favouring	convivial	‘liquid	lunches’	to	strongly	enforced	norms	against	any	drinking
during	working	hours	within	about	two	years	during	the	mid-1980s.	We	can	infer	from	this	that	many	executives	had	considered	boozy	mid-day	meals	a	bad	thing	while	still	engaging	in	them,	before	realizing	that	this	was	the	majority’s	hidden	opinion.	(Such	preference	falsification	should	not	be	confused	with	the	superficially	similar	phenomenon	of
‘pluralistic	ignorance’.	These	are	cases	where	many	people	have	false	beliefs	about	the	statistical	frequency	of	a	pattern	of	behavior,	and	are	motivated	to	conform	their	own	behavior	to	the	norm	suggested	by	this	false	belief.	Pluralistic	ignorance	tends	to	erode	only	slowly	and	gradually,	as	errors	of	statistical	perception	are	chipped	away.	not
displaying	the	whipsaw	instability	of	equilibria	sustained	by	preference	falsification.	Preference	falsification	is	a	directly	strategic	phenomenon	and	therefore	a	topic	for	game	theorists.	Pluralistic	ignorance	has	at	best	a	derivative	game-theoretic	element	in	some	instances.)	Conventions	on	standards	of	evidence	and	scientific	rationality,	the	topics
from	philosophy	of	science	that	set	up	the	context	for	Lewis’s	analysis,	are	likely	to	be	of	the	Pareto-rankable	character.	While	various	arrangements	might	be	NE	in	the	social	game	of	science,	as	followers	of	Thomas	Kuhn	like	to	remind	us,	it	is	highly	improbable	that	all	of	these	lie	on	a	single	Pareto-indifference	curve.	These	themes,	strongly
represented	in	contemporary	epistemology,	philosophy	of	science	and	philosophy	of	language,	are	all	at	least	implicit	applications	of	game	theory.	(The	reader	can	find	a	broad	sample	of	applications,	and	references	to	the	large	literature,	in	Nozick	(1998).)	Most	of	the	social	and	political	coordination	games	played	by	people	also	have	this	feature.
Unfortunately	for	us	all,	inefficiency	traps	represented	by	Pareto-inferior	NE	are	extremely	common	in	them.	And	sometimes	dynamics	of	this	kind	give	rise	to	the	most	terrible	of	all	recurrent	human	collective	behaviors.	Hardin’s	analysis	of	two	recent	genocidal	episodes	relies	on	the	idea	that	the	biologically	shallow	properties	by	which	people	sort
themselves	into	racial	and	ethnic	groups	serve	highly	efficiently	as	focal	points	in	coordination	games,	which	in	turn	produce	deadly	PDs	between	them.	According	to	Hardin,	neither	the	Yugoslavian	nor	the	Rwandan	disasters	were	PDs	to	begin	with.	That	is,	in	neither	situation,	on	either	side,	did	most	people	begin	by	preferring	their	exclusive	ethnic
interests	to	general	mutual	cooperation	and	regulated	competition	among	individuals	and	multi-ethnic	associations.	However,	the	deadly	logic	of	coordination,	deliberately	abetted	by	self-serving	politicians,	dynamically	created	PDs.	Some	individual	Serbs	(Hutus)	were	encouraged	to	perceive	their	individual	interests	as	best	served	through
identification	with	Serbian	(Hutu)	group-interests.	That	is,	they	found	that	some	of	their	circumstances,	such	as	those	involving	competition	for	jobs,	had	the	form	of	coordination	games	within	their	respective	ethnic	communities.	This	incentivised	increasing	numbers	of	people	to	put	pressure	on	their	ethnic	compatriots	to	take	up	coordinating
strategies.	Eventually,	once	enough	Serbs	(Hutus)	identified	self-interest	with	group-interest,	the	identification	became	almost	universally	correct,	because	(1)	the	most	important	goal	for	each	Serb	(Hutu)	was	to	do	roughly	what	every	other	Serb	(Hutu)	would,	and	(2)	the	most	distinctively	Serbian	thing	to	do,	the	doing	of	which	signalled
coordination,	was	to	exclude	Croats	(Tutsi).	That	is,	strategies	involving	such	exclusionary	behavior	were	selected	as	a	result	of	having	efficient	focal	points.	This	situation	made	it	the	case	that	an	individual—and	individually	threatened—Croat’s	(Tutsi’s)	self-interest	was	best	maximized	by	coordinating	on	assertive	Croat	(Tutsi)	group-identity,	which
further	increased	pressures	on	Serbs	(Hutus)	to	coordinate,	and	so	on.	Note	that	it	is	not	an	aspect	of	this	analysis	to	suggest	that	Serbs	or	Hutus	started	things;	the	process	could	have	been	(even	if	it	wasn’t	in	fact)	perfectly	reciprocal.	But	the	outcome	is	ghastly:	Serbs	and	Croats	(Hutus	and	Tutsis)	seem	progressively	more	threatening	to	each	other
as	they	rally	together	for	self-defense,	until	both	see	it	as	imperative	to	preempt	their	rivals	and	strike	before	being	struck.	If	Hardin	is	right—and	the	point	here	is	not	to	claim	that	he	is,	but	rather	to	point	out	the	worldly	importance	of	determining	which	games	agents	are	in	fact	playing—then	the	mere	presence	of	an	external	enforcer	(NATO?)
would	not	have	changed	the	game,	pace	the	Hobbesian	analysis,	since	the	enforcer	could	not	have	threatened	either	side	with	anything	worse	than	what	each	feared	from	the	other.	What	was	needed	was	recalibration	of	evaluations	of	interests,	which	(arguably)	happened	in	Yugoslavia	when	the	Croatian	army	began	to	decisively	win,	at	which	point
Bosnian	Serbs	decided	that	their	self/group	interests	were	better	served	by	the	arrival	of	NATO	peacekeepers.	The	Rwandan	genocide	likewise	ended	with	a	military	solution,	in	this	case	a	Tutsi	victory.	(But	this	became	the	seed	for	the	most	deadly	international	war	on	earth	since	1945,	the	Congo	War	of	1998–2006.)	This	dynamic	of	coordinating
polarization	is	frequently	invoked	by	political	scientists	to	explain	escalating	conflict	within	countries.	Its	basis	need	not	be	ethnicity.	For	another	example,	the	widely	observed	increase	in	polarization	of	party-political	identities	in	the	United	States	over	the	past	three	decades	is	often	modelled	using	game-theoretic	logic	along	Hardin’s	lines.	In	a	two-
party	system	such	as	America’s,	if	supporters	of	one	party	come	to	believe	that	having	their	party	in	power	is	more	important	than	its	policies	on	particular	issues,	and	so	begin	behaving	overwhelmingly	strategically	and	opportunistically,	this	behavior	incentivises	supporters	of	the	other	party	to	adopt	the	same	attitude.	The	beliefs	in	question	are
thus	self-ratifying,	making	it	true	that	the	highest	interest	stakes	for	both	sets	of	supporters	is	in	the	victory	of	their	own	faction.	Relentless	zero-sum	competition	conditioned	on	party	affiliation	erodes	cross-party	associations,	and	in	the	US	was	observed	as	early	as	2009	(Bishop	2009)	to	be	causing	Americans	to	separate	geographically	and	culturally
into	blocks	that	recognise	and	define	themselves	mainly	by	contrast	with	one	another’s	symbols	and	icons.	Once	people	incorporate	political	preferences	into	their	conceptions	of	their	identities,	it	becomes	extremely	difficult	to	present	anyone	with	effectively	competing	counter-incentives;	as	discussed	in	Ross	(2005a),	most	people	rank	maintenance
of	their	social	identities	near	or	at	the	top	of	their	effective	preference	orderings,	for	reasons	that	game-theoretic	models	explain	well:	a	person	whose	social	identity	appears	as	indeterminate	or	unsteady	to	others	will	have	difficulty	finding	coordination	partners.	Forming	teams	to	carry	out	group	projects	is	the	basic	human	survival	strategy.	Thus
the	game-theoretic	lens	helps	us	to	see	that	the	roots	of	our	ecological	success	as	a	species	are	also	the	roots	of	our	tendency	to	form	mutually	hostile	ethnic	or	purely	cultural	tribes,	which	is	in	turn	the	most	basic	source	of	large-scale,	generally	destructive,	human	conflict.	Of	course,	it	is	not	the	case	that	most	repeated	games	lead	to	disasters.	The
biological	basis	of	friendship	in	people	and	other	animals	is	partly	a	function	of	the	logic	of	repeated	games.	The	importance	of	payoffs	achievable	through	cooperation	in	future	games	leads	those	who	expect	to	interact	in	them	to	be	less	selfish	than	temptation	would	otherwise	encourage	in	present	games.	The	fact	that	such	equilibria	become	more
stable	through	learning	gives	friends	the	logical	character	of	built-up	investments,	which	most	people	take	great	pleasure	in	sentimentalizing.	Furthermore,	cultivating	shared	interests	and	sentiments	provides	networks	of	focal	points	around	which	coordination	can	be	increasingly	facilitated.	Coordination	is	in	turn	the	foundation	of	both	cooperation
and	the	controlled	competition	that	drives	material	and	cultural	innovation.	A	key	sub-theme	of	coordination	is	specialization	of	labor	within	teams.	Because	the	first	extended	commentary	on	this	topic	was	given	by	Adam	Smith,	who	is	associated	with	the	origin	of	rigorous	economics,	specialization	of	labor	is	strongly	culturally	associated,	everywhere
in	the	world,	with	commercial	production.	However,	it	has	been	a	fundamental	feature	of	human	life	since	the	dawn	of	our	species.	The	paleoeconomist	Haim	Ofek	(2001)	argues	persuasively	that	our	immediate	pre-Sapiens	ancestors	were	able	to	control	fire	because	they	learned	to	divide	labor	between	specialist	fire-maintainers,	and,	on	the	other
side	of	the	market,	those	who	gathered	and	hunted.	Cooking,	which	vastly	increased	the	efficiency	of	food	consumption	and	freed	proto-people	to	devote	time	to	other	things	such	as	cultivation	of	tools	and	social	enrichment,	was	in	turn	an	essential	triggering	condition	for	the	explosive	growth	of	the	human	brain	(Wrangham	2009),	and	subsequently,
as	argued	by	Planer	and	Sterelny	(2009),	for	the	emergence	of	language.	Thus	on	Ofek’s	account,	coordinated	specialisation	of	labor	in	the	most	narrowly	and	literally	economic	sense	lay	at	the	very	foundation	of	the	human	career;	the	first	people	who	maintained	fire	station	services	that	they	bartered	for	the	kills	and	tools	of	their	customers	were	the
first	business	enterprises.	Perhaps	paleolithic	fire	station	operators	competed	for	customers	and	for	accessible	sites	protected	from	rain	by	overhead	rock	ledges	or	cave	ceilings;	if	so,	the	logic	of	industrial	organization	theory,	the	first	sub-field	of	economics	taken	over	by	game	theory,	would	have	applied	to	their	strategizing.	In	the	simplest	models	of
specialization	of	labor,	the	different	roles	can	be	assigned	by	chance.	If	two	of	us	are	making	pizza,	who	grates	the	cheese	and	who	slices	the	mushrooms	might	be	decided	by	who	happens	to	be	standing	closer	to	which	implement.	But	this	kind	of	situation	isn’t	typical.	More	often,	role	assignments	are	a	function	of	differential	abilities.	If	two	of	us	will
row	a	boat,	and	one	of	us	is	right-handed	while	the	other	is	left-handed,	it’s	obvious	who	should	sit	on	which	side.	In	this	case	there	should	be	no	call	for	strategic	bargaining	over	who	does	what,	because	benefits	arising	from	getting	where	we	want	to	go	as	quickly	as	possible	are	symmetrically	shared.	But	this	is	also	an	atypical	kind	of	case.	More
frequently,	some	roles	are	less	costly	to	perform	than	others,	or	attract	greater	expected	rewards.	Everyone	who	has	formed	a	rock	band	knows	that	a	disproportionate	share	of	fame	and	fringe	benefits	tends	to	go	to	the	lead	guitarist	rather	than	the	drummer	or	the	bass	player.	For	decades	after	the	birth	of	rock,	there	was	a	notable	absence	of
female	lead	guitarists	among	successful	bands,	and	much	consequent	commentary	by	female	musicians	and	fans	about	pompous	macho	posturing	in	the	common	stage	attitudes	of	‘guitar	heroes’.	Bands	like	Sleater-Kinney	and	the	Breeders	have	been	notable	for	pushing	back	against	this	cultural	trope.	This	example	draws	attention	to	a	much	more
general	and	deeply	important	aspect	of	specialization	of	labor,	on	which	game	theory	sheds	crucial	light.	As	discussed	above,	specialization	of	labor	was	foundational	for	the	evolution	and	rise	to	ecological	dominance	of	the	human	species.	And	the	most	pervasive	and	significant	basis	for	assigning	differentiated	roles,	observed	in	every	naturally
arising	human	population,	is	sex.	The	original	basis	for	this	is	almost	certainly	some	asymmetries	in	relative	performance	advantages	on	different	tasks,	as	in	the	case	of	the	boat	rowers.	Hunting	large	game	is	more	efficiently	carried	out	by	people	with	bigger	muscles.	Furthermore,	hunting	requires	mobility	and	often	silence,	so	is	best	not	done	while
carrying	babies.	Thus	a	very	common,	though	not	universal,	pattern	of	specialization	in	hunter-gatherer	communities,	including	surviving	contemporary	ones,	is	for	men	to	hunt	while	women	gather	and	perform	tasks,	such	as	mending	and	food	processing,	that	can	be	carried	out	at	home	base	and	combined	with	child-minding.	The	consequences	of
this	are	politically	profound.	Hunters	become	masters	of	weapons.	Masters	of	weapons	tend	to	exercise	disproportionate	power,	especially	if,	as	in	later	stages	of	human	ecological	history,	the	communities	they	belong	to	periodically	engage	in	violent	conflict	with	other	groups.	It	has	long	been	understood	that	the	roots	of	male	political	and	social
dominance	that	is	the	predominant	pattern	across	human	history	and	cultures	has	its	roots	in	this	ancient	division	of	productive	roles.	In	modern	societies,	hunting	is	fringe	activity	and	the	most	powerful	people	are	not	those	who	are	most	adept	at	throwing	spears.	This	has	been	so,	in	most	cultural	lines,	for	a	very	long	time,	so	there	has	been	plenty
of	scope	for	cultural	evolution	to	wash	away	traditional	sources	of	power	imbalance.	This	makes	the	stubborn	persistence	of	gendered	inequality	puzzling	at	first	glance.	It	has	often	fostered	speculation	about	possible	innate	male	dispositions	to	be	more	effective,	or	at	least	more	ruthless,	executives	and	presidents.	Or	perhaps,	it	is	sometimes
suggested,	the	ultimate	source	of	the	power	asymmetry	is	asymmetry	of	threats	of	physical	violence	in	households.	(This	is	certainly	real,	and	a	genuine	basis	for	male	tyranny	in	many	domestic	partnerships.	But	what	is	at	issue	is	whether	it	suffices	to	explain	pervasive	patterns.)	Recent	work	by	the	game	theorist	Cailin	O’Connor	(2019)	suggests	a
deeper	and	much	more	powerful	explanation.	It	is	more	scientifically	powerful	partly	because	it	fits	a	range	of	evidence	more	closely	than	the	reductive	stories	just	mentioned,	but	also	because	it	accounts	for	more	specific	side-effects	of	the	general	phenomenon.	In	particular,	it	explains	the	stabilization	of	culturally	learned	gender	characteristics	that
help	people	signal	awareness	and	acceptance	of	roles	expected	to	be	associated	with	their	biological	sexes.	Of	course,	this	cultural	code,	since	it	can	be	strategically	manipulated,	also	allows	some	people	to	signal	rejection	of	these	roles,	and	to	coordinate	this	rejection	with	other	women,	men,	or	non-binary	people,	who	seek	reformed	equilibria.
O’Connor’s	game-theoretic	analysis	comes	in	two	parts.	First,	she	uses	evolutionary	game	theory,	the	topic	of	Section	7	below,	to	show	how	relatively	functionally	minor	asymmetries	in	role	effectiveness	can	foster	extremely	robust	use	of	group	difference	markers	that	entrench	unequal	outcomes.	Selecting	equilibria	for	role	specialization	is,	as	we’ve
seen	earlier	in	this	section,	logically	difficult	in	the	absence	of	correlation	signals.	A	society	will	tend	to	seize	on	any	such	signal	that	is	frequently	and	reliably	available,	and	following	equilibrium	strategies	based	on	such	signals	is	in	each	player’s	marginal	self-interest	from	game	to	game,	even	if,	as	in	the	PD,	many	or	even	all	could	be	better	off	if	the
whole	set	of	agents	could	flip	to	an	alternative	equilibrium.	Then,	as	we	have	also	discussed,	the	signals	in	question	will	tend	to	culturally	evolve	into	the	basis	for	norms,	so	that,	as	in	the	phenomenon	under	discussion,	women	who	‘walk	like	men’or	‘talk	like	men’or	show	interest	in	‘male’activities	or	sexual	partners	are	subject	to	sanctions,	including
by	many	other	women.	Thus	does	sex	beget	gender.	(Notice	that	if	women	really	were	less	competent	leaders	than	men,	then,	given	that	leadership	is	typically	earned	through	competition	in	functional	settings,	it	is	not	clear	why	sexually	differentiated	roles	would	need	to	be	sustained	by	normative	genders	in	the	first	place.)	In	effect,	O’Connor’s	first
application	of	game	theory	shows	that	women	are	assigned	different	social	roles	from	men,	which	leads	to	inequality,	simply	because	‘sex’is	a	group	assignment	we	can	usually	(not	quite	always)	determine	about	a	person	at	birth,	before	we	embark	on	socializing	them.	(The	reader	will	note	that	similar	logic	based	on	correlated	equilibrium	applies	to
the	normative	construct	of	race,	which	has	no	basis	in	expected	functional	capacities	at	all.	This	partly	explains	why	discrimination	against	people	whose	‘race’can	be	assigned	at	a	glance,	such	as	Black	people	in	the	US,	has	been	vastly	harder	to	overcome	than	earlier	racist	discrimination	against	Irish	people	in	the	same	country.)	Sexual	inequality
arising	as	an	equilibrium	selection	effect	may	(and	should)	be	criticized	on	moral	grounds,	but	at	least	we	can	recognize	that	it	arose	due	to	(partly)	compensating	efficiencies.	Against	this	standard,	the	second	part	of	O’Connor’s	analysis	suggests	no	such	trade-off.	At	the	dawn	of	the	development	of	game	theory,	Nash	(1950b)	modelled	a	general	case
of	two	agents	bargaining	over	the	division	of	a	surplus	they	could	obtain	together.	Obviously,	this	is	as	central	a	phenomenon	for	economists	as	anything	else	it	is	their	job	to	think	about,	as	important	in	a	simple	bartering	society	as	in	a	capitalist	one.	The	core	of	the	so-called	‘Nash	bargaining	solution’	is	that	the	equilibria	for	such	negotiations	are
conditional	on	the	relative	values	of	their	fall-back	positions	should	they	fail	to	reach	agreement.	You	can	get	me	to	pay	more	for	your	house	if	you	know	that,	should	we	not	reach	a	deal,	I’ll	have	nowhere	to	put	my	furniture	when	my	my	boat	arrives	in	port.	As	discussed	in	depth	by	Ken	Binmore	(1994,	1998,	2005a),	superior	fall-backs	in	bargaining
contexts	are	the	basic	source	of	power	differentials	in	a	society.	Furthermore,	as	Binmore	also	argues,	a	society’s	specific	norms	tend	to	evolve	to	accommodate	these	asymmetries,	since	failures	of	alignment	in	expectations	about	‘fairness’in	bargaining	are	every	community’s	most	frequent	cause	of	conflict	and	of	investment	failures.	O’Connor	applies
this	element	of	game	theory	to	inequality	of	sex	and	gender.	She	begins	where	the	first	part	of	her	analysis	leaves	off:	with	normatively	entrenched	gendered	roles	that	evolve	as	equilibrium	selection	devices	but	produce	inequality.	Note	that	this	is	a	feature	of	the	social	macrostructure,	the	domain	of	application	for	evolutionary	game	theory.	She	then
examines	the	micro-dynamics	of	a	statistically	typical	household	from	the	perspective	of	Nash	bargaining	theory	(and	also	using	tools	from	strategic	network	theory,	as	touched	upon	in	Section	5).	Evidence	from	wealthy	countries	shows	that	in	the	subset	of	households	in	which	men’s	and	women’s	levels	of	education	and	income	have	converged,
women	continue	on	average	to	do	disproportionate	shares	of	home	maintenance	work,	and	their	leisure	hours	have	declined.	Nash	bargaining	theory	can	explain	why.	Suppose	we	interpret	the	meaning	of	a	general	bargaining	breakdown	in	the	case	of	a	marriage	as	divorce.	If	men	spend	more	time	and	energy	outside	the	home	than	women,	they
thereby	build	larger	flows	and	stocks	of	the	social	networking	assets	that	make	the	inefficiencies	of	single	life	less	costly,	and	are	more	likely	to	advance	their	earning	power.	Thus	they	enjoy	stronger	fall-back	positions	where	bargaining	over	the	division	of	household	responsibilities	is	concerned.	The	unequal	equilibrium	is	thus	self-amplifying	over
time,	as	men’s	networks	progressively	deepen	and	become	more	relatively	valuable	over	the	course	of	both	partners’	careers.	To	accept	the	relevance	of	the	model,	we	need	not	imagine	husbands	and	wives	literally	haggling	over	explicit	shares	of	time,	with	calculations	of	expected	marginal	contributions	to	household	income	cited	as	arguments.	We
need	merely	picture	women	repeatedly	leaving	their	offices	earlier	to	pick	up	children	or	receive	home	service	calls	because	their	husbands	are	continuously	tied	up	in	meetings	or	business	trips	with	higher	stakes	on	the	immediate	line.	Unlike	the	games	in	the	first	part	of	O’Connor’s	analysis,	there	are	no	social	efficiencies	achieved	in	exchange	for
this	dynamic	inequity,	since	there	is	no	reason	to	suppose	that	women	are	intrinsically	likely	to	have	less	economically	productive	careers	than	similarly	educated	men.	And	the	pattern	of	falling	female	leisure	time	may	increase	with	women’s	educational	advancement,	as	more	demanding	professional	activities	are	piled	atop	stationary	levels	of
household	responsibility.	(Past	a	certain	level	of	a	household’s	wealth	we	might	expect	this	effect	to	reverse,	as	women	can	hire	in-home	service.	But	this	applies	only	to	a	small	upper	share	of	the	income	distribution.)	This	part	of	O’Connor’s	model	has	direct	policy	implications.	Efforts	to	improve	women’s	access	to	valuable	credentials,	and	to
encourage	companies	to	increase	female	representation	at	executive	levels,	may	have	muted	or	even	negative	effects	on	welfare	equality	between	the	sexes.	Societies	might	also	need	to	devote	more	substantial	resources	to	subsidising	childcare	provision	outside	of	homes,	and	living	assistance	to	ageing	parents,	as	measures	that	increase	women’s
intra-household	bargaining	power.	The	first	part	of	O’Connor’s	analysis	also	has	important	implications	for	policy.	As	she	stresses,	if	inequalities	between	differentiable	groups	arise	naturally	through	equilibrium	dynamics	in	coordination	games,	then	we	should	not	expect	to	be	able	to	find	policies	that	eradicate	them	once	and	for	all.	Controlling
inequality,	O’Connor	concludes,	calls	for	persistent	and	recurrently	applied	political	effort	by	egalitarians.	In	general,	coordination	dynamics	constitute	the	analytical	core	of	the	majority	of	human	social	patterns.	Examples	considered	here	are	merely	illustrative	of	a	limitless	array	of	such	phenomena,	which	cannot	be	fully	understood	without
empirically	guided	construction	and	application	of	game-theoretic	models.	5.	Team	Reasoning	and	Conditional	Games	Following	Lewis’s	(1969)	introduction	of	coordination	games	into	the	philosophical	literature,	the	philosopher	Margaret	Gilbert	(1989)	argued,	as	against	Lewis,	that	game	theory	is	the	wrong	kind	of	analytical	technology	for	thinking
about	human	conventions	because,	among	other	problems,	it	is	too	‘individualistic’,	whereas	conventions	are	essentially	social	phenomena.	More	directly,	her	claim	was	that	conventions	are	not	merely	the	products	of	decisions	of	many	individual	people,	as	might	be	suggested	by	a	theorist	who	modeled	a	convention	as	an	equilibrium	of	an	\(n\)-
person	game	in	which	each	player	was	a	single	person.	Similar	concerns	about	allegedly	individualistic	foundations	of	game	theory	have	been	echoed	by	another	philosopher,	Martin	Hollis	(1998)	and	economists	Robert	Sugden	(1993,	2000,	2003)	and	Michael	Bacharach	(2006).	In	particular,	it	motivated	Bacharach	to	propose	a	theory	of	team
reasoning,	which	was	completed	by	Sugden,	along	with	Nathalie	Gold,	after	Bacharach’s	death.	In	this	section	we	will	review	the	idea	of	team	reasoning,	along	with	an	alternative	way	of	applying	game	theory	to	sociological	topics,	the	theory	of	conditional	games	(Stirling	(2012);	Ross	and	Stirling	2021).	Consider	again	the	one-shot	Prisoner’s
Dilemma	as	discussed	in	Section	2.4	and	produced,	with	an	inverted	matrix	for	ease	of	subsequent	discussion,	as	follows:	II	\(C\)	\(D\)	I	\(C\)	2,2	0,3	\(D\)	3,0	1,1	(C	denotes	the	strategy	of	cooperating	with	one’s	opponent	(i.e.,	refusing	to	confess)	and	D	denotes	the	strategy	of	defecting	on	a	deal	with	one’s	opponent	(i.e.,	confessing).)	Many	people	find
it	incredible	when	a	game	theorist	tells	them	that	players	designated	with	the	honorific	‘rational’	must	choose	in	this	game	in	such	a	way	as	to	produce	the	outcome	(D,D).	The	explanation	seems	to	require	appeal	to	very	strong	forms	of	both	descriptive	and	normative	individualism.	After	all,	if	the	players	attached	higher	value	to	the	social	good	(for
their	2-person	society	of	thieves)	than	to	their	individual	welfare,	they	could	then	do	better	individually	too;	obstinate	individualism,	it	is	objected,	yields	behavior	that	is	perverse	from	the	individually	optimizing	point	of	view,	and	so	seems	incoherent.	The	players	undermine	their	own	welfare,	one	might	argue,	because	they	obstinately	refuse	to	pay
any	attention	to	the	social	context	of	their	choices.	Sugden	(1993)	seems	to	have	been	the	first	to	suggest	that	even	non-altruistic	players	in	the	one-shot	PD	might	jointly	see	that	they	could	reason	as	a	team,	that	is,	arrive	at	their	choices	of	strategies	by	asking	‘What	is	best	for	us?’	instead	of	’What	is	best	for	me?’.	Binmore	(1994)	forcefully	argues
that	this	line	of	criticism	confuses	game	theory	as	mathematics	with	questions	about	which	game	theoretic	models	are	most	typically	applicable	to	situations	in	which	people	find	themselves.	If	players	value	the	utility	of	a	team	they’re	part	of	over	and	above	their	more	narrowly	individualistic	interests,	then	this	should	be	represented	in	the	payoffs
associated	with	a	game	theoretic	model	of	their	choices.	In	the	situation	modeled	as	a	PD	above,	if	the	two	players’	concern	for	‘the	team’	were	strong	enough	to	induce	a	switch	in	strategies	from	D	to	C,	then	the	payoffs	in	the	(cardinally	interpreted)	upper	left	cell	would	have	to	be	raised	to	at	least	3.	(At	3,	players	would	be	indifferent	between
cooperating	and	defecting.)	Then	we	get	the	following	transformation	of	the	game:	II	\(C\)	\(D\)	I	\(C\)	4,4	0,3	\(D\)	3,0	1,1	This	is	no	longer	a	PD;	it	is	an	Assurance	game,	which	has	two	NE	at	(C,C)	and	(D,D),	with	the	former	being	Pareto	superior	to	the	latter.	Thus	if	the	players	find	this	equilibrium,	we	should	not	say	that	they	have	played	non-NE
strategies	in	a	PD.	Rather,	we	should	say	that	the	PD	was	the	wrong	model	of	their	situation.	The	critic	of	individualism	can	acknowledge	Binmore’s	logical	point	but	accommodate	it	by	arguing	that	changing	the	game	is	exactly	what	people	should	try	to	do	if	they	find	themselves	in	situations	that,	when	the	relevant	interpretation	of	economic	agency
is	individualistic,	have	the	structure	of	PDs.	This	is	precisely	Bacharach’s	theoretical	proposal.	His	scientific	executors,	Sugden	and	Gold,	in	Bacharach	(2006),	pp.	171–173),	unlike	Hollis	and	Sugden	(1993),	use	the	standard	convention	for	payoff	interpretation,	under	which	players	can	only	be	modeled	as	cooperating	in	a	one-shot	PD	if	at	least	one
player	makes	an	error.	Under	this	assumption,	Bacharach,	Sugden	and	Gold	argue,	human	game	players	will	often	or	usually	avoid	framing	situations	in	such	a	way	that	a	one-shot	PD	is	the	right	model	of	their	circumstances.	A	situation	that	‘individualistic’	agents	would	frame	as	a	PD	might	be	framed	by	‘team	reasoning’	agents	as	the	Assurance
game	transformation	above.	Note	that	the	welfare	of	the	team	might	make	a	difference	to	(cardinal)	payoffs	without	making	enough	of	a	difference	to	trump	the	lure	of	unilateral	defection.	Suppose	it	bumped	them	up	to	2.5	for	each	player;	then	the	game	would	remain	a	PD.	This	point	is	important,	since	in	experiments	in	which	subjects	play
sequences	of	one-shot	PDs	(not	repeated	PDs,	since	opponents	in	the	experiments	change	from	round	to	round),	majorities	of	subjects	begin	by	cooperating	but	learn	to	defect	as	the	experiments	progress.	On	Bacharach’s	account	of	this	phenomenon,	these	subjects	initially	frame	the	game	as	team	reasoners.	However,	a	minority	of	subjects	frame	it
as	individualistic	reasoners	and	defect,	taking	free	riders’	profits.	The	team	reasoners	then	re-frame	the	situation	to	defend	themselves.	This	introduces	a	crucial	aspect	of	Bacharach’s	account.	Individualistic	reasoners	and	team	reasoners	are	not	claimed	to	be	different	types	of	people.	People,	Bacharach	maintains,	tend	to	flip	back	and	forth	between
individualistic	agency	and	participation	in	team	agency.	Now	consider	the	following	Pure	Coordination	game:	II	\(C\)	\(D\)	I	\(C\)	1,1	0,0	\(D\)	0,0	1,1	We	can	interpret	this	as	representing	a	situation	in	which	players	are	narrowly	individualistic,	and	thus	each	indifferent	between	the	two	NE	of	(U,	L)	and	(D,	R),	or	are	team	reasoners	but	haven’t
recognized	that	their	team	is	better	off	if	they	stabilize	around	one	of	the	NE	rather	than	the	other.	If	they	do	come	to	such	recognition,	perhaps	by	finding	a	focal	point,	then	the	Pure	Coordination	game	is	transformed	into	the	following	game	known	as	Hi-Lo:	II	\(t_1\)	\(t_2\)	I	\(s_1\)	10,10	0,0	\(s_2\)	0,0	1,1	Crucially,	here	the	transformation	requires
more	than	mere	team	reasoning.	The	players	also	need	focal	points	to	know	which	of	the	two	Pure	Coordination	equilibria	offers	the	less	risky	prospect	for	social	stabilization	(Binmore	2008).	In	fact,	Bacharach	and	his	executors	are	interested	in	the	relationship	between	Pure	Coordination	games	and	Hi-Lo	games	for	a	special	reason.	It	does	not	seem
to	imply	any	criticism	of	NE	as	a	solution	concept	that	it	doesn’t	favor	one	strategy	vector	over	another	in	a	Pure	Coordination	game.	However,	NE	also	doesn’t	favor	the	choice	of	(U,	L)	over	(D,	R)	in	the	Hi-Lo	game	depicted,	because	(D,	R)	is	also	a	NE.	At	this	point	Bacharach	and	his	friends	adopt	the	philosophical	reasoning	of	the	refinement
program.	Surely,	they	complain,	‘rationality’	recommends	(U,	L).	Therefore,	they	conclude,	axioms	for	team	reasoning	should	be	built	into	refined	foundations	of	game	theory.	We	need	not	endorse	the	idea	that	game	theoretic	solution	concepts	should	be	refined	to	accommodate	an	intuitive	general	concept	of	rationality	to	motivate	interest	in
Bacharach’s	contribution.	The	non-psychological	game	theorist	can	propose	a	subtle	shift	of	emphasis:	instead	of	worrying	about	whether	our	models	should	respect	a	team-centred	norm	of	rationality,	we	might	simply	point	to	empirical	evidence	that	people,	and	perhaps	other	agents,	seem	to	often	make	choices	that	reveal	preferences	that	are
conditional	on	the	welfare	of	groups	with	which	they	are	associated.	To	this	extent	their	agency	is	partly	or	wholly—and	perhaps	stochastically—identified	with	these	groups,	and	this	will	need	to	be	reflected	when	we	model	their	agency	using	utility	functions.	Then	we	could	better	describe	the	theory	we	want	as	a	theory	of	team-centred	choice	rather
than	as	a	theory	of	team	reasoning.	Note	that	this	philosophical	interpretation	is	consistent	with	the	idea	that	some	of	our	evidence,	perhaps	even	our	best	evidence,	for	the	existence	of	team-centred	choice	is	psychological.	It	is	also	consistent	with	the	suggestion	that	the	processes	that	flip	people	between	individualized	and	team-centred	agency	are
often	not	deliberative	or	consciously	represented.	The	point	is	simply	that	we	need	not	follow	Bacharach	in	thinking	of	game	theory	as	a	model	of	reasoning	or	rationality	in	order	to	be	persuaded	that	he	has	identified	a	gap	we	would	like	to	have	formal	resources	to	fill.	So,	do	people’s	choices	seem	to	reveal	team-centred	preferences?	Standard
examples,	including	Bacharach’s	own,	are	drawn	from	team	sports.	Members	of	such	teams	are	under	considerable	social	pressure	to	choose	actions	that	maximize	prospects	for	victory	over	actions	that	augment	their	personal	statistics.	The	problem	with	these	examples	is	that	they	embed	difficult	identification	problems	with	respect	to	the
estimation	of	utility	functions;	a	narrowly	self-interested	player	who	wants	to	be	popular	with	fans	might	behave	identically	to	a	team-centred	player.	Soldiers	in	battle	conditions	provide	more	persuasive	examples.	Though	trying	to	convince	soldiers	to	sacrifice	their	lives	in	the	interests	of	their	countries	is	often	ineffective,	most	soldiers	can	be
induced	to	take	extraordinary	risks	in	defense	of	their	buddies,	or	when	enemies	directly	menace	their	home	towns	and	families.	It	is	easy	to	think	of	other	kinds	of	teams	with	which	most	people	plausibly	identify	some	or	most	of	the	time:	project	groups,	small	companies,	political	constituency	committees,	local	labor	unions,	clans	and	households.
Strongly	individualistic	social	theory	tries	to	construct	such	teams	as	equilibria	in	games	amongst	individual	people,	but	no	assumption	built	into	game	theory	(or,	for	that	matter,	mainstream	economic	theory)	forces	this	perspective	(see	Guala	(2016)	for	a	critical	review	of	options).	We	can	instead	suppose	that	teams	are	often	exogenously	welded
into	being	by	complex	interrelated	psychological	and	institutional	processes.	This	invites	the	game	theorist	to	conceive	of	a	mathematical	mission	that	consists	not	in	modeling	team	reasoning,	but	rather	in	modeling	choice	that	is	conditional	on	the	existence	of	team	dynamics.	Stirling	(2012)	formalizes	such	conditional	interactions	for	use	in	a	special
application	context:	an	AI	system	with	a	distributed-control	architecture.	Such	systems	achieve	processing	efficiencies	by	devolving	aspects	of	problems	to	specialized	sub-systems.	The	efficiencies	in	question	are	not	achievable	unless	the	sub-systems	operate	their	own	utility	functions;	otherwise	the	system	is	really	just	a	standard	computer	with	an
executive	control	bottleneck	that	calls	sub-routines.	But	if	the	sub-systems	are,	then,	distinct	economic	agents,	risk	of	incoherence	arises	at	the	level	of	the	whole	system.	It	might,	that	is,	behave	like	a	typical	democratic	political	community,	pursuing	contradictory	policies	or	falling	into	gridlock	and	paralysis.	An	engineer	of	such	a	system	would
include	avoidance	of	such	problems	in	her	design	specs.	Is	there	a	way	in	which	the	design	could	implement	the	advantages	of	genuine	distributed	control	among	sub-agents	while	also	ensuring	consistency	at	the	whole-system	level?	This	is	the	problem	Stirling	set	out	to	solve.	The	resemblance	to	Bacharach’s	conception	emerges	if	we	frame	Stirling’s
challenge	as	follows:	we	want	the	sub-agents	to	interact	with—that	is,	play	games	amongst—one	another	as	individuals,	but	then	we	want	to	allow	only	solutions	that	would	be	products	of	team	reasoning.	One	of	Stirling’s	two	basic	innovations	is	to	have	players	condition	their	choices	on	one	another’s	action	profiles	rather	than	on	outcomes.	The
motivation	for	this	is	that	while	the	sub-agents	are	choosing	as	individuals,	they	cannot	simultaneously	know	what	utilities	will	be	assigned	to	outcomes	at	the	team	level.	(If	they	did,	we	would	again	assume	away	what	makes	the	problem	interesting,	and	the	sub-agents	would	just	be	sub-routines.)	Here	Stirling	considers	an	analogy	from	human	social
psychology,	which	will	turn	out	to	be	the	germ	of	a	conceptual	innovation	when	we	shift	the	application	context	away	from	AI	design	and	back	to	social	science.	Stirling’s	analogy	to	a	human	phenomenon	draws	on	the	point	that	people	often	encounter	contexts	of	interaction	with	others	in	which	their	preferences	are	not	fully	formed	in	advance.
Psychologists	study	this	under	the	label	of	‘preference	construction’	(Lichtenstein	and	Slovic	2006),	reflecting	the	intuition	that	people	build	their	preferences	through	interaction.	Stirling	provides	a	simple	(arguably	too	simple)	example	from	Keeney	and	Raiffa	(1976),	in	which	a	farmer	forms	a	clear	preference	among	different	climate	conditions	for	a
land	purchase	only	after,	and	partly	in	light	of,	learning	the	preferences	of	his	wife.	This	little	thought	experiment	is	plausible,	but	not	ideal	as	an	illustration	because	it	is	easily	conflated	with	vague	notions	we	might	entertain	about	fusion	of	agency	in	the	ideal	of	marriage—and	it	is	important	to	distinguish	the	dynamics	of	preference
conditionalization	in	teams	of	distinct	agents	from	the	simple	collapse	of	individual	agency.	So	let	us	construct	a	better	example,	drawn	from	Hofmeyr	and	Ross	(2019).	Imagine	a	corporate	Chairperson	consulting	her	risk-averse	Board	about	whether	they	should	pursue	a	dangerous	hostile	takeover	bid.	Compare	two	possible	procedures	she	might
use:	in	process	(i)	she	sends	each	Board	member	an	individual	e-mail	about	the	idea	a	week	prior	to	the	meeting;	in	process	(ii)	she	springs	it	on	them	collectively	at	the	meeting.	Most	people	will	agree	that	the	two	processes	might	yield	different	outcomes,	and	that	a	main	reason	for	this	is	that	on	process	(i),	but	not	(ii),	some	members	might
entrench	personal	opinions	that	they	would	not	have	time	to	settle	into	if	they	received	information	about	one	another’s	willingness	to	challenge	the	Chair	in	public	at	the	same	time	as	they	heard	the	proposal	for	the	first	time.	In	both	imagined	processes	there	are,	at	the	point	of	voting,	sets	of	individual	preferences	to	be	aggregated	by	the	vote.	But
it	is	more	likely	that	some	preferences	in	the	set	generated	by	the	second	process	were	conditional	on	preferences	of	others.	A	conditional	preference	as	Stirling	defines	it	is	a	preference	(over	actions)	that	is	influenced	by	information	about	the	preferences	(over	actions)	of	(specified)	others.	A	second	notion	formalized	in	Stirling’s	theory	is
concordance.	This	refers	to	the	extent	of	controversy	or	discord	to	which	a	set	of	preferences,	including	a	set	of	conditional	preferences,	would	generate	if	equilibrium	among	them	were	implemented.	Members	or	leaders	of	teams	do	not	always	want	to	maximize	concordance	by	engineering	all	internal	games	as	Assurance	or	Hi-lo	(though	they	will
always	likely	want	to	eliminate	PDs).	For	example,	a	manager	might	want	to	encourage	a	degree	of	competition	among	profit	centers	in	a	firm,	while	wanting	the	cost	centers	to	identify	completely	with	the	team	as	a	whole.	Stirling	formally	defines	representation	theorems	for	three	kinds	of	ordered	utility	functions:	conditional	utility,	concordant
utility	and	conditional	concordant	utility.	These	may	be	applied	recursively,	i.e.	to	individuals,	to	teams	and	to	teams	of	teams.	Then	the	core	of	the	formal	development	is	the	theory	that	aggregates	individuals’	conditional	concordant	preferences	to	build	models	of	team	choice	that	are	not	exogenously	imposed	on	team	members,	but	instead	derive
from	their	several	preferences.	In	stating	Stirling’s	aggregation	procedure	in	the	present	context,	it	is	useful	to	change	his	terminology,	and	therefore	paraphrase	him	rather	than	quote	directly.	This	is	because	Stirling	refers	to	“groups”	rather	than	to	“teams”.	Stirling’s	initial	work	on	CGT	was	entirely	independent	of	Bacharach’s	work,so	was	not
configured	within	the	context	of	team	reasoning	(or	what	we	might	reinterpret	as	team-centred	choice).	But	Bacharach’s	ideas	provide	a	natural	setting	in	which	to	frame	Stirling’s	technical	achievement	as	an	enrichment	of	the	applicability	of	game	theory	in	social	science	(see	Hofmeyr	and	Ross	(2019)).	We	can	then	paraphrase	his	five	constraints	on
aggregation	as	follows:	(1)	Conditioning:	A	team	member’s	preference	ordering	may	be	influenced	by	the	preferences	of	other	team	members,	i.e.	may	be	conditional.	(Influence	may	be	set	to	zero,	in	which	case	the	conditional	preference	ordering	collapses	to	the	categorical	preference	ordering	to	standard	RPT.)	(2)	Endogeny:	A	concordant	ordering
for	a	team	must	be	determined	by	the	social	interactions	of	its	sub-teams.	(This	condition	ensures	that	team	preferences	are	not	simply	imposed	on	individual	preferences.)	(3)	Acyclicity:	Social	influence	relations	are	not	reciprocal.	(This	will	likely	look	at	first	glance	to	be	a	strange	restriction:	surely	most	social	influence	relationships,	among	people
at	any	rate,	are	reciprocal.	But,	as	noted	earlier,	we	need	to	keep	conditional	preference	distinct	from	agent	fusion,	and	this	condition	helps	to	do	that.	More	importantly,	as	a	matter	of	mathematics	it	allows	teams	to	be	represented	in	directed	graphs.	The	condition	is	not	as	restrictive,	where	modeling	flexibility	is	concerned,	as	one	might	at	first
think,	for	two	reasons.	First,	it	only	bars	us	from	representing	an	agent	\(j\)	influenced	by	another	agent	\(i\)	from	directly	influencing	\(i\).	We	are	free	to	represent	\(j\)	as	influencing	\(k\)	who	in	turn	influences	\(i\).)	Second,	and	more	importantly,	in	light	of	the	exchangeability	constraint	below,	aggregation	is	insensitive	to	the	ordering	of	pairs	of
players	between	whom	there	is	a	social	influence	relationship.)	(4)	Exchangeability:	Concordant	preference	orderings	are	invariant	under	representational	transformations	that	are	equivalent	with	respect	to	information	about	conditional	preferences.	(5)	Monotonicity:	If	one	sub-team	prefers	choice	alternative	\(A\)	to	\(B\)	and	all	other	sub-teams	are
indifferent	between	\(A\)	and	\(B\),	then	the	team	does	not	prefer	\(B\)	to	\(A\).	Under	these	restrictions,	Stirling	proves	an	aggregation	theorem	which	follows	a	general	result	for	updating	utility	in	light	of	new	information	that	was	developed	by	Abbas	(2003,	Other	Internet	Resources).	Individual	team	members	each	calculate	the	team	preference	by
aggregating	conditional	concordant	preferences.	Then	the	analyst	applies	marginalization.	Let	\(X^n\)	be	a	team.	Let	\(X^m=\{X_{j1},\ldots,X_{jm}\}\)	and	\(X	=	\{X_{i1},\ldots,	X_{ik}\}\)	be	disjoint	sub-teams	of	\(X^n\).	Then	the	marginal	concordant	utility	of	\(X^m\)	with	respect	to	the	sub-team	\(\{X^m,	X^k\}\)	is	obtained	by	summing	over	\
(\mathcal{A}^k\),	yielding	\[	U_{x_m}(\alpha_m)	=	\sum_{\alpha_k}	Ux_m	x_k	(\alpha_m,	\alpha_k)	\]	and	the	marginal	utility	of	the	individual	team	member	\(X_i\)	is	given	by	\[	U_{x_m}(\alpha_m)	=	\sum_{\sim	\mathbb{a}_i}	Ux_n	(\mathbb{a}_1,	\ldots,	\mathbb{a}_n)	\]	where	the	notation	\(\sum_{\sim	\mathbb{a}_i}\)	means	that	the	sum	is	taken
over	all	arguments	except	\(\mathbb{a}_i\)	(Stirling	(2012),	p.	62).	This	operation	produces	the	non-conditional	preferences	of	individual	\(i\)	ex	post—that	is,	updated	in	light	of	her	conditional	concordant	preferences	and	the	information	on	which	they	are	conditioned,	namely,	the	conditional	concordant	preferences	of	the	team.	Once	all	ex	post
preferences	of	agents	have	been	calculated,	the	resulting	games	in	which	they	are	involved	can	be	solved	by	standard	analysis.	Stirling’s	construction	is,	as	he	says,	a	true	generalization	of	standard	utility	theory	so	as	to	make	non-conditioned	(“categorical”)	utility	a	special	case.	It	provides	a	basis	for	formalization	of	team	utility,	which	can	be
compared	with	any	of	the	following:	the	pre-conditioned	categorical	utility	of	an	individual	or	sub-team;	the	conditional	utility	of	an	individual	or	sub-team;	or	the	conditional	concordant	utility	of	an	individual	or	sub-team.	Once	every	individual’s	preferences	in	a	team	choice	problem	have	been	marginalized,	NE,	SPE	or	QRE	analyses	can	be	proposed
as	solutions	to	the	problem	given	full	information	about	social	influences.	Situations	of	incomplete	information	can	be	solved	using	Byes-Nash	or	sequential	equilibrium.	In	case	the	reader	has	struggled	to	follow	the	overall	point	of	the	technical	constructions	above,	we	can	summarize	the	achievement	of	conditional	game	theory	(CGT)	in	higher-level
terms	as	follows.	CGT	models	the	propagation	of	influence	flows	by	applying	the	formal	syntax	of	probability	theory	(through	the	operation	of	marginalization)	to	game	theory,	and	constructing	graph	theoretical	representations.	As	social	influence	propagates	through	a	group	and	players	modulate	their	preferences	on	the	basis	of	other	players’
preferences,	a	group	preference	may	emerge.	Group	preferences	are	not	a	direct	basis	for	action,	but	encapsulate	a	social	model	incorporating	the	relationships	and	interdependencies	among	the	agents.	CGT	shows	us	how	to	derive	a	coordination	ordering	for	a	group	which	combines	the	conditional	and	categorical	preferences	of	its	members,	in
much	the	same	way	as,	in	probability	theory,	the	joint	probability	of	an	event	is	determined	by	conditional	and	marginal	probabilities.	So,	just	as	the	conventional	application	of	the	probability	syntax	is	a	means	of	expressing	a	cognizer’s	epistemological	uncertainty	regarding	belief,	so	extending	this	syntax	to	game	theory	allows	us	to	represent	an
agent’s	practical	uncertainty	regarding	preference.	The	key	achievement	of	this	initial	interpretation	of	CGT	lies	in	representing	the	influence	of	concordance	considerations	on	equilibrium	determination.	The	social	model	can	be	used	to	generate	an	operational	definition	of	group	preference,	and	to	define	truly	coordinated	choices.	There	is	no
assumption	that	groups	necessarily	optimize	their	preferences	or	that	individual	agents	always	coordinate	their	choices.	The	point	is	merely	that	we	can	formally	represent	conditions	under	which	agents	in	games	can	do	what	actual	people	often	seem	to:	adapt	and	settle	their	individual	preferences	in	light	both	of	what	others	prefer,	and	of	what
promotes	a	group’s	stability	and	efficiency.	Team	agency	is	thus	incorporated	into	game	theory	instead	of	being	left	as	an	exogenous	psychological	construct	that	the	analyst	must	investigate	in	advance	of	building	a	game-theoretic	model	of	socially	embedded	agents.	Because	agents	in	a	CGT	analysis	condition	their	preferences	on	actions	rather	than
on	outcomes,	conditional	games	cannot	be	represented	in	extensive	form.	(An	extensive-form	model	must	derive	utility	indices	at	all	non-terminal	nodes	from	those	assigned	to	the	terminal	nodes,	i.e.,	to	outcomes.)	A	game	theorist	should	therefore	conceive	of	team	utility	as	resulting	from	a	pre-play	process,	a	concept	extensively	used	in	the	literature
on	learning	in	games,	as	discussed	in	Section	3.1.	In	that	literature,	pre-play	is	used	for	generating	commonly	observed	signals	that	are	the	basis	for	identification	of	correlated	equilibria	in	‘real’	play.	This	raises	an	interesting	possibility:	might	we	be	able	to	use	CGT	for	that	same	purpose?	There	is	a	philosophical	reason	why	we	might	want	to.	In	a
standard	model	of	learning	in	a	game,	players	are	naturally	interpreted	as	inferring	private	preferences	and	beliefs	of	others	from	observations	of	actions.	This	comports	intuitively	with	the	idea,	which	has	been	very	popular	in	cognitive	science,	that	humans	achieve	their	special	(by	comparison	with	other	animals)	feats	of	complex	coordination	in	part
because	we	have	capacities	to	‘read’	one	another’s	minds	(Nichols	and	Stich	2003).	However,	this	hypothesis	has	recently	come	under	strong	critical	challenge,	from	two	closely	related	directions.	First,	it	incorporates	the	highly	questionable	idea	that	beliefs	and	preferences	are	‘inner’	(brain?)	states	that	can	be	known	from	the	inside	but	only
inferred	from	the	outside.	Cognitive	scientists	are	increasingly	coming	around	to	the	view,	first	developed	in	detail	by	Dennett	(1987),	and	since	extended	by	(among	many	others)	Clark	(1997)	and	Hutto	(2008),	that	beliefs	and	preferences	are	socially	constructed	interpretations	of	people’s	behavior	conditioned	on	their	circumstances	and	histories,
which	children	are	taught	to	apply	automatically,	first	to	others	and	then	to	themselves	(McGeer	2001,	2002).	Game-theoretic	reasoning	explains	why	this	construction	is	universal	practice	among	humans:	it	is	the	essential	basis	of	coordination	on	what	really	matters	for	practical	purposes,	which	are	not	people’s	specific	thoughts	but	projects	into
which	they	can	mutually	recruit	one	another	(Ross	2005a).	Second,	Zawidzki	(2013)	argues	persuasively	that	the	kinds	of	rapid	inferences	presupposed	by	mindreading	theory	are	not	computationally	feasible	except	among	people	who	know	one	another	very	closely,	or	are	interacting	within	tightly	constrained	institutional	rules,	such	as	playing	a
team	sport	or	transacting	in	an	established	market	(so,	just	the	kinds	of	settings	where	team	reasoning	is	most	plausible).	So	how	do	people	coordinate,	at	least	much	of	the	time,	so	smoothly?	This	apparently	intractable	problem	dissolves	once	we	take	on	board	the	point	of	the	preceding	paragraph,	that	people	do	not	need	to	infer	‘hidden’	beliefs	and
preferences	because	there	are	no	such	things	in	the	first	place.	Instead,	they	co-construct	beliefs	and	preferences	on	the	fly	through	ongoing	micro-negotiations.	A	paradigm	case	is	two	people	avoiding	a	collision	on	a	crowded	sidewalk.	I	don’t	need	to	try	to	infer	which	way	you	intend	to	veer	while	you	simultaneously	attempt	a	similar	inference	about
my	intention;	instead,	we	exchange	quick	signals	that	allow	us	to	jointly	create	complementary	plans.	(In	some	cultures	we	may	be	aided	by	normative	conventions,	such	as	that	if	one	person	is	a	man	and	the	other	is	a	woman,	the	man	is	to	step	in	the	direction	of	the	street.	This	norm,	where	it	works,	may	have	sexist	origins,	but	it	might	not	be
abandoned	among	people	who	come	to	recognize	that,	because	it	is	useful	to	have	some	convention,	and	this	one,	where	it	applies,	can	be	used	on	the	basis	of	quick	glances.	One	can	imagine	gender-fluid	people	extending	it	to	be	cued	by	how	they	happen	to	be	dressed,	perhaps	with	some	smiling	and	laughing	to	signal	richer	shared	awareness.)
Zawidzki	refers	to	such	processes	as	mindshaping,	and	shows	that	they	are	the	basis	of	most	quotidian	coordination	success.	Mindreading,	where	it	can	occur,	is	parasitic	on	mindshaping.	Mindshaping	clearly	has	a	strategic	dimension,	as	revealed	by	the	fact	that	it	frequently	involves	micro-scale	power	dimensions—if	it	is	your	boss	you	are	at	risk	of
bumping	into,	or	a	police	officer,	you	might	step	backwards	instead	of	to	one	side.	Therefore,	game	theory	should	apply	to	it.	But	this	is	problematic	in	light	of	the	fact	that	applications	of	standard	game	theory	require	that	utilities	be	pre-specified.	The	reader	should	immediately	see	that	CGT	seems	built	to	order	for	this	challenge.	CGT	as	it	is
presented	in	Stirling	(2012)	needs	some	modification	to	serve	as	a	game-theoretic	model	of	mindshaping.	In	Stirling’s	original	intended	setting	for	AI,	control	is	hierarchical,	and	influence	on	preferences	therefore	can	flow	from	an	origin	through	a	network	to	terminating	values.	Mindshaping	processes,	however,	are	typically	multi-directional.	Ross
and	Stirling	(2021)	therefore	propose	the	application	of	so-called	‘Markov-chain	modeling’,	which	exploits	the	mathematical	isomorphism	between	CGT	and	the	theory	of	Bayesian	networks,	to	incorporate	influence	flows	without	fixed	direction.	Because	this	relaxes	a	property	that	an	AI	engineer	would	likely	prefer	to	keep	fixed,	what	is	proposed	is
effectively	a	new	theory.	Ross	and	Stirling	therefore	refer	to	it	as	‘CGT	2.0’.	A	first	application	of	it,	to	analysis	of	experimental	games	for	identifying	norms	used	by	laboratory	subjects,	and	for	estimating	the	influence	of	norms	on	subjects’	behavior,	can	be	found	in	Ross,	Stirling,	and	Tummolini	(2023).	CGT	2.0,	unlike	CGT	1.0,	is	not	best
conceptualised	as	a	way	of	formalizing	team	utility.	Its	reach	is	broader.	In	effect	it	is	a	general	model	of	any	pre-play	that	facilitates	identification	of	utility	functions	by	players	with	incomplete	information.	Therefore,	as	shown	by	Ross	and	Stirling	(2023),	it	can	be	used	to	identify	correlated	equilibrium	(see	Section	3.1).	In	fact,	it	yields	something
stronger.	The	‘Harsanyi	Doctrine’is	the	name	of	the	idea,	from	Harsanyi	(1977),	that	any	differences	in	subjective	probability	assignments	by	Bayesian	players	should	result	exclusively	from	different	information.	This	depends	only	on	observations	of	actions,	not	on	observations	of	outcomes.	Since	CGT	conditions	on	actions,	the	transition	matrices	that
represent	results	of	CGT	pre-play	also	identify	shared	signals	that	constitute	common	priors	for	‘real’	play.	Therefore,	insofar	as	CGT	2.0	successfully	models	mindshaping,	we	can	say	that	the	mindshaping	hypothesis	motivates	confidence	in	the	empirical	relevance	of	the	Harsanyi	Doctrine	to	at	least	some	behavioral	games.	This	gives	formal
expression	to	Zawidzki’s	contention	that	mindshaping	can	strongly	support	coordination,	including	in	strategic	settings.	Finally,	a	limitation	of	correlated	equilibrium	for	empirical	purposes	is	that	it	relies	on	the	assumption	that	all	players	conform	with,	and	know	that	all	conform	with,	the	axioms	of	Expected	Utility	Theory.	Aumann	(1987)	notes	that
this	assumption	breaks	down	if	agents	operate	with	subjective	probability	weightings	on	beliefs.	But	this	is	in	fact	how	majorities	of	human	laboratory	subjects	do	behave	(Harrison	and	Ross	(2016)).	CGT	2.0	allows	this	restriction	to	be	defused	by	pre-play.	It	incorporates	the	theory	of	subjective	probability	weighting	as	developed	by	Quiggin	(1982)
and	Prelec	(1998)	in	its	general	model	of	utility.	Such	beliefs	are	therefore	reflected	in	the	transition	matrices	that	represent	the	knowledge	that	licenses	application	of	the	Harsanyi	Doctrine	to	‘real’	play.	The	derivation	of	correlated	equilibrium	can	therefore	proceed	as	if	players	were	expected	utility	maximizers.	6.	Commitment	In	some	games,	a
player	can	improve	her	outcome	by	taking	an	action	that	makes	it	impossible	for	her	to	take	what	would	be	her	best	action	in	the	corresponding	simultaneous-move	game.	Such	actions	are	referred	to	as	commitments,	and	they	can	serve	as	alternatives	to	external	enforcement	in	games	which	would	otherwise	settle	on	Pareto-inefficient	equilibria.
Consider	the	following	hypothetical	example	(which	is	not	a	PD).	Suppose	you	own	a	piece	of	land	adjacent	to	mine,	and	I’d	like	to	buy	it	so	as	to	expand	my	lot.	Unfortunately,	you	don’t	want	to	sell	at	the	price	I’m	willing	to	pay.	If	we	move	simultaneously—you	post	a	selling	price	and	I	independently	give	my	agent	an	asking	price—there	will	be	no
sale.	So	I	might	try	to	change	your	incentives	by	playing	an	opening	move	in	which	I	announce	that	I’ll	build	a	putrid-smelling	sewage	disposal	plant	on	my	land	beside	yours	unless	you	sell,	thereby	inducing	you	to	lower	your	price.	I’ve	now	turned	this	into	a	sequential-move	game.	However,	this	move	so	far	changes	nothing.	If	you	refuse	to	sell	in	the
face	of	my	threat,	it	is	then	not	in	my	interest	to	carry	it	out,	because	in	damaging	you	I	also	damage	myself.	Since	you	know	this	you	should	ignore	my	threat.	My	threat	is	incredible,	a	case	of	cheap	talk.	However,	I	could	make	my	threat	credible	by	committing	myself.	For	example,	I	could	sign	a	contract	with	some	farmers	promising	to	supply	them
with	treated	sewage	(fertilizer)	from	my	plant,	but	including	an	escape	clause	in	the	contract	releasing	me	from	my	obligation	only	if	I	can	double	my	lot	size	and	so	put	it	to	some	other	use.	Now	my	threat	is	credible:	if	you	don’t	sell,	I’m	committed	to	building	the	sewage	plant.	Since	you	know	this,	you	now	have	an	incentive	to	sell	me	your	land	in
order	to	escape	its	ruination.	This	sort	of	case	exposes	one	of	many	fundamental	differences	between	the	logic	of	non-parametric	and	parametric	maximization.	In	parametric	situations,	an	agent	can	never	be	made	worse	off	by	having	more	options.	(Even	if	a	new	option	is	worse	than	the	options	with	which	she	began,	she	can	just	ignore	it.)	But
where	circumstances	are	non-parametric,	one	agent’s	strategy	can	be	influenced	in	another’s	favour	if	options	are	visibly	restricted.	Cortez’s	burning	of	his	boats	(see	Section	1)	is,	of	course,	an	instance	of	this,	one	which	serves	to	make	the	usual	metaphor	literal.	Another	example	will	illustrate	this,	as	well	as	the	applicability	of	principles	across
game-types.	Here	we	will	build	an	imaginary	situation	that	is	not	a	PD—since	only	one	player	has	an	incentive	to	defect—but	which	is	a	social	dilemma	insofar	as	its	NE	in	the	absence	of	commitment	is	Pareto-inferior	to	an	outcome	that	is	achievable	with	a	commitment	device.	Suppose	that	two	of	us	wish	to	poach	a	rare	antelope	from	a	national	park
in	order	to	sell	the	trophy.	One	of	us	must	flush	the	animal	down	towards	the	second	person,	who	waits	in	a	blind	to	shoot	it	and	load	it	onto	a	truck.	You	promise,	of	course,	to	share	the	proceeds	with	me.	However,	your	promise	is	not	credible.	Once	you’ve	got	the	buck,	you	have	no	reason	not	to	drive	it	away	and	pocket	the	full	value	from	it.	After
all,	I	can’t	very	well	complain	to	the	police	without	getting	myself	arrested	too.	But	now	suppose	I	add	the	following	opening	move	to	the	game.	Before	our	hunt,	I	rig	out	the	truck	with	an	alarm	that	can	be	turned	off	only	by	punching	in	a	code.	Only	I	know	the	code.	If	you	try	to	drive	off	without	me,	the	alarm	will	sound	and	we’ll	both	get	caught.
You,	knowing	this,	now	have	an	incentive	to	wait	for	me.	What	is	crucial	to	notice	here	is	that	you	prefer	that	I	rig	up	the	alarm,	since	this	makes	your	promise	to	give	me	my	share	credible.	If	I	don’t	do	this,	leaving	your	promise	incredible,	we’ll	be	unable	to	agree	to	try	the	crime	in	the	first	place,	and	both	of	us	will	lose	our	shot	at	the	profit	from
selling	the	trophy.	Thus,	you	benefit	from	my	preventing	you	from	doing	what’s	optimal	for	you	in	a	subgame.	We	may	now	combine	our	analysis	of	PDs	and	commitment	devices	in	discussion	of	the	application	that	first	made	game	theory	famous	outside	of	the	academic	community.	The	nuclear	stand-off	between	the	superpowers	during	the	Cold	War
was	intensively	studied	by	the	first	generation	of	game	theorists,	many	of	whom	received	direct	or	indirect	funding	support	from	the	US	military.	Poundstone	1992	provides	the	relatively	‘sanitized’	history	of	this	involvement	that	has	long	been	available	to	the	casual	historian	who	relies	on	secondary	sources	in	addition	to	theorists’	public
reminiscences.	Recently,	a	more	skeptically	alert	and	professional	historical	study	has	been	produced	by	Amadae	(2016),	which	provides	scholarly	context	for	the	still	more	hair-raising	memoir	of	a	pioneer	of	applied	game	theory,	participant	in	the	development	of	Cold	War	nuclear	strategy,	and	famous	leaker	of	the	Pentagon’s	secret	files	on	the
Vietnam	War,	Daniel	Ellsberg	(Ellsberg	2017).	History	consistent	with	these	accounts	but	stimulating	less	pupil	dilation	in	the	reader	is	Erickson	(2015).	In	the	conventional	telling	of	the	tale,	the	nuclear	stand-off	between	the	USA	and	the	USSR	attributes	the	following	policy	to	both	parties.	Each	threatened	to	answer	a	first	strike	by	the	other	with	a
devastating	counter-strike.	This	pair	of	reciprocal	strategies,	which	by	the	late	1960s	would	effectively	have	meant	blowing	up	the	world,	was	known	as	‘Mutually	Assured	Destruction’,	or	‘MAD’.	Game	theorists	at	the	time	objected	that	MAD	was	mad,	because	it	set	up	a	PD	as	a	result	of	the	fact	that	the	reciprocal	threats	were	incredible.	The
reasoning	behind	this	diagnosis	went	as	follows.	Suppose	the	USSR	launches	a	first	strike	against	the	USA.	At	that	point,	the	American	President	finds	his	country	already	destroyed.	He	doesn’t	bring	it	back	to	life	by	now	blowing	up	the	world,	so	he	has	no	incentive	to	carry	out	his	original	threat	to	retaliate,	which	has	now	manifestly	failed	to	achieve
its	point.	Since	the	Russians	can	anticipate	this,	they	should	ignore	the	threat	to	retaliate	and	strike	first.	Of	course,	the	Americans	are	in	an	exactly	symmetric	position,	so	they	too	should	strike	first.	Each	power	recognizes	this	incentive	on	the	part	of	the	other,	and	so	anticipates	an	attack	if	they	don’t	rush	to	preempt	it.	What	we	should	therefore
expect,	because	it	is	the	only	NE	of	the	game,	is	a	race	between	the	two	powers	to	be	the	first	to	attack.	The	clear	implication	is	the	destruction	of	the	world.	This	game-theoretic	analysis	caused	genuine	consternation	and	fear	on	both	sides	during	the	Cold	War,	and	is	reputed	to	have	produced	some	striking	attempts	at	setting	up	strategic
commitment	devices.	Some	anecdotes,	for	example,	allege	that	President	Nixon	had	the	CIA	try	to	convince	the	Russians	that	he	was	insane	or	frequently	drunk,	so	that	they’d	believe	that	he’d	launch	a	retaliatory	strike	even	when	it	was	no	longer	in	his	interest	to	do	so.	Similarly,	the	Soviet	KGB	is	sometimes	claimed,	during	Brezhnev’s	later	years,	to
to	have	fabricated	medical	reports	exaggerating	the	extent	of	his	senility	with	the	same	end	in	mind.	Even	if	these	stories	aren’t	true,	their	persistent	circulation	indicates	understanding	of	the	logic	of	strategic	commitment.	Ultimately,	the	strategic	symmetry	that	concerned	the	Pentagon’s	analysts	was	complicated	and	perhaps	broken	by	changes	in
American	missile	deployment	tactics.	They	equipped	a	worldwide	fleet	of	submarines	with	enough	missiles	to	launch	a	devastating	counterattack	by	themselves.	This	made	the	reliability	of	the	US	military	communications	network	less	straightforward,	and	in	so	doing	introduced	an	element	of	strategically	relevant	uncertainty.	The	President	probably
could	be	less	sure	to	be	able	to	reach	the	submarines	and	cancel	their	orders	to	attack	if	prospects	of	American	survival	had	become	hopeless.	Of	course,	the	value	of	this	in	breaking	symmetry	depended	on	the	Russians	being	aware	of	the	potential	problem.	In	Stanley	Kubrick’s	classic	film	Dr.	Strangelove,	the	world	is	destroyed	by	accident	because
the	Soviets	build	a	doomsday	machine	that	will	automatically	trigger	a	retaliatory	strike	regardless	of	their	leadership’s	resolve	to	follow	through	on	the	implicit	MAD	threat	but	then	keep	it	a	secret.	As	a	result,	when	an	unequivocally	mad	American	colonel	launches	missiles	at	Russia	on	his	own	accord,	and	the	American	President	tries	to	convince
his	Soviet	counterpart	that	the	attack	was	unintended,	the	latter	sheepishly	tells	him	about	the	secret	doomsday	machine.	Now	the	two	leaders	can	do	nothing	but	watch	in	dismay	as	the	world	is	blown	up	due	to	a	game-theoretic	mistake.	This	example	of	the	Cold	War	standoff,	while	famous	and	of	considerable	importance	in	the	history	of	game
theory	and	its	popular	reception,	relied	at	the	time	on	analyses	that	weren’t	very	subtle.	The	military	game	theorists	were	almost	certainly	mistaken	to	the	extent	that	they	modeled	the	Cold	War	as	a	one-shot	PD	in	the	first	place.	For	one	thing,	the	nuclear	balancing	game	was	enmeshed	in	larger	global	power	games	of	great	complexity.	For	another,
it	is	far	from	clear	that,	for	either	superpower,	annihilating	the	other	while	avoiding	self-annihilation	was	in	fact	the	highest-ranked	outcome.	If	it	wasn’t,	in	either	or	both	cases,	then	the	game	wasn’t	a	PD.	A	cynic	might	suggest	that	the	operations	researchers	on	both	sides	were	playing	a	cunning	strategy	in	a	game	over	funding,	one	that	involved
them	cooperating	with	one	another	in	order	to	convince	their	politicians	to	allocate	more	resources	to	weapons.	In	more	mundane	circumstances,	most	people	exploit	a	ubiquitous	commitment	device	that	Adam	Smith	long	ago	made	the	centerpiece	of	his	theory	of	social	order:	the	value	to	people	of	their	own	reputations.	Even	if	I	am	secretly	stingy,	I
may	wish	to	cause	others	to	think	me	generous	by	tipping	in	restaurants,	including	restaurants	in	which	I	never	intend	to	eat	again.	The	more	I	do	this	sort	of	thing,	the	more	I	invest	in	a	valuable	reputation	which	I	could	badly	damage	through	a	single	act	of	obvious,	and	observed,	mean-ness.	Thus	my	hard-earned	reputation	for	generosity	functions
as	a	commitment	mechanism	in	specific	games,	itself	enforcing	continued	re-investment.	In	time,	my	benevolence	may	become	habitual,	and	consequently	insensitive	to	circumstantial	variations,	to	the	point	where	an	analyst	has	no	remaining	empirical	justification	for	continuing	to	model	me	as	having	a	preference	for	stinginess.	There	is	a	good	deal
of	evidence	that	the	hyper-sociality	of	humans	is	supported	by	evolved	biological	dispositions	(found	in	most	but	not	all	people)	to	suffer	emotionally	from	negative	gossip	and	the	fear	of	it.	People	are	also	naturally	disposed	to	enjoy	gossiping,	which	means	that	punishing	others	by	spreading	the	news	when	their	commitment	devices	fail	is	a	form	of
social	policing	they	don’t	find	costly	and	happily	take	up.	A	nice	feature	of	this	form	of	punishment	is	that	it	can,	unlike	(say)	hitting	people	with	sticks,	be	withdrawn	without	leaving	long-term	damage	to	the	punished.	This	is	a	happy	property	of	a	device	that	has	as	its	point	the	maintenance	of	incentives	to	contribute	to	joint	social	projects;



collaboration	is	generally	more	fruitful	with	team-mates	whose	bones	aren’t	broken.	Thus	forgiveness	conventions	also	play	a	strategic	role	in	this	elegant	commitment	mechanism	that	natural	selection	built	for	us.	A	‘forgiveness	convention’	is	itself	an	instance	of	a	norm,	as	discussed	in	Section	4,	and	a	community’s	norms	provide	crucial	social
scaffolding	for	reputation	management.	As	an	approximate	generalization,	people	as	they	move	into	adulthood	choose	between	investments	in	one	of	three	broad	kinds	of	reputational	profiles:	(i)	upholder	of	most	majority	norms	(which	may	involve	preference	falsification),	(ii)	discriminating	upholder	of	mixes	of	majority	and	novel,	minority	norms	(a
‘trendsetter’,	to	use	the	terminology	of	Bicchieri	(2017)),	or	(iii)	individualistic	rebel.	People	tend	to	find	all	three	of	these	normative	personality	types	decipherable,	which	is	the	crucial	requirement	for	a	useful	reputation.	The	idea	of	a	useful	reputation	should	be	distinguished	from	the	idea	of	a	generally	approved	reputation.	Trendsetters	and	rebels
are	typically	widely	disapproved	of,	but	this	can	itself	help	them	to	avoid	games	in	which	they	would	have	to	choose	between	undermining	their	reputations	and	earning	low	material	payoffs;	social	disapprobation	typically	helps	trendsetters	and	rebels	coordinate	with	one	another.	Religious	stories,	or	philosophical	ones	involving	Kantian	moral
‘rationality’,	are	especially	likely	to	be	told	in	explanation	of	norms	because	the	underlying	game-theoretic	basis	doesn’t	occur	to	people;	and	the	norms	in	question	may	function	to	support	reputations	more	effectively	for	that	very	reason,	because	the	religious	or	philosophical	stories	hide	the	extent	to	which	reputations	are	under	individuals’	strategic
control.	(Existentialist	philosophers	call	this	mechanism	‘bad	faith’).	The	stories	trigger	sincere	emotions,	particularly	anger,	which	are	direct	commitment	mechanisms	that	mutually	reinforce	the	investment	value	of	reputations.	Though	the	so-called	‘moral	emotions’are	extremely	useful	for	maintaining	commitment,	they	are	not	necessary	for	it.
Larger	human	institutions	are,	famously,	highly	morally	obtuse;	however,	commitment	is	typically	crucial	to	their	functional	logic.	For	example,	a	government	tempted	to	negotiate	with	terrorists	to	secure	the	release	of	hostages	on	a	particular	occasion	may	commit	to	a	‘line	in	the	sand’	strategy	for	the	sake	of	maintaining	a	reputation	for	toughness
intended	to	reduce	terrorists’	incentives	to	launch	future	attacks.	A	different	sort	of	example	is	provided	by	Qantas	Airlines	of	Australia.	Qantas	has	never	suffered	a	fatal	accident,	and	for	a	time	(until	it	suffered	some	embarrassing	non-fatal	accidents	to	which	it	likely	feared	drawing	attention)	made	much	of	this	in	its	advertising.	This	means	that	its
planes,	at	least	during	that	period,	probably	were	safer	than	average	even	if	the	initial	advantage	was	merely	a	bit	of	statistical	good	fortune,	because	the	value	of	its	ability	to	claim	a	perfect	record	rose	the	longer	it	lasted,	and	so	gave	the	airline	continuous	incentives	to	incur	greater	costs	in	safety	assurance.	It	likely	still	has	incentive	to	take	extra
care	to	prevent	its	record	of	fatalities	from	crossing	the	magic	reputational	line	between	0	and	1.	Certain	conditions	must	hold	if	reputation	effects	are	to	underwrite	commitment.	A	person’s	reputation	can	have	a	standing	value	across	a	range	of	games	she	plays,	but	in	that	case	her	concern	for	its	value	should	be	factored	into	payoffs	in	specifying
each	specific	game	into	which	she	enters.	Reputation	can	be	built	up	through	play	of	a	game	only	in	a	case	of	a	repeated	game.	Then	the	value	of	the	reputation	must	be	greater	to	its	cultivator	than	the	value	to	her	of	sacrificing	it	in	any	particular	round	of	the	repeated	game.	Thus	players	may	establish	commitment	by	reducing	the	value	of	each
round	so	that	the	temptation	to	defect	in	any	round	never	gets	high	enough	to	constitute	a	hard-to-resist	temptation.	For	example,	parties	to	a	contract	may	exchange	their	obligations	in	small	increments	to	reduce	incentives	on	both	sides	to	renege.	Thus	builders	in	construction	projects	may	be	paid	in	weekly	or	monthly	installments.	Similarly,	the
International	Monetary	Fund	often	dispenses	loans	to	governments	in	small	tranches,	thereby	reducing	governments’	incentives	to	violate	loan	conditions	once	the	money	is	in	hand;	and	governments	may	actually	prefer	such	arrangements	in	order	to	remove	domestic	political	pressure	for	non-compliant	use	of	the	money.	Of	course,	we	are	all	familiar
with	cases	in	which	the	payoff	from	a	defection	in	a	current	round	becomes	too	great	relative	to	the	longer-run	value	of	reputation	to	future	cooperation,	and	we	awake	to	find	that	the	society	treasurer	has	absconded	overnight	with	the	funds.	Commitment	through	concern	for	reputation	is	the	cement	of	society,	but	any	such	natural	bonding	agent	will
be	far	from	perfectly	effective.	7.	Evolutionary	Game	Theory	Gintis	(2009b,	2009b)	feels	justified	in	stating	that	“game	theory	is	a	universal	language	for	the	unification	of	the	behavioral	sciences.”	There	are	good	examples	of	such	unifying	work.	Binmore	(1998,	2005a)	models	history	of	increasing	social	complexity	as	a	series	of	convergences	on
increasingly	efficient	equilibria	in	commonly	encountered	transaction	games,	interrupted	by	episodes	in	which	some	people	try	to	shift	to	new	equilibria	by	moving	off	stable	equilibrium	paths,	resulting	in	periodic	catastrophes.	(Stalin,	for	example,	tried	to	shift	his	society	to	a	set	of	equilibria	in	which	people	cared	more	about	the	future	industrial,
military	and	political	power	of	their	state	than	they	cared	about	their	own	lives.	He	was	not	successful	in	the	long	run;	however,	his	efforts	certainly	created	a	situation	in	which,	for	a	few	decades,	many	Soviet	people	attached	far	less	importance	to	other	people’s	lives	than	usual.)	A	game-theoretic	perspective	indeed	seems	pervasively	useful	in
understanding	phenomena	across	the	full	range	of	social	sciences.	In	Section	4,	for	example,	we	considered	Lewis’s	recognition	that	each	human	language	amounts	to	a	network	of	Nash	equilibria	in	coordination	games	around	conveyance	of	information.	Given	his	work’s	vintage,	Lewis	restricted	his	attention	to	static	game	theory,	in	which	agents	are
modeled	as	deliberately	choosing	strategies	given	exogenously	fixed	utility-functions.	As	a	result	of	this	restriction,	his	account	invited	some	philosophers	to	pursue	a	misguided	quest	for	a	general	analytic	theory	of	the	rationality	of	conventions	(as	noted	by	Bickhard	2008).	Though	Binmore	has	criticized	this	focus	repeatedly	through	a	career’s	worth
of	contributions	(see	the	references	for	a	selection),	Gintis	(2009a)	has	recently	isolated	the	underlying	problem	with	particular	clarity	and	tenacity.	NE	and	SPE	are	brittle	solution	concepts	when	applied	to	naturally	evolved	computational	mechanisms	like	animal	(including	human)	brains.	As	we	saw	in	Section	3	above,	in	coordination	(and	other)
games	with	multiple	NE,	what	it	is	economically	rational	for	a	player	to	do	is	highly	sensitive	to	the	learning	states	of	other	players.	In	general,	when	players	find	themselves	in	games	where	they	do	not	have	strictly	dominant	strategies,	they	only	have	uncomplicated	incentives	to	play	NE	or	SPE	strategies	to	the	extent	that	other	players	can	be
expected	to	find	their	NE	or	SPE	strategies.	Can	a	general	theory	of	strategic	rationality,	of	the	sort	that	philosophers	have	sought,	be	reasonably	expected	to	cover	the	resulting	contingencies?	Resort	to	Bayesian	reasoning	principles,	as	we	reviewed	in	Section	3.1,	is	the	standard	way	of	trying	to	incorporate	such	uncertainty	into	theories	of	rational,
strategic	decision.	However,	as	Binmore	(2009)	argues	following	the	lead	of	Savage	(1954),	Bayesian	principles	are	only	plausible	as	principles	of	rationality	itself	in	so-called	‘small	worlds’,	that	is,	environments	in	which	distributions	of	risk	are	quantified	in	a	set	of	known	and	enumerable	parameters,	as	in	the	solution	to	our	river	crossing	game	from
Section	3.	In	large	worlds,	where	utility	functions,	strategy	sets	and	informational	structure	are	difficult	to	estimate	and	subject	to	change	by	contingent	exogenous	influences,	the	idea	that	Bayes’s	rule	tells	players	how	to	‘be	rational’	is	quite	implausible.	But	then	why	should	we	expect	players	to	choose	NE	or	SPE	or	sequential-equilibrium	strategies
in	wide	ranges	of	social	interactions?	As	Binmore	(2009)	and	Gintis	(2009a)	both	stress,	if	game	theory	is	to	be	used	to	model	actual,	natural	behavior	and	its	history,	outside	of	the	small-world	settings	on	which	microeconomists	(but	not	macroeconomists	or	political	scientists	or	sociologists	or	philosophers	of	science)	mainly	traffic,	then	we	need
some	account	of	what	is	attractive	about	equilibria	in	games	even	when	no	analysis	can	identify	them	by	taming	all	uncertainty	in	such	a	way	that	it	can	be	represented	as	pure	risk.	To	make	reference	again	to	Lewis’s	topic,	when	human	language	developed	there	was	no	external	referee	to	care	about	and	arrange	for	Pareto-efficiency	by	providing
focal	points	for	coordination.	Yet	somehow	people	agreed,	within	linguistic	communities,	to	use	roughly	the	same	words	and	constructions	to	say	similar	things.	It	seems	unlikely	that	any	explicit,	deliberate	strategizing	on	anyone’s	part	played	a	role	in	these	processes.	Nevertheless,	game	theory	has	turned	out	to	furnish	the	essential	concepts	for
understanding	stabilization	of	languages.	This	is	a	striking	point	of	support	for	Gintis’s	optimism	about	the	reach	of	game	theory.	To	understand	it,	we	must	extend	our	attention	to	evolutionary	games.	Game	theory	has	been	fruitfully	applied	in	evolutionary	biology,	where	species	and/or	genes	are	treated	as	players,	since	pioneering	work	by	Maynard
Smith	(1982)	and	his	collaborators.	Evolutionary	(or	dynamic)	game	theory	subsequently	developed	into	a	significant	mathematical	extension,	with	several	distinct	sub-extensions,	applicable	to	many	settings	apart	from	the	biological.	Skyrms	(1996)	uses	evolutionary	game	theory	to	try	to	answer	questions	Lewis	could	not	even	ask,	about	the
conditions	under	which	language,	concepts	of	justice,	the	notion	of	private	property,	and	other	non-designed,	general	phenomena	of	interest	to	philosophers	would	be	likely	to	arise.	What	is	novel	about	evolutionary	game	theory	is	that	moves	are	not	chosen	through	deliberation	by	the	individual	agents.	Instead,	agents	are	typically	hard-wired	with
particular	strategies,	and	success	for	a	strategy	is	defined	in	terms	of	the	number	of	copies	of	itself	that	it	will	leave	to	play	in	the	games	of	succeeding	generations,	given	a	population	in	which	other	strategies	with	which	it	acts	are	distributed	at	particular	frequencies.	In	this	kind	of	problem	setting,	the	strategies	themselves	are	the	players,	and
individuals	who	play	these	strategies	are	their	relatively	blind	executors,	who	receive	the	immediate-run	costs	and	benefits	associated	with	outcomes	not	because	they	choose	the	outcomes	in	question,	but	because	ancestors	from	whom	they	inherited	their	strategic	dispositions	recurrently	benefited	from	the	outcomes	of	their	similar	games.	The
discussion	here	will	closely	follow	Skyrms’s.	This	involves	a	restriction	in	generality.	Reference	was	made	above	to	evolutionary	game	theory	as	including	‘distinct	sub-extensions’.	What	was	meant	by	that	is	that,	like	classical	game	theory,	it	features	a	plurality	of	‘solution’	concepts.	Strictly	speaking,	these	are	different	concepts	of	dynamic	stability,
which	is	a	different	idea	of	equilibrium	from	the	economic	equilibrium	notion	represented	by	classical	game-theoretic	literal	solution	concepts.	An	extensive	literature	(see	immediately	below)	maps	the	stability	concepts	for	evolutionary	games	onto	the	classical	solution	concepts.	Reviewing	the	range	of	stability	concepts	would	involve	redundancy	in
the	present	context,	because	that	is	the	main	task	of	a	sister	entry	in	the	Stanford	Encyclopedia	of	Philosophy	by	J.	McKenzie	Alexander:	Game	Theory,	Evolutionary.	This	complements	a	fuller	exposition	with	emphasis	on	philosophical	issues	in	Alexander	(2023),	which	in	turn	rests	on	formal	foundations	reviewed	in	classic	texts	by	Weibull	(1995)	and
Samuelson	(1997).	The	Skyrms	analysis	summarized	here	relies	on	just	one	of	the	stability	concepts,	the	replicator	dynamics.	Consider	how	natural	selection	works	to	change	lineages	of	animals,	modifying,	creating	and	destroying	species.	The	basic	mechanism	is	differential	reproduction.	Any	animal	with	heritable	features	that	increase	its	expected
relative	frequency	of	offspring	in	a	population	of	organisms	will	tend	to	increase	in	prevalence	so	long	as	the	environment	remains	relatively	stable.	These	offspring	will	typically	inherit	the	features	in	question	(with	some	variation	due	to	mutations,	and	some	variation	in	frequencies	due	to	statistical	noise).	Therefore,	the	proportion	of	these	features
in	the	population	will	gradually	increase	as	generations	pass.	Some	of	these	features	may	go	to	fixation,	that	is,	eventually	take	over	the	entire	population	(until	the	environment	changes).	How	does	game	theory	enter	into	this?	Often,	one	of	the	most	important	aspects	of	an	organism’s	environment	will	be	the	behavioural	tendencies	of	other
organisms.	We	can	think	of	each	lineage	as	‘trying’	to	maximize	its	reproductive	fitness	(i.e.,	future	frequencies	of	its	distinctive	genetic	structures)	through	finding	strategies	that	are	optimal	given	the	strategies	of	other	lineages.	So	evolutionary	theory	is	another	domain	of	application	for	non-parametric	analysis.	In	evolutionary	game	theory,	we	no
longer	think	of	individuals	as	choosing	strategies	as	they	move	from	one	game	to	another.	This	is	because	our	interests	are	different.	We’re	now	concerned	less	with	finding	the	equilibria	of	single	games	than	with	discovering	which	equilibria	are	stable,	and	how	they	will	change	over	time.	So	we	now	model	the	strategies	themselves	as	playing	against
each	other.	One	strategy	is	‘better’	than	another	if	it	is	likely	to	leave	more	copies	of	itself	in	the	next	generation,	when	the	game	will	be	played	again.	We	study	the	changes	in	distribution	of	strategies	in	the	population	as	the	sequence	of	games	unfolds.	For	the	replicator	dynamics,	we	introduce	a	new	dynamic	stability	(‘equilibrium’)	concept,	due	to
Maynard	Smith	(1982).	A	set	of	strategies,	in	some	particular	proportion	(e.g.,	1/3:2/3,	1/2:1/2,	1/9:8/9,	1/3:1/3:1/6:1/6—always	summing	to	1)	is	at	an	ESS	(Evolutionary	Stable	Strategy)	equilibrium	just	in	case	(1)	no	individual	playing	one	strategy	could	improve	its	reproductive	fitness	by	switching	to	one	of	the	other	strategies	in	the	proportion,	and
(2)	no	mutant	playing	a	different	strategy	altogether	could	establish	itself	(‘invade’)	in	the	population.	The	principles	of	evolutionary	game	theory	are	best	explained	through	examples.	Skyrms	begins	by	investigating	the	conditions	under	which	a	sense	of	justice—understood	for	purposes	of	his	specific	analysis	as	a	disposition	to	view	equal	divisions	of
resources	as	fair	unless	efficiency	considerations	suggest	otherwise	in	special	cases—might	arise.	He	asks	us	to	consider	a	population	in	which	individuals	regularly	meet	each	other	and	must	bargain	over	resources.	Begin	with	three	types	of	individuals:	Fairmen	always	demand	exactly	half	the	resource.	Greedies	always	demand	more	than	half	the
resource.	When	a	greedy	encounters	another	greedy,	they	waste	the	resource	in	fighting	over	it.	Modests	always	demand	less	than	half	the	resource.	When	a	modest	encounters	another	modest,	they	take	less	than	all	of	the	available	resource	and	waste	some.	Each	single	encounter	where	the	total	demands	sum	to	100%	is	a	NE	of	that	individual
game.	Similarly,	there	can	be	many	dynamic	equilibria.	Suppose	that	Greedies	demand	2/3	of	the	resource	and	Modests	demand	1/3.	Then,	given	random	pairing	for	interaction,	the	following	two	proportions	are	ESSs:	Half	the	population	is	greedy	and	half	is	modest.	We	can	calculate	the	average	payoff	here.	Modest	gets	1/3	of	the	resource	in	every
encounter.	Greedy	gets	2/3	when	she	meets	Modest,	but	nothing	when	she	meets	another	Greedy.	So	her	average	payoff	is	also	1/3.	This	is	an	ESS	because	Fairman	can’t	invade.	When	Fairman	meets	Modest	he	gets	1/2.	But	when	Fairman	meets	Greedy	he	gets	nothing.	So	his	average	payoff	is	only	1/4.	No	Modest	has	an	incentive	to	change
strategies,	and	neither	does	any	Greedy.	A	mutant	Fairman	arising	in	the	population	would	do	worst	of	all,	and	so	selection	will	not	encourage	the	propagation	of	any	such	mutants.	All	players	are	Fairmen.	Everyone	always	gets	half	the	resource,	and	no	one	can	do	better	by	switching	to	another	strategy.	Greedies	entering	this	population	encounter
Fairmen	and	get	an	average	payoff	of	0.	Modests	get	1/3	as	before,	but	this	is	less	than	Fairman’s	payoff	of	1/2.	Notice	that	equilibrium	(i)	is	inefficient,	since	the	average	payoff	across	the	whole	population	is	smaller.	However,	just	as	inefficient	outcomes	can	be	NE	of	static	games,	so	they	can	be	ESSs	of	evolutionary	ones.	We	refer	to	equilibria	in
which	more	than	one	strategy	occurs	as	polymorphisms.	In	general,	in	Skyrms’s	game,	any	polymorphism	in	which	Greedy	demands	\(x\)	and	Modest	demands	\(1-x\)	is	an	ESS.	The	question	that	interests	the	student	of	justice	concerns	the	relative	likelihood	with	which	these	different	equilibria	arise.	This	depends	on	the	proportions	of	strategies	in
the	original	population	state.	If	the	population	begins	with	more	than	one	Fairman,	then	there	is	some	probability	that	Fairmen	will	encounter	each	other,	and	get	the	highest	possible	average	payoff.	Modests	by	themselves	do	not	inhibit	the	spread	of	Fairmen;	only	Greedies	do.	But	Greedies	themselves	depend	on	having	Modests	around	in	order	to
be	viable.	So	the	more	Fairmen	there	are	in	the	population	relative	to	pairs	of	Greedies	and	Modests,	the	better	Fairmen	do	on	average.	This	implies	a	threshold	effect.	If	the	proportion	of	Fairmen	drops	below	33%,	then	the	tendency	will	be	for	them	to	fall	to	extinction	because	they	don’t	meet	each	other	often	enough.	If	the	population	of	Fairmen
rises	above	33%,	then	the	tendency	will	be	for	them	to	rise	to	fixation	because	their	extra	gains	when	they	meet	each	other	compensates	for	their	losses	when	they	meet	Greedies.	You	can	see	this	by	noticing	that	when	each	strategy	is	used	by	33%	of	the	population,	all	have	an	expected	average	payoff	of	1/3.	Therefore,	any	rise	above	this	threshold
on	the	part	of	Fairmen	will	tend	to	push	them	towards	fixation.	This	result	shows	that	and	how,	given	certain	relatively	general	conditions,	justice	as	we	have	defined	it	can	arise	dynamically.	The	news	for	the	fans	of	justice	gets	more	cheerful	still	if	we	introduce	correlated	play	(not	to	be	confused	with	the	correlated	equilibrium	concept	mentioned	in
Section	3.1	and	elsewhere	in	this	article).	The	model	we	just	considered	assumes	that	strategies	are	not	correlated,	that	is,	that	the	probability	with	which	every	strategy	meets	every	other	strategy	is	a	simple	function	of	their	relative	frequencies	in	the	population.	We	now	examine	what	happens	in	our	dynamic	resource-division	game	when	we
introduce	correlation.	Suppose	that	Fairmen	have	a	slight	ability	to	distinguish	and	seek	out	other	Fairmen	as	interaction	partners.	In	that	case,	Fairmen	on	average	do	better,	and	this	must	have	the	effect	of	lowering	their	threshold	for	going	to	fixation.	An	evolutionary	game	modeler	studies	the	effects	of	correlation	and	other	parametric	constraints
by	means	of	running	large	computer	simulations	in	which	the	strategies	compete	with	one	another,	round	after	round,	in	the	virtual	environment.	The	starting	proportions	of	strategies,	and	any	chosen	degree	of	correlation,	can	simply	be	set	in	the	program.	One	can	then	watch	its	dynamics	unfold	over	time,	and	measure	the	proportion	of	time	it	stays
in	any	one	equilibrium.	These	proportions	are	represented	by	the	relative	sizes	of	the	basins	of	attraction	for	different	possible	equilibria.	Equilibria	are	attractor	points	in	a	dynamic	space;	a	basin	of	attraction	for	each	such	point	is	then	the	set	of	points	in	the	space	from	which	the	population	will	converge	to	the	equilibrium	in	question.	In	introducing
correlation	into	his	model,	Skyrms	first	sets	the	degree	of	correlation	at	a	very	small	.1.	This	causes	the	basin	of	attraction	for	equilibrium	(i)	to	shrink	by	half.	When	the	degree	of	correlation	is	set	to	.2,	the	polymorphic	basin	reduces	to	the	point	at	which	the	population	starts	in	the	polymorphism.	Thus	very	small	increases	in	correlation	produce
large	proportionate	increases	in	the	stability	of	the	equilibrium	where	everyone	plays	Fairman.	A	small	amount	of	correlation	is	a	reasonable	assumption	in	most	populations,	given	that	neighbours	tend	to	interact	with	one	another	and	to	mimic	one	another	(either	genetically	or	because	of	tendencies	to	deliberately	copy	each	other),	and	because
genetically	and	culturally	similar	animals	are	more	likely	to	live	in	common	environments.	Thus	if	justice	can	arise	at	all	it	will	tend	to	be	dominant	and	stable.	Much	of	political	philosophy	consists	in	attempts	to	produce	deductive	normative	arguments	intended	to	convince	an	unjust	agent	that	she	has	reasons	to	act	justly.	Skyrms’s	analysis	suggests
a	quite	different	approach.	Fairman	will	do	best	of	all	in	the	dynamic	game	if	he	takes	active	steps	to	preserve	correlation.	Therefore,	there	is	evolutionary	pressure	for	both	moral	approval	of	justice	and	just	institutions	to	arise.	Most	people	may	think	that	50–50	splits	are	‘fair’,	and	worth	maintaining	by	moral	and	institutional	reward	and	sanction,
because	we	are	the	products	of	a	dynamic	game	that	promoted	our	tendency	to	think	this	way.	The	topic	that	has	received	most	attention	from	evolutionary	game	theorists	is	altruism,	defined	as	any	behaviour	by	an	organism	that	decreases	its	own	expected	fitness	in	a	single	interaction	but	increases	that	of	the	other	interactor.	It	is	arguably	common
in	nature.	How	can	it	arise,	however,	given	Darwinian	competition?	Skyrms	studies	this	question	using	the	dynamic	Prisoner’s	Dilemma	as	his	example.	This	is	simply	a	series	of	PD	games	played	in	a	population,	some	of	whose	members	are	defectors	and	some	of	whom	are	cooperators.	Payoffs,	as	always	in	evolutionary	games,	are	measured	in	terms
of	expected	numbers	of	copies	of	each	strategy	in	future	generations.	Let	\(\mathbf{U}(A)\)	be	the	average	fitness	of	strategy	\(A\)	in	the	population.	Let	\(\mathbf{U}\)	be	the	average	fitness	of	the	whole	population.	Then	the	proportion	of	strategy	\(A\)	in	the	next	generation	is	just	the	ratio	\(\mathbf{U}(A)/\mathbf{U}\).	So	if	\(A\)	has	greater	fitness
than	the	population	average	\(A\)	increases.	If	\(A\)	has	lower	fitness	than	the	population	average	then	\(A\)	decreases.	In	the	dynamic	PD	where	interaction	is	random	(i.e.,	there’s	no	correlation),	defectors	do	better	than	the	population	average	as	long	as	there	are	cooperators	around.	This	follows	from	the	fact	that,	as	we	saw	in	Section	2.4,	defection
is	always	the	dominant	strategy	in	a	single	game.	100%	defection	is	therefore	the	ESS	in	the	dynamic	game	without	correlation,	corresponding	to	the	NE	in	the	one-shot	static	PD.	However,	introducing	the	possibility	of	correlation	radically	changes	the	picture.	We	now	need	to	compute	the	average	fitness	of	a	strategy	given	its	probability	of	meeting
each	other	possible	strategy.	In	the	evolutionary	PD,	cooperators	whose	probability	of	meeting	other	cooperators	is	high	do	better	than	defectors	whose	probability	of	meeting	other	defectors	is	high.	Correlation	thus	favours	cooperation.	In	order	to	be	able	to	say	something	more	precise	about	this	relationship	between	correlation	and	cooperation
(and	in	order	to	be	able	to	relate	evolutionary	game	theory	to	issues	in	decision	theory,	a	matter	falling	outside	the	scope	of	this	article),	Skyrms	introduces	a	new	technical	concept.	He	calls	a	strategy	adaptively	ratifiable	if	there	is	a	region	around	its	fixation	point	in	the	dynamic	space	such	that	from	anywhere	within	that	region	it	will	go	to	fixation.
In	the	evolutionary	PD,	both	defection	and	cooperation	are	adaptively	ratifiable.	The	relative	sizes	of	basins	of	attraction	are	highly	sensitive	to	the	particular	mechanisms	by	which	correlation	is	achieved.	To	illustrate	this	point,	Skyrms	builds	several	examples.	One	of	Skyrms’s	models	introduces	correlation	by	means	of	a	filter	on	pairing	for
interaction.	Suppose	that	in	round	1	of	a	dynamic	PD	individuals	inspect	each	other	and	interact,	or	not,	depending	on	what	they	find.	In	the	second	and	subsequent	rounds,	all	individuals	who	didn’t	pair	in	round	1	are	randomly	paired.	In	this	game,	the	basin	of	attraction	for	defection	is	large	unless	there	is	a	high	proportion	of	cooperators	in	round
one.	In	this	case,	defectors	fail	to	pair	in	round	1,	then	get	paired	mostly	with	each	other	in	round	2	and	drive	each	other	to	extinction.	A	model	which	is	more	interesting,	because	its	mechanism	is	less	artificial,	does	not	allow	individuals	to	choose	their	partners,	but	requires	them	to	interact	with	those	closest	to	them.	Because	of	genetic	relatedness
(or	cultural	learning	by	copying)	individuals	are	more	likely	to	resemble	their	neighbours	than	not.	If	this	(finite)	population	is	arrayed	along	one	dimension	(i.e.,	along	a	line),	and	both	cooperators	and	defectors	are	introduced	into	positions	along	it	at	random,	then	we	get	the	following	dynamics.	Isolated	cooperators	have	lower	expected	fitness	than
the	surrounding	defectors	and	are	driven	locally	to	extinction.	Members	of	groups	of	two	cooperators	have	a	50%	probability	of	interacting	with	each	other,	and	a	50%	probability	of	each	interacting	with	a	defector.	As	a	result,	their	average	expected	fitness	remains	smaller	than	that	of	their	neighbouring	defectors,	and	they	too	face	probable
extinction.	Groups	of	three	cooperators	form	an	unstable	point	from	which	both	extinction	and	expansion	are	equally	likely.	However,	in	groups	of	four	or	more	cooperators	at	least	one	encounter	of	a	cooperator	with	a	cooperator	sufficient	to	at	least	replace	the	original	group	is	guaranteed.	Under	this	circumstance,	the	cooperators	as	a	group	do
better	than	the	surrounding	defectors	and	increase	at	their	expense.	Eventually	cooperators	go	almost	to	fixation—but	nor	quite.	Single	defectors	on	the	periphery	of	the	population	prey	on	the	cooperators	at	the	ends	and	survive	as	little	‘criminal	communities’.	We	thus	see	that	altruism	can	not	only	be	maintained	by	the	dynamics	of	evolutionary
games,	but,	with	correlation,	can	even	spread	and	colonize	originally	non-altruistic	populations.	Darwinian	dynamics	thus	offers	qualified	good	news	for	cooperation.	Notice,	however,	that	this	holds	only	so	long	as	individuals	are	stuck	with	their	natural	or	cultural	programming	and	can’t	re-evaluate	their	utilities	for	themselves.	If	our	agents	get	too
smart	and	flexible,	they	may	notice	that	they’re	in	PDs	and	would	each	be	best	off	defecting.	In	that	case,	they’ll	eventually	drive	themselves	to	extinction—unless	they	develop	stable,	and	effective,	norms	that	work	to	reinforce	cooperation.	But,	of	course,	these	are	just	what	we	would	expect	to	evolve	in	populations	of	animals	whose	average	fitness
levels	are	closely	linked	to	their	capacities	for	successful	social	cooperation.	Even	given	this,	these	populations	will	go	extinct	unless	they	care	about	future	generations	for	some	reason.	But	there’s	no	non-sentimental	reason	that	doesn’t	already	presuppose	altruistic	morality	as	to	why	agents	should	care	about	future	generations	if	each	new
generation	wholly	replaces	the	preceding	one	at	each	change	of	cohorts.	For	this	reason,	economists	use	‘overlapping	generations’	models	when	modeling	intertemporal	distribution	games.	Individuals	in	generation	1	who	will	last	until	generation	5	save	resources	for	the	generation	3	individuals	with	whom	they’ll	want	to	cooperate;	and	by	generation
3	the	new	individuals	care	about	generation	6;	and	so	on.	Gintis	(2009a)	argues	that	when	we	set	out	to	use	evolutionary	game	theory	to	unify	the	behavioral	sciences,	we	should	begin	by	using	it	to	unify	game	theory	itself.	We	have	pointed	out	at	several	earlier	points	in	the	present	article	that	NE	and	SPE	are	problematic	solution	concepts	in	many
applications	where	stable	norms	or	explicit	institutional	rules	are	missing	because	agents	only	have	incentives	to	play	NE	or	SPE	to	the	extent	that	they	are	confident	that	other	agents	will	do	likewise.	To	the	extent	that	agents	do	not	have	such	confidence,	what	should	be	predicted	is	general	disorder	and	social	confusion.	But	now	we	can	pull
together	a	number	of	strands	from	earlier	sections.	From	Aumann	(1974),	we	have	the	result	that	correlated	equilibrium	can	solve	this	problem	for	Bayesian	learners	under	certain	conditions.	Gintis	makes	this	concrete	by	imagining	the	presence	of	what	he	calls	a	‘choreographer’.	Evolutionary	game	theory	shows	how	a	Darwinian	selection	process
can	serve	as	such	a	choreographer.	But	then	where	intelligent	strategic	agents,	such	as	humans,	are	concerned,	the	natural	choreographer	can	be	usurped,	because	the	agents	might	aim	to	optimize	utility	functions	where	the	arguments	do	not	correspond	to	the	fitness	criteria	on	which	their	selection	history	operated.	Then	the	players	need
equilibrium	selection	mechanisms	of	some	kind	to	avoid	miscoordination.	Cultural	evolution,	another	Darwinian	selection	process,	might	provide	them	with	norms	that	serve	as	focal	points.	This	is	not	sufficient	to	ensure	application	of	the	Harsanyi	Doctrine,	which	is	needed	to	ensure	identification	of	correlated	equilibrium	(Aumann	1987).	A	main
problem	is	that	norms	can	unravel	if	they	depend	on	preference	falsification.	But	people	can	negotiate	new	norms	on	the	fly	through	mindshaping.	Conditional	game	theory	(2.0)	provides	one	model	of	the	strategic	aspect	of	such	mindshaping,	which	also	allows	players	to	learn	about	one	another’s	systematic	departures	from	expected	utility	theory	and
thus	recover	the	conditions	for	the	Harsanyi	Doctrine	to	apply.	But,	of	course,	real	humans	often	encounter	one	another	as	cultural	strangers,	who	‘play	for	real’	without	prior	opportunities	for	fully	informative	pre-play.	When	we	wonder	about	the	value	of	game-theoretic	models	in	application	to	human	behavior	outside	of	well-structured	markets	or
tightly	regulated	institutional	settings,	much	hinges	on	what	we	take	to	be	plausible	and	empirically	validated	sources	of	coordinated	information	and	beliefs.	When	and	how	can	we	suppose	that	people	have	incentives	to	access	such	information	and	beliefs,	which	typically	involves	costs?	This	has	been	a	subject	of	extensive	recent	debate,	which	we
will	review	in	Section	8.3	below.	8.	Game	Theory	and	Behavioral	Evidence	In	earlier	sections,	we	reviewed	some	problems	that	arise	from	treating	classical	(non-evolutionary)	game	theory	as	a	normative	theory	that	tells	people	what	they	ought	to	do	if	they	wish	to	be	rational	in	strategic	situations.	The	difficulty,	as	we	saw,	is	that	there	seems	to	be
no	one	solution	concept	we	can	unequivocally	recommend	for	all	situations,	particularly	where	agents	have	private	information.	However,	in	the	previous	section	we	showed	how	appeal	to	evolutionary	foundations	sheds	light	on	conditions	under	which	utility	functions	that	have	been	explicitly	formulated	by	theorists	can	plausibly	be	applied	to	groups
of	people,	leading	to	game-theoretic	models	with	plausible	and	stable	solutions.	So	far,	however,	we	have	not	reviewed	any	actual	empirical	evidence	from	behavioral	observations	or	experiments.	Has	game	theory	indeed	helped	empirical	researchers	make	new	discoveries	about	behavior	(human	or	otherwise)?	If	so,	what	in	general	has	the	content	of
these	discoveries	been?	In	addressing	these	questions,	an	immediate	epistemological	issue	confronts	us.	There	is	no	way	of	applying	game	theory	‘all	by	itself’,	independently	of	other	modelling	technologies.	Using	terminology	standard	in	the	philosophy	of	science,	one	can	test	a	game-theoretic	model	of	a	phenomenon	only	in	tandem	with	‘auxiliary
assumptions’	about	the	phenomenon	in	question.	At	least,	this	follows	if	one	is	strict	about	treating	game	theory	purely	as	mathematics,	with	no	empirical	content	of	its	own.	In	one	sense,	a	theory	with	no	empirical	content	is	never	open	to	testing	at	all;	one	can	only	worry	about	whether	the	axioms	on	which	the	theory	is	based	are	mutually	consistent.
A	mathematical	theory	can	nevertheless	be	evaluated	with	respect	to	empirical	usefulness.	One	kind	of	philosophical	criticism	that	has	sometimes	been	made	of	game	theory,	interpreted	as	a	mathematical	tool	for	modelling	behavioral	phenomena,	is	that	its	application	always	or	usually	requires	resort	to	false,	misleading	or	badly	simplistic
assumptions	about	those	phenomena.	We	would	expect	this	criticism	to	have	different	degrees	of	force	in	different	contexts	of	application,	as	the	auxiliary	assumptions	vary.	So	matters	turn	out.	There	is	no	interesting	domain	in	which	applications	of	game	theory	have	been	completely	uncontroversial.	However,	there	has	been	generally	easier
consensus	on	how	to	use	game	theory	(both	classical	and	evolutionary)	to	understand	non-human	animal	behavior	than	on	how	to	deploy	it	for	explanation	and	prediction	of	the	strategic	activities	of	people.	Let	us	first	briefly	consider	philosophical	and	methodological	issues	that	have	arisen	around	application	of	game	theory	in	non-human	biology,
before	devoting	fuller	attention	to	game-theoretic	social	science.	The	least	controversial	game-theoretic	modelling	has	applied	the	classical	form	of	the	theory	to	consideration	of	strategies	by	which	non-human	animals	seek	to	acquire	the	basic	resource	relevant	to	their	evolutionary	tournament:	opportunities	to	produce	offspring	that	are	themselves
likely	to	reproduce.	In	order	to	thereby	maximize	their	expected	fitness,	animals	must	find	optimal	trade-offs	among	various	intermediate	goods,	such	as	nutrition,	security	from	predation	and	ability	to	out-compete	rivals	for	mates.	Efficient	trade-off	points	among	these	goods	can	often	be	estimated	for	particular	species	in	particular	environmental
circumstances,	and,	on	the	basis	of	these	estimations,	both	parametric	and	non-parametric	equilibria	can	be	derived.	Models	of	this	sort	have	an	impressive	track	record	in	predicting	and	explaining	independent	empirical	data	on	such	strategic	phenomena	as	competitive	foraging,	mate	selection,	nepotism,	sibling	rivalry,	herding,	collective	anti-
predator	vigilance	and	signaling,	reciprocal	grooming,	and	interspecific	mutuality	(symbiosis).	(For	examples	see	Krebs	and	Davies	1984,	Bell	1991,	Dugatkin	and	Reeve	1998,	Dukas	1998,	and	Noe,	van	Hoof	and	Hammerstein	2001.)	On	the	other	hand,	as	Hammerstein	(2003)	observes,	reciprocity,	and	its	exploitation	and	metaexploitation,	are	much
more	rarely	seen	in	social	non-human	animals	than	game-theoretic	modeling	would	lead	us	to	anticipate.	One	explanation	for	this	suggested	by	Hammerstein	is	that	non-human	animals	typically	have	less	ability	to	restrict	their	interaction	partners	than	do	people.	Our	discussion	in	the	previous	section	of	the	importance	of	correlation	for	stabilizing
game	solutions	lends	theoretical	support	to	this	suggestion.	Why	has	classical	game	theory	helped	to	predict	non-human	animal	behavior	more	straightforwardly	than	it	has	done	most	human	behavior?	The	answer	is	presumed	to	lie	in	different	levels	of	complication	amongst	the	relationships	between	auxiliary	assumptions	and	phenomena.	Ross
(2005a)	offers	the	following	account.	Utility	optimization	problems	are	the	domain	of	economics.	Economic	theory	identifies	the	optimizing	units—economic	agents—with	unchanging	preference	fields.	Identification	of	whole	biological	individuals	with	such	agents	is	more	plausible	the	less	cognitively	sophisticated	the	organism.	Thus	insects	(for
example)	are	tailor-made	for	easy	application	of	Revealed	Preference	Theory	(see	Section	2.1).	As	nervous	systems	become	more	complex,	however,	we	encounter	animals	that	learn.	Learning	can	cause	a	sufficient	degree	of	permanent	modification	in	an	animal’s	behavioral	patterns	that	we	can	preserve	the	identification	of	the	biological	individual
with	a	single	agent	across	the	modification	only	at	the	cost	of	explanatory	emptiness	(because	assignments	of	utility	functions	become	increasingly	ad	hoc).	Furthermore,	increasing	complexity	confounds	simple	modeling	on	a	second	dimension:	cognitively	sophisticated	animals	not	only	change	their	preferences	over	time,	but	are	governed	by
distributed	control	processes	that	make	them	sites	of	competition	among	internal	agents	(Schelling	1980;	Ainslie	1992,	Ainslie	2001).	Thus	they	are	not	straightforward	economic	agents	even	at	a	time.	In	setting	out	to	model	the	behavior	of	people	using	any	part	of	economic	theory,	including	game	theory,	we	must	recognize	that	the	relationship
between	any	given	person	and	an	economic	agent	we	construct	for	modeling	purposes	will	always	be	more	complicated	than	simple	identity.	There	is	no	sharp	crossing	point	at	which	an	animal	becomes	too	cognitively	sophisticated	to	be	modeled	as	a	single	economic	agent,	and	for	all	animals	(including	humans)	there	are	contexts	in	which	we	can
usefully	ignore	the	synchronic	dimension	of	complexity.	However,	we	encounter	a	phase	shift	in	modeling	dynamics	when	we	turn	from	asocial	animals	to	non-eusocial	social	ones.	(This	refers	to	animals	that	are	social	but	that	don’t,	like	ants,	bees,	wasps,	termites	and	naked	mole	rats,	achieve	cooperation	thanks	to	fundamental	changes	in	their
population	genetics	that	make	individuals	within	groups	into	near	clones.	Some	known	instances	are	parrots,	corvids,	bats,	rats,	canines,	hyenas,	pigs,	raccoons,	otters,	elephants,	hyraxes,	cetaceans,	and	primates.)	In	their	cases	stabilization	of	internal	control	dynamics	is	partly	located	outside	the	individuals,	at	the	level	of	group	dynamics.	With
these	creatures,	modeling	an	individual	as	an	economic	agent,	with	a	single	comprehensive	utility	function,	is	a	drastic	idealization,	which	can	only	be	done	with	the	greatest	methodological	caution	and	attention	to	specific	contextual	factors	relevant	to	the	particular	modeling	exercise.	Applications	of	game	theory	here	can	only	be	empirically
adequate	to	the	extent	that	the	economic	modeling	is	empirically	adequate.	H.	sapiens	is	the	extreme	case	in	this	respect.	Individual	humans	are	socially	controlled	to	an	extreme	degree	by	comparison	with	most	other	non-eusocial	species.	At	the	same	time,	their	great	cognitive	plasticity	allows	them	to	vary	significantly	between	cultures.	People	are
thus	the	least	straightforward	economic	agents	among	all	organisms.	(It	might	thus	be	thought	ironic	that	they	were	taken,	originally	and	for	many	years,	to	be	the	exemplary	instances	of	economic	agency,	on	account	of	their	allegedly	superior	‘rationality’.)	We	will	consider	the	implications	of	this	for	applications	of	game	theory	below.	First,	however,
comments	are	in	order	concerning	the	empirical	adequacy	of	evolutionary	game	theory	to	explain	and	predict	distributions	of	strategic	dispositions	in	populations	of	agents.	Such	modeling	is	applied	both	to	animals	as	products	of	natural	selection	(Hofbauer	and	Sigmund	1998),	and	to	non-eusocial	social	animals	(but	especially	humans)	as	products	of
cultural	selection	(Boyd	and	Richerson	1985;	Young	1998).	There	are	two	main	kinds	of	auxiliary	assumptions	one	must	justify,	relative	to	a	particular	instance	at	hand,	in	constructing	such	applications.	First,	one	must	have	grounds	for	confidence	that	the	dispositions	one	seeks	to	explain	are	(either	biological	or	cultural,	as	the	case	may	be)
adaptations—that	is,	dispositions	that	were	selected	and	are	maintained	because	of	the	way	in	which	they	promote	their	own	fitness	or	the	fitness	of	the	wider	system,	rather	than	being	accidents	or	structurally	inevitable	byproducts	of	other	adaptations.	(See	Dennett	1995	for	a	general	discussion	of	this	issue.)	Second,	one	must	be	able	to	set	the
modeling	enterprise	in	the	context	of	a	justified	set	of	assumptions	about	interrelationships	among	nested	evolutionary	processes	on	different	time	scales.	(For	example,	in	the	case	of	a	species	with	cultural	dynamics,	how	does	slow	genetic	evolution	constrain	fast	cultural	evolution?	How	does	cultural	evolution	feed	back	into	genetic	evolution,	if	it
feeds	back	at	all?	For	a	masterful	discussion	of	these	issues,	see	Sterelny	2003.)	Conflicting	views	over	which	such	assumptions	should	be	made	about	human	evolution	are	the	basis	for	lively	current	disputes	in	the	evolutionary	game-theoretic	modeling	of	human	behavioral	dispositions	and	institutions.	This	is	where	issues	in	evolutionary	game	theory
meet	issues	in	the	booming	field	of	behavioral-experimental	game	theory.	We	will	therefore	first	consider	the	second	field	before	giving	a	sense	of	the	controversies	just	alluded	to,	which	now	constitute	the	liveliest	domain	of	philosophical	argument	in	the	foundations	of	game	theory	and	its	applications.	8.1	Game	Theory	in	the	Laboratory	Economists
have	been	testing	theories	by	running	laboratory	experiments	with	human	and	other	animal	subjects	since	pioneering	work	by	Thurstone	(1931).	In	recent	decades,	the	volume	of	such	work	has	become	gigantic.	The	vast	majority	of	it	sets	subjects	in	microeconomic	problem	environments	that	are	imperfectly	competitive.	Since	this	is	precisely	the
condition	in	which	microeconomics	collapses	into	game	theory,	most	experimental	economics	has	been	experimental	game	theory.	It	is	thus	difficult	to	distinguish	between	experimentally	motivated	questions	about	the	empirical	adequacy	of	microeconomic	theory	and	questions	about	the	empirical	adequacy	of	game	theory.	We	can	here	give	only	a
broad	overview	of	an	enormous	and	complicated	literature.	Readers	are	referred	to	critical	surveys	in	Kagel	and	Roth	(1995),	Camerer	(2003),	Samuelson	(2005),	and	the	methodological	review	by	Guala	(2005).	A	useful	high-level	principle	for	sorting	the	literature	indexes	it	to	the	different	auxiliary	assumptions	with	which	game-theoretic	axioms	are
applied.	It	is	often	said	in	popular	presentations	(e.g.,	Ormerod	1994)	that	the	experimental	data	generally	refute	the	hypothesis	that	people	are	rational	economic	agents.	Such	claims	are	too	imprecise	to	be	sustainable	interpretations	of	the	results.	All	data	are	consistent	with	the	view	that	people	are	approximate	economic	agents,	at	least	for
stretches	of	time	long	enough	to	permit	game-theoretic	analysis	of	particular	scenarios,	in	the	minimal	sense	that	their	behavior	can	be	modeled	compatibly	with	Revealed	Preference	Theory	(see	Section	2.1).	However,	RPT	makes	so	little	in	the	way	of	empirical	demands	that	this	is	not	nearly	as	surprising	as	many	non-economists	suppose	(Ross
2005a).	What	is	really	at	issue	in	many	of	the	debates	around	the	general	interpretation	of	experimental	evidence	is	the	extent	to	which	people	are	maximizers	of	expected	utility.	As	we	saw	in	Section	3,	expected	utility	theory	(EUT)	is	generally	applied	in	tandem	with	game	theory	in	order	to	model	situations	involving	uncertainty—which	is	to	say,
most	situations	of	interest	in	behavioral	science.	However,	a	variety	of	alternative	structural	models	of	utility	lend	themselves	to	Von	Neumann-Morgenstern	cardinalization	of	preferences	and	are	definable	in	terms	of	subsets	of	the	Savage	(1954)	axioms	of	subjective	utility.	The	empirical	usefulness	of	game	theory	would	be	called	into	question	only	if
we	thought	that	people’s	behavior	is	not	generally	describable	by	means	of	cardinal	vNMufs.	What	the	experimental	literature	truly	appears	to	show	is	a	world	of	behavior	that	is	usually	noisy	from	the	theorist’s	point	of	view.	The	noise	in	question	arises	from	substantial	heterogeneity,	both	among	people	and	among	(person,	situation)	vectors.	There
is	no	single	structural	utility	function	such	that	all	people	act	so	as	to	maximize	a	function	of	that	structure	in	all	circumstances.	Faced	with	well-learned	problems	in	contexts	that	are	not	unduly	demanding,	or	that	are	highly	institutionally	structured	people	often	behave	like	expected	utility	maximizers.	For	general	reviews	of	theoretical	issues	and
evidence,	see	Smith	(2008)	and	Binmore	(2007).	For	an	extended	sequence	of	examples	of	empirical	studies,	see	the	so-called	‘continuous	double	auction’	experiments	discussed	in	Plott	and	Smith	1978	and	Smith	1962,	1964,	1965,	1976,	1982.	As	a	result,	classical	game	theory	can	be	used	in	such	domains	with	high	reliability	to	predict	behavior	and
implement	public	policy,	as	is	demonstrated	by	the	dozens	of	extremely	successful	government	auctions	of	utilities	and	other	assets	designed	by	game	theorists	to	increase	public	revenue	(Binmore	and	Klemperer	2002).	In	other	contexts,	interpreting	people’s	behavior	as	generally	expected-utility	maximizing	requires	undue	violence	to	the	need	for
generality	in	theory	construction.	We	get	better	prediction	using	fewer	case-specific	restrictions	if	we	suppose	that	subjects	are	maximizing	according	to	one	or	(typically)	more	of	several	alternatives	(which	will	not	be	described	here	because	they	are	not	directly	about	game	theory):	rank-dependent	utility	theory	(Quiggin	1982,	Yaari	1987),	or	alpha-
nu	utility	theory	(Chew	and	MacCrimmon	1979).	The	first	alternative	in	fact	denotes	a	family	of	alternative	specifications.	One	of	these,	the	specification	of	Prelec	(1998),	has	emerged	in	an	accumulating	mass	of	empirical	estimations	as	the	statistically	most	useful	model	of	observed	human	choice	under	risk	and	uncertainty.	Harrison	and	Rutstrom
(2008)	show	how	to	design	and	code	maximum	likelihood	mixture	models,	which	allow	an	empirical	modeler	to	apply	a	range	of	these	decision	functions	to	a	single	set	of	choice	data.	The	resulting	analysis	identifies	the	proportion	of	the	total	choice	set	best	explained	by	each	model	in	the	mixture.	Andersen	et	al	(2014)	take	this	approach	to	the
current	state	of	the	art,	demonstrating	the	empirical	value	of	including	a	model	of	non-maximizing	psychological	processes	in	a	mixture	along	with	maximizing	economic	models.	This	effective	flexibility	with	respect	to	the	decision	modeling	that	can	be	deployed	in	empirical	applications	of	game	theory	relieves	most	pressure	to	seek	adjustments	in	the
game	theoretic	structures	themselves.	Thus	it	fits	well	with	the	interpretation	of	game	theory	as	part	of	the	behavioral	scientist’s	mathematical	toolkit,	rather	than	as	a	first-order	empirical	model	of	human	psychology.	A	more	serious	threat	to	the	usefulness	of	game	theory	is	evidence	of	systematic	reversal	of	preferences,	in	both	humans	and	other
animals.	This	is	more	serious	both	because	it	extends	beyond	the	human	case,	and	because	it	challenges	Revealed	Preference	Theory	(RPT)	rather	than	just	unnecessarily	rigid	commitment	to	EUT.	As	explained	in	Section	2.1,	RPT,	unlike	EUT,	is	among	the	axiomatic	foundations	of	game	theory	interpreted	non-psychologically.	(Not	all	writers	agree
that	apparent	preference	reversal	phenomena	threaten	RPT	rather	than	EUT;	but	see	the	discussions	in	Camerer	(1995),	pp.	660–665,	and	Ross	(2005a),	pp.	177–181.)	A	basis	for	preference	reversals	that	seems	to	be	common	in	animals	with	brains	is	hyperbolic	discounting	of	the	future	(Strotz	1956,	Ainslie	1992).	This	is	the	phenomenon	whereby
agents	discount	future	rewards	more	steeply	in	close	temporal	distances	from	the	current	reference	point	than	at	more	remote	temporal	distances.	This	is	best	understood	by	contrast	with	the	idea	found	in	most	traditional	economic	models	of	exponential	discounting,	in	which	there	is	a	linear	relationship	between	the	rate	of	change	in	the	distance	to
a	payoff	and	the	rate	at	which	the	value	of	the	payoff	from	the	reference	point	declines.	The	figure	below	shows	exponential	and	hyperbolic	curves	for	the	same	interval	from	a	reference	point	to	a	future	payoff.	The	bottom	one	graphs	the	hyperbolic	function;	the	bowed	shape	results	from	the	change	in	the	rate	of	discounting.	Figure	15	A	result	of	this
is	that,	as	later	prospects	come	closer	to	the	point	of	possible	consumption,	people	and	other	animals	will	sometimes	spend	resources	undoing	the	consequences	of	previous	actions	that	also	cost	them	resources.	For	example:	deciding	today	whether	to	mark	a	pile	of	undergraduate	essays	or	watch	a	baseball	game,	I	procrastinate,	despite	knowing
that	by	doing	so	I	put	out	of	reach	some	even	more	fun	possibility	that	might	come	up	for	tomorrow	(when	there’s	an	equally	attractive	ball	game	on	if	the	better	option	doesn’t	arise).	So	far,	this	can	be	accounted	for	in	a	way	that	preserves	consistency	of	preferences:	if	the	world	might	end	tonight,	with	a	tiny	but	nonzero	probability,	then	there’s
some	level	of	risk	aversion	at	which	I’d	rather	leave	the	essays	unmarked.	The	figure	below	compares	two	exponential	discount	curves,	the	lower	one	for	the	value	of	the	game	I	watch	before	finishing	my	marking,	and	the	higher	one	for	the	more	valuable	game	I	enjoy	after	completing	the	job.	Both	have	higher	value	from	the	reference	point	the	closer
they	are	to	it;	but	the	curves	do	not	cross,	so	my	revealed	preferences	are	consistent	over	time	no	matter	how	impatient	I	might	be.	Figure	16	However,	if	I	bind	myself	against	procrastination	by	buying	a	ticket	for	tomorrow’s	game,	when	in	the	absence	of	the	awful	task	I	wouldn’t	have	done	so,	then	I’ve	violated	intertemporal	preference	consistency.
More	vividly,	had	I	been	in	a	position	to	choose	last	week	whether	to	procrastinate	today,	I’d	have	chosen	not	to.	In	this	case,	my	discount	curve	drawn	from	the	reference	point	of	last	week	crosses	the	curve	drawn	from	the	perspective	of	today,	and	my	preferences	reverse.	The	figure	below	shows	this	situation.	Figure	17	This	phenomenon
complicates	applications	of	classical	game	theory	to	intelligent	animals.	However,	it	clearly	doesn’t	vitiate	it	altogether,	since	people	(and	other	animals)	often	don’t	reverse	their	preferences.	(If	this	weren’t	true,	the	successful	auction	models	and	other	s-called	‘mechanism	designs’	would	be	mysterious.)	Interestingly,	the	leading	theories	that	aim	to
explain	why	hyperbolic	discounters	might	often	behave	in	accordance	with	RPT	themselves	appeal	to	game	theoretic	principles.	Ainslie	(1992,	2001)	has	produced	an	account	of	people	as	communities	of	internal	bargaining	interests,	in	which	subunits	based	on	short-term,	medium-term	and	long-term	interests	face	conflict	that	they	must	resolve
because	if	they	don’t,	and	instead	generate	an	internal	Hobbesian	breakdown	(Section	1),	outside	agents	who	avoid	the	Hobbesian	outcome	can	ruin	them	all.	The	device	of	the	Hobbesian	tyrant	is	unavailable	to	the	brain.	Therefore,	its	behavior	(when	system-level	insanity	is	avoided)	is	a	sequence	of	self-enforcing	equilibria	of	the	sort	studied	by
game-theoretic	public	choice	literature	on	coalitional	bargaining	in	democratic	legislatures.	That	is,	the	internal	politics	of	the	brain	consists	in	‘logrolling’	(Stratmann	1997).	These	internal	dynamics	are	then	partly	regulated	and	stabilized	by	the	wider	social	games	in	which	coalitions	(people	as	wholes	over	temporal	subparts	of	their	biographies)	are
embedded	(Ross	2005a	,	pp.	334–353).	(For	example:	social	expectations	about	someone’s	role	as	a	salesperson	set	behavioral	equilibrium	targets	for	the	logrolling	processes	in	their	brain.)	This	potentially	adds	further	relevant	elements	to	the	explanation	of	why	and	how	stable	institutions	with	relatively	transparent	rules	are	key	conditions	that	help
people	more	closely	resemble	straightforward	economic	agents,	such	that	classical	game	theory	finds	reliable	application	to	them	as	entire	units.	One	important	note	of	caution	is	in	order	here.	Much	of	the	recent	behavioral	literature	takes	for	granted	that	temporally	inconsistent	discounting	is	the	standard	or	default	case	for	people.	However,
Andersen	et	al	(2008)	show	empirically	that	this	arises	from	(i)	assuming	that	groups	of	people	are	homogenous	with	respect	to	which	functional	forms	best	describe	their	discounting	behavior,	and	(ii)	failure	to	independently	elicit	and	control	for	people’s	differing	levels	of	risk	aversion	in	estimating	their	discount	functions.	In	a	range	of	populations
that	have	been	studied	with	these	two	considerations	in	mind,	data	suggest	that	temporally	consistent	discounting	describes	substantially	higher	proportions	of	choices	than	does	temporally	inconsistent	choices.	Over-generalization	of	hyperbolic	discounting	models	should	thus	be	avoided.	8.2	Neuroeconomics	and	Game	Theory	The	idea	that	game
theory	can	find	novel	application	to	the	internal	dynamics	of	brains,	as	suggested	in	the	previous	section,	has	been	developed	from	independent	motivations	by	the	research	program	known	as	neuroeconomics	(Montague	and	Berns	2002,	Glimcher	2003,	Ross	2005a,	pp.	320–334,	Camerer,	Loewenstein	and	Prelec	2005).	Thanks	to	new	non-invasive
scanning	technologies,	especially	functional	magnetic	resonance	imaging	(fMRI),	it	has	recently	become	possible	to	study	synaptic	activity	in	working	brains	while	they	respond	to	controlled	cues.	This	has	allowed	a	new	path	of	access—though	still	a	highly	indirect	one	(Harrison	and	Ross	2010)—	to	the	brain’s	computation	of	expected	values	of
rewards,	which	are	(naturally)	taken	to	play	a	crucial	role	in	determining	behavior.	Economic	theory	is	used	to	frame	the	derivation	of	the	functions	maximized	by	synaptic-level	computation	of	these	expected	values;	hence	the	name	‘neuroeconomics’.	Game	theory	plays	a	leading	role	in	neuroeconomics	at	two	levels.	First,	game	theory	has	been	used
to	predict	the	computations	that	individual	neurons	and	groups	of	neurons	serving	the	reward	system	must	perform.	In	the	best	publicized	example,	Glimcher	(2003)	and	colleagues	have	fMRI-scanned	monkeys	they	had	trained	to	play	so-called	‘inspection	games’	against	computers.	In	an	inspection	game,	one	player	faces	a	series	of	choices	either	to
work	for	a	reward,	in	which	case	he	is	sure	to	receive	it,	or	to	perform	another,	easier	action	(“shirking”),	in	which	case	he	will	receive	the	reward	only	if	the	other	player	(the	“inspector”)	is	not	monitoring	him.	Assume	that	the	first	player’s	(the	“worker’s”)	behavior	reveals	a	utility	function	bounded	on	each	end	as	follows:	he	will	work	on	every
occasion	if	the	inspector	always	monitors	and	he	will	shirk	on	every	occasion	if	the	inspector	never	monitors.	The	inspector	prefers	to	obtain	the	highest	possible	amount	of	work	for	the	lowest	possible	monitoring	rate.	In	this	game,	the	only	NE	for	both	players	are	in	mixed	strategies,	since	any	pattern	in	one	player’s	strategy	that	can	be	detected	by
the	other	can	be	exploited.	For	any	given	pair	of	specific	utility	functions	for	the	two	players	meeting	the	constraints	described	above,	any	pair	of	strategies	in	which,	on	each	trial,	either	the	worker	is	indifferent	between	working	and	shirking	or	the	inspector	is	indifferent	between	monitoring	and	not	monitoring,	is	a	NE.	Applying	inspection	game
analyses	to	pairs	or	groups	of	agents	requires	us	to	have	either	independently	justified	their	utility	functions	over	all	variables	relevant	to	their	play,	in	which	case	we	can	define	NE	and	then	test	to	see	whether	they	successfully	maximize	expected	utility;	or	to	assume	that	they	maximize	expected	utility,	or	obey	some	other	rule	such	as	a	matching
function,	and	then	infer	their	utility	functions	from	their	behavior.	Either	such	procedure	can	be	sensible	in	different	empirical	contexts.	But	epistemological	leverage	increases	greatly	if	the	utility	function	of	the	inspector	is	exogenously	determined,	as	it	often	is.	(Police	implementing	random	roadside	inspections	to	catch	drunk	drivers,	for	example,
typically	have	a	maximum	incidence	of	drunk	driving	assigned	to	them	as	a	target	by	policy,	and	an	exogenously	set	budget.	These	determine	their	utility	function,	given	a	distribution	of	preferences	and	attitudes	to	risk	among	the	population	of	drivers.)	In	the	case	of	Glimcher’s	experiments	the	inspector	is	a	computer,	so	its	program	is	under
experimental	control	and	its	side	of	the	payoff	matrix	is	known.	Proxies	for	the	subjects’	expected	utility,	in	this	case	squirts	of	fruit	juice	for	the	monkeys,	can	be	antecedently	determined	in	parametric	test	settings.	The	computer	is	then	programmed	with	the	economic	model	of	the	monkeys,	and	can	search	the	data	in	their	behavior	in	game
conditions	for	exploitable	patterns,	varying	its	strategy	accordingly.	With	these	variables	fixed,	expected-utility-maximizing	NE	behavior	by	the	monkeys	can	be	calculated	and	tested	by	manipulating	the	computer’s	utility	function	in	various	runs	of	the	game.	Monkey	behavior	after	training	tracks	NE	very	robustly	(as	does	the	behavior	of	people
playing	similar	games	for	monetary	prizes;	Glimcher	2003,	pp.	307–308).	Working	with	trained	monkeys,	Glimcher	and	colleagues	could	then	perform	the	experiments	of	significance	here.	Working	and	shirking	behaviors	for	the	monkeys	had	been	associated	by	their	training	with	staring	either	to	the	right	or	to	the	left	on	a	visual	display.	In	earlier
experiments,	Platt	and	Glimcher	(1999)	had	established	that,	in	parametric	settings,	as	juice	rewards	varied	from	one	block	of	trials	to	another,	firing	rates	of	each	parietal	neuron	that	controls	eye	movements	could	be	trained	to	encode	the	expected	utility	to	the	monkey	of	each	possible	movement	relative	to	the	expected	utility	of	the	alternative
movement.	Thus	“movements	that	were	worth	0.4	ml	of	juice	were	represented	twice	as	strongly	[in	neural	firing	probabilities]	as	movements	worth	0.2	ml	of	juice”	(p.	314).	Unsurprisingly,	when	amounts	of	juice	rewarded	for	each	movement	were	varied	from	one	block	of	trials	to	another,	firing	rates	also	varied.	Against	this	background,	Glimcher
and	colleagues	could	investigate	the	way	in	which	monkeys’	brains	implemented	the	tracking	of	NE.	When	the	monkeys	played	the	inspection	game	against	the	computer,	the	target	associated	with	shirking	could	be	set	at	the	optimal	location,	given	the	prior	training,	for	a	specific	neuron	under	study,	while	the	work	target	would	appear	at	a	null
location.	This	permitted	Glimcher	to	test	the	answer	to	the	following	question:	did	the	monkeys	maintain	NE	in	the	game	by	keeping	the	firing	rate	of	the	neuron	constant	while	the	actual	and	optimal	behavior	of	the	monkey	as	a	whole	varied?	The	data	robustly	gave	the	answer	‘yes’.	Glimcher	reasonably	interprets	these	data	as	suggesting	that	neural
firing	rates,	at	least	in	this	cortical	region	for	this	task,	encode	expected	utility	in	both	parametric	and	nonparametric	settings.	Here	we	have	an	apparent	vindication	of	the	empirical	applicability	of	classical	game	theory	in	a	context	independent	of	institutions	or	social	conventions.	Further	analysis	pushed	the	hypothesis	deeper.	The	computer	playing
Inspector	was	presented	with	the	same	sequence	of	outcomes	as	its	monkey	opponent	had	received	on	the	previous	day’s	play,	and	for	each	move	was	asked	to	assess	the	relative	expected	values	of	the	shirking	and	working	actions	available	on	the	next	move.	Glimcher	reports	a	positive	correlation	between	small	fluctuations	around	the	stable	NE
firing	rates	in	the	individual	neuron	and	the	expected	values	estimated	by	the	computer	trying	to	track	the	same	NE.	Glimcher	comments	on	this	finding	as	follows:	The	neurons	seemed	to	be	reflecting,	on	a	play-by-play	basis,	a	computation	close	to	the	one	performed	by	our	computer	…	[A]t	a	…	[relatively]	…	microscopic	scale,	we	were	able	to	use
game	theory	to	begin	to	describe	the	decision-by-decision	computations	that	the	neurons	in	area	LIP	were	performing.	(Glimcher	2003,	p.	317)	Thus	we	find	game	theory	reaching	beyond	its	traditional	role	as	a	technology	for	framing	high-level	constraints	on	evolutionary	dynamics	or	on	behavior	by	well-informed	agents	operating	in	institutional
straitjackets.	In	Glimcher’s	hands,	it	is	used	to	directly	model	activity	in	a	monkey’s	brain.	Ross	(2005a)	argues	that	groups	of	neurons	thus	modeled	should	not	be	identified	with	the	sub-personal	game-playing	units	found	in	Ainslie’s	theory	of	intra-personal	bargaining	described	earlier;	that	would	involve	a	kind	of	straightforward	reduction	that
experience	in	the	behavioral	and	life	sciences	has	taught	us	not	to	expect.	This	issue	has	since	arisen	in	a	direct	dispute	between	neuroeconomists	over	rival	interpretations	of	fMRI	observations	of	intertemporal	choice	and	discounting	(McClure	et	al.	2004),	Glimcher	et	al.	2007).	The	weight	of	evidence	so	far	favors	the	view	that	if	it	is	sometimes
useful	to	analyze	people’s	choices	as	equilibria	in	games	amongst	sub-personal	agents,	the	sub-personal	agents	in	question	should	not	be	identified	with	separate	brain	areas.	The	opposite	interpretation	is	unfortunately	still	most	common	in	less	specialized	literature.	We	have	now	seen	the	first	level	at	which	neuroeconomics	applies	game	theory.	A
second	level	involves	seeking	conditioning	variables	in	neural	activity	that	might	impact	people’s	choices	of	strategies	when	they	play	games.	This	has	typically	involved	repeating	protocols	from	the	behavioral	game	theory	literature	with	research	subjects	who	are	lying	in	fMRI	scanners	during	play.	Harrison	(2008)	and	Ross	(2008b)	have	argued	for
skepticism	about	the	value	of	work	of	this	kind,	which	involves	various	uncomfortably	large	leaps	of	inference	in	associating	the	observed	behavior	with	specific	imputed	neural	responses.	It	can	also	be	questioned	whether	much	generalizable	new	knowledge	is	gained	to	the	extent	that	such	associations	can	be	successfully	identified.	Let	us	provide	an
example	of	this	kind	of	“game	in	a	scanner”—that	directly	involves	strategic	interaction.	King-Casas	et	al.	(2005)	took	a	standard	protocol	from	behavioral	game	theory,	the	so-called	‘trust’	game,	and	implemented	it	with	subjects	whose	brains	were	jointly	scanned	using	a	technology	for	linking	the	functional	maps	of	their	respective	brains,	known	as
‘hyperscanning’).	This	game	involves	two	players.	In	its	repeated	format	as	used	in	the	King-Casas	et	al.	experiment,	the	first	player	is	designated	the	‘investor’	and	the	second	the	‘trustee’.	The	investor	begins	with	$20,	of	which	she	can	keep	any	portion	of	her	choice	while	investing	the	remainder	with	the	trustee.	In	the	trustee’s	hands	the	invested
amount	is	tripled	by	the	experimenter.	The	trustee	may	then	return	as	much	or	as	little	of	this	profit	to	the	investor	as	he	deems	fit.	The	procedure	is	run	for	ten	rounds,	with	players’	identities	kept	anonymous	from	one	another.	This	game	has	an	infinite	number	of	NE.	Previous	data	from	behavioral	economics	are	consistent	with	the	claim	that	the
modal	NE	in	human	play	approximates	both	players	using	‘Tit-for-tat’	strategies	(see	Section	4)	modified	by	occasional	defections	to	probe	for	information,	and	some	post-defection	cooperation	that	manifests	(limited)	toleration	of	such	probes.	This	is	a	very	weak	result,	since	it	is	compatible	with	a	wide	range	of	hypotheses	on	exactly	which	variations
of	Tit-for-tat	are	used	and	sustained,	and	thus	licenses	no	inferences	about	potential	dynamics	under	different	learning	conditions,	institutions,	or	cross-cultural	transfers.	When	they	ran	this	game	under	hyperscanning,	the	researchers	interpreted	their	observations	as	follows.	Neurons	in	the	trustee’s	caudate	nucleus	(generally	thought	to	implement
computations	or	outputs	of	midbrain	dopaminergic	systems)	were	thought	to	show	strong	response	when	investors	benevolently	reciprocated	trust—that	is,	responded	to	defection	with	increased	generosity.	As	the	game	progressed,	these	responses	were	believed	to	have	shifted	from	being	reactionary	to	being	anticipatory.	Thus	reputational	profiles
as	predicted	by	classical	game-theoretic	models	were	inferred	to	have	been	constructed	directly	by	the	brain.	A	further	aspect	of	the	findings	not	predictable	by	theoretical	modeling	alone,	and	which	purely	behavioral	observation	had	not	been	sufficient	to	discriminate,	was	taken	to	be	that	responses	by	the	caudate	neurons	to	malevolent	reciprocity—
that	is,	reduced	generosity	in	response	to	cooperation—were	significantly	smaller	in	amplitude.	This	was	hypothesized	to	be	a	mechanism	by	which	the	brain	implements	modification	of	Tit-for-tat	so	as	to	prevent	occasional	defections	for	informational	probing	from	unraveling	cooperation	permanently.	The	advance	in	understanding	for	which
practitioners	of	this	style	of	neuroeconomics	hope	consists	not	in	what	it	tells	us	about	particular	types	of	games,	but	rather	in	comparative	inferences	it	facilitates	about	the	ways	in	which	contextual	framing	influences	people’s	conjectures	about	which	games	they’re	playing.	fMRI	or	other	kinds	of	probes	of	working	brains	might,	it	is	conjectured,
enable	us	to	quantitatively	estimate	degrees	of	strategic	surprise.	Reciprocally	interacting	expectations	about	surprise	may	themselves	be	subject	to	strategic	manipulation,	but	this	is	an	idea	that	has	barely	begun	to	be	theoretically	explored	by	game	theorists	(see	Ross	and	Dumouchel	2004).	The	view	of	some	neuroeconomists	that	we	now	have	the
prospect	of	empirically	testing	such	new	theories,	as	opposed	to	just	hypothetically	modeling	them,	has	stimulated	growth	in	this	line	of	research.	8.3	Game	Theoretic	Models	of	Human	Nature	The	developments	reviewed	in	the	previous	section	bring	us	up	to	the	moving	frontier	of	experimental	/	behavioral	applications	of	classical	game	theory.	We
can	now	return	to	the	branch	point	left	off	several	paragraphs	back,	where	this	stream	of	investigation	meets	that	coming	from	evolutionary	game	theory.	There	is	no	serious	doubt	that,	by	comparison	to	other	non-eusocial	animals—including	our	nearest	relatives,	chimpanzees	and	bonobos—humans	achieve	prodigious	feats	of	coordination	(see
Section	4)	(Tomasello	et	al.	2004).	A	lively	controversy,	with	important	philosophical	implications	and	fought	on	both	sides	with	game-theoretic	arguments,	went	on	for	some	time	over	whether	this	capacity	can	be	wholly	explained	by	cultural	adaptation,	or	is	better	explained	by	inference	to	a	genetic	change	early	in	the	career	of	H.	sapiens.	Henrich
et	al.	(2004,	2005)	have	run	a	series	of	experimental	games	with	populations	drawn	from	fifteen	small-scale	human	societies	in	South	America,	Africa,	and	Asia,	including	three	groups	of	foragers,	six	groups	of	slash-and-burn	horticulturists,	four	groups	of	nomadic	herders,	and	two	groups	of	small-scale	agriculturists.	The	games	(Ultimatum,	Dictator,
Public	Goods)	they	implemented	all	place	subjects	in	situations	broadly	resembling	that	of	the	Trust	game	discussed	in	the	previous	section.	That	is,	Ultimatum	and	Public	Goods	games	are	scenarios	in	which	both	social	welfare	and	each	individual’s	welfare	are	optimized	(Pareto	efficiency	achieved)	if	and	only	if	at	least	some	players	use	strategies
that	are	not	sub-game	perfect	equilibrium	strategies	(see	Section	2.6).	In	Dictator	games,	a	narrowly	selfish	first	mover	would	capture	all	available	profits.	Thus	in	each	of	the	three	game	types,	SPE	players	who	cared	only	about	their	own	monetary	welfare	would	get	outcomes	that	would	involve	highly	inegalitarian	payoffs.	In	none	of	the	societies
studied	by	Henrich	et	al.	(or	any	other	society	in	which	games	of	this	sort	have	been	run)	are	such	outcomes	observed.	The	players	whose	roles	are	such	that	they	would	take	away	all	but	epsilon	of	the	monetary	profits	if	they	and	their	partners	played	SPE	always	offered	the	partners	substantially	more	than	epsilon,	and	even	then	partners	sometimes
refused	such	offers	at	the	cost	of	receiving	no	money.	Furthermore,	unlike	the	traditional	subjects	of	experimental	economics—university	students	in	industrialized	countries—Henrich	et	al.’s	subjects	did	not	even	play	Nash	equilibrium	strategies	with	respect	to	monetary	payoffs.	(That	is,	strategically	advantaged	players	offered	larger	profit	splits	to
strategically	disadvantaged	ones	than	was	necessary	to	induce	agreement	to	their	offers.)	Henrich	et	al.	interpret	these	results	by	suggesting	that	all	actual	people,	unlike	‘rational	economic	man’,	value	egalitarian	outcomes	to	some	extent.	However,	their	experiments	also	show	that	this	extent	varies	significantly	with	culture,	and	is	correlated	with
variations	in	two	specific	cultural	variables:	typical	payoffs	to	cooperation	(the	extent	to	which	economic	life	in	the	society	depends	on	cooperation	with	non-immediate	kin)	and	aggregate	market	integration	(a	construct	built	out	of	independently	measured	degrees	of	social	complexity,	anonymity,	privacy,	and	settlement	size).	As	the	values	of	these
two	variables	increase,	game	behavior	shifts	(weakly)	in	the	direction	of	Nash	equilibrium	play.	Thus	the	researchers	conclude	that	people	are	naturally	endowed	with	preferences	for	egalitarianism,	but	that	the	relative	weight	of	these	preferences	is	programmable	by	social	learning	processes	conditioned	on	local	cultural	cues.	In	evaluating	Henrich
et	al.’s	interpretation	of	these	data,	we	should	first	note	that	no	axioms	of	RPT,	or	of	the	various	models	of	decision	mentioned	in	Section	8.1,	which	are	applied	jointly	with	game	theoretic	modeling	to	human	choice	data,	specify	or	entail	the	property	of	narrow	selfishness.	(See	Ross	(2005a)	ch.	4;	Binmore	(2005b)	and	(2009);	and	any	economics	or
game	theory	text	that	lets	the	mathematics	speak	for	itself.)	Orthodox	game	theory	thus	does	not	predict	that	people	will	play	SPE	or	NE	strategies	derived	by	treating	their	own	monetary	payoffs	as	equivalent	to	utility.	Binmore	(2005b)	is	therefore	justified	in	criticizing	Henrich	et	al	for	rhetoric	suggesting	that	their	empirical	work	embarrasses
orthodox	theory.	This	is	not	to	suggest	that	the	anthropological	interpretation	of	the	empirical	results	should	be	taken	as	uncontroversial.	Binmore	(1994,	1998,	2005a,	2005b)	has	argued	for	many	years,	based	on	a	wide	range	of	behavioral	data,	that	when	people	play	games	with	non-relatives	they	tend	to	learn	to	play	Nash	equilibrium	with	respect
to	utility	functions	that	approximately	correspond	to	income	functions.	As	he	points	out	in	Binmore	(2005b),	Henrich	et	al.’s	data	do	not	test	this	hypothesis	for	their	small-scale	societies,	because	their	subjects	were	not	exposed	to	the	test	games	for	the	(quite	long,	in	the	case	of	the	Ultimatum	game)	learning	period	that	theoretical	and	computational
models	suggest	are	required	for	people	to	converge	on	NE.	When	people	play	unfamiliar	games,	they	tend	to	model	them	by	reference	to	games	they	are	used	to	in	everyday	experience.	In	particular,	they	tend	to	play	one-shot	laboratory	games	as	though	they	were	familiar	repeated	games,	since	one-shot	games	are	rare	in	normal	social	life	outside	of
special	institutional	contexts.	Many	of	the	interpretive	remarks	made	by	Henrich	et	al.	are	consistent	with	this	hypothesis	concerning	their	subjects,	though	they	nevertheless	explicitly	reject	the	hypothesis	itself.	What	is	controversial	here—the	issues	of	spin	around	‘orthodox’	theory	aside—is	less	about	what	the	particular	subjects	in	this	experiment
were	doing	than	about	what	their	behavior	should	lead	us	to	infer	about	human	evolution.	Gintis	(2004),	(2009a)	argues	that	data	of	the	sort	we	have	been	discussing	support	the	following	conjecture	about	human	evolution.	Our	ancestors	approximated	maximizers	of	individual	fitness.	Somewhere	along	the	evolutionary	line	these	ancestors	arrived	in
circumstances	where	enough	of	them	optimized	their	individual	fitness	by	acting	so	as	to	optimize	the	welfare	of	their	group	(Sober	and	Wilson	1998)	that	a	genetic	modification	went	to	fixation	in	the	species:	we	developed	preferences	not	just	over	our	own	individual	welfare,	but	over	the	relative	welfare	of	all	members	of	our	communities,	indexed	to
social	norms	programmable	in	each	individual	by	cultural	learning.	Thus	the	contemporary	researcher	applying	game	theory	to	model	a	social	situation	is	advised	to	unearth	her	subjects’	utility	functions	by	(i)	finding	out	what	community	(or	communities)	they	are	members	of,	and	then	(ii)	inferring	the	utility	function(s)	programmed	into	members	of
that	community	(communities)	by	studying	representatives	of	each	relevant	community	in	a	range	of	games	and	assuming	that	the	outcomes	are	correlated	equilibria.	Since	the	utility	functions	are	the	dependent	variables	here,	the	games	must	be	independently	determined.	We	can	typically	hold	at	least	the	strategic	forms	of	the	relevant	games	fixed,
Gintis	supposes,	by	virtue	of	(a)	our	confidence	that	people	prefer	egalitarian	outcomes,	all	else	being	equal,	to	inegalitarian	ones	within	the	culturally	evolved	‘insider	groups’	to	which	they	perceive	themselves	as	belonging	and	(b)	a	requirement	that	game	equilibria	are	drawn	from	stable	attractors	in	plausible	evolutionary	game-theoretic	models	of
the	culture’s	historical	dynamics.	Requirement	(b)	as	a	constraint	on	game-theoretic	modeling	of	general	human	strategic	dispositions	is	no	longer	very	controversial—or,	at	least,	is	no	more	controversial	than	the	generic	adaptationism	in	evolutionary	anthropology	of	which	it	is	one	expression.	However,	many	commentators	are	skeptical	of	Gintis’s
suggestion	that	there	was	a	genetic	discontinuity	in	the	evolution	of	human	sociality.	(For	a	cognitive-evolutionary	anthropology	that	explicitly	denies	such	discontinuity,	see	Sterelny	2003.)	Based	partly	on	such	skepticism	(but	more	directly	on	behavioral	data)	Binmore	(2005a,	2005b)	resists	modeling	people	as	having	built-in	preferences	for
egalitarianism.	According	to	Binmore’s	(1994,	1998,	2005a)	model,	the	basic	class	of	strategic	problems	facing	non-eusocial	social	animals	are	coordination	games.	Human	communities	evolve	cultural	norms	to	select	equilibria	in	these	games,	and	many	of	these	equilibria	will	be	compatible	with	high	levels	of	apparently	altruistic	behavior	in	some
(but	not	all)	games.	Binmore	argues	that	people	adapt	their	conceptions	of	fairness	to	whatever	happen	to	be	their	locally	prevailing	equilibrium	selection	rules.	However,	he	maintains	that	the	dynamic	development	of	such	norms	must	be	compatible,	in	the	long	run,	with	bargaining	equilibria	among	self-regarding	individuals.	Indeed,	he	argues	that
as	societies	evolve	institutions	that	encourage	what	Henrich	et	al.	call	aggregate	market	integration	(discussed	above),	their	utility	functions	and	social	norms	tend	to	converge	on	self-regarding	economic	rationality	with	respect	to	welfare.	This	does	not	mean	that	Binmore	is	pessimistic	about	the	prospects	for	egalitarianism:	he	develops	a	model
showing	that	societies	of	broadly	self-interested	bargainers	can	be	pulled	naturally	along	dynamically	stable	equilibrium	paths	towards	norms	of	distribution	corresponding	to	Rawlsian	justice	(Rawls	1971).	The	principal	barriers	to	such	evolution,	according	to	Binmore,	are	precisely	the	kinds	of	other-regarding	preferences	that	conservatives	valorize



as	a	way	of	discouraging	examination	of	more	egalitarian	bargaining	equilibria	that	are	within	reach	along	societies’	equilibrium	paths.	Resolution	of	this	debate	between	Gintis	and	Binmore	fortunately	need	not	wait	upon	discoveries	about	the	deep	human	evolutionary	past	that	we	may	never	have.	The	models	make	rival	empirical	predictions	of	some
testable	phenomena.	If	Gintis	is	right	then	there	are	limits,	imposed	by	the	discontinuity	in	hominin	evolution,	on	the	extent	to	which	people	can	learn	to	be	self-regarding.	This	is	the	main	significance	of	the	controversy	discussed	above	over	Henrich	et	al.’s	interpretation	of	their	field	data.	Binmore’s	model	of	social	equilibrium	selection	also	depends,
unlike	Gintis’s,	on	widespread	dispositions	among	people	to	inflict	second-order	punishment	on	members	of	society	who	fail	to	sanction	violators	of	social	norms.	Gintis	(2005)	shows	using	a	game	theory	model	that	this	is	implausible	if	punishment	costs	are	significant.	However,	Ross	(2008a)	argues	that	the	widespread	assumption	in	the	literature
that	punishment	of	norm-violation	must	be	costly	results	from	failure	to	adequately	distinguish	between	models	of	the	original	evolution	of	sociality,	on	the	one	hand,	and	models	of	the	maintenance	and	development	of	norms	and	institutions	once	an	initial	set	of	them	has	stabilized.	Finally,	Ross	also	points	out	that	Binmore’s	objectives	are	as	much
normative	as	descriptive:	he	aims	to	show	egalitarians	how	to	diagnose	the	errors	in	conservative	rationalisations	of	the	status	quo	without	calling	for	revolutions	that	put	equilibrium	path	stability	(and,	therefore,	social	welfare)	at	risk.	It	is	a	sound	principle	in	constructing	reform	proposals	that	they	should	be	‘knave-proof’	(as	Hume	put	it),	that	is,
should	be	compatible	with	less	altruism	than	might	prevail	in	people.	9.	Looking	Ahead:	Areas	of	Current	Innovation	In	2016	the	Journal	of	Economic	Perspectives	published	a	symposium	on	“What	is	Happening	in	Game	Theory?”	Each	of	the	participants	noted	independently	that	game	theory	has	become	so	tightly	entangled	with	microeconomic
theory	in	general	that	the	question	becomes	difficult	to	distinguish	from	inquiry	into	the	moving	frontier	of	that	entire	sub-discipline,	which	is	in	turn	the	largest	part	of	economics	as	a	whole.	Thus	the	boundary	between	the	philosophy	of	game	theory	and	the	philosophy	of	microeconomics	is	now	similarly	indistinct.	Of	course,	as	has	been	stressed,
applications	of	game	theory	extend	beyond	the	traditional	domain	of	economics,	into	all	of	the	behavioral	and	social	sciences.	But	as	the	methods	of	game	theory	have	fused	with	the	methods	of	microeconomics,	a	commentator	might	equally	view	these	extensions	as	being	exported	applications	of	microeconomics.	Following	decades	of	development
(incompletely)	surveyed	in	the	present	article,	the	past	few	years	have	been	relatively	quiet	ones	where	foundational	innovations	of	the	kind	that	invite	contributions	from	philosophers	are	concerned.	Some	parts	of	the	original	foundations	are	being	newly	revisited,	however.	von	Neumann	and	Morgenstern’s	(1944)	introduction	of	game	theory	divided
the	inquiry	into	two	parts.	Noncooperative	game	theory	analyzes	cases	built	on	the	assumption	that	each	player	maximizes	her	own	utility	function	while	treating	the	expected	strategic	responses	of	other	players	as	constraints.	As	discussed	above,	the	specific	game	to	which	von	Neumann	and	Morgenstern	applied	their	modeling	was	poker,	which	is	a
zero-sum	game.	Most	of	the	present	article	has	focused	on	the	many	theoretical	challenges	and	insights	that	arose	from	extending	noncooperative	game	theory	beyond	the	zero-sum	domain.	But	this	in	fact	develops	only	half	of	von	Neumann	and	Morgenstern’s	classic.	The	other	half	developed	cooperative	game	theory,	about	which	nothing	has	so	far
been	said	here.	The	reason	for	this	silence	is	that	for	most	game	theorists	cooperative	game	theory	is	a	distraction	at	best	and	at	worst	a	technology	that	confuses	the	point	of	game	theory	by	bypassing	the	aspect	of	games	that	mainly	makes	them	potentially	interesting	and	insightful	in	application,	namely,	the	requirement	that	equilibria	be	selected
endogenously	under	the	restrictions	imposed	by	Nash	(1950a).	This,	after	all,	is	what	makes	equilibria	self-enforcing,	just	in	the	way	that	prices	in	competitive	markets	are,	and	thus	renders	them	stable	unless	shocked	from	outside.	Nash	(1953)	argued	that	solutions	to	cooperative	games	should	always	be	verified	by	showing	that	they	are	also
solutions	to	formally	equivalent	noncooperative	games.	Nash’s	accomplishment	in	the	paper	wa	the	analytical	identification	of	the	relevant	equivalence.	One	way	of	interpreting	this	was	as	demonstrating	the	ultimate	redundancy	of	cooperative	game	theory.	Cooperative	game	theory	begins	from	the	assumption	that	players	have	already,	by	some
unspecified	process,	agreed	on	a	vector	of	strategies,	and	thus	on	an	outcome.	Then	the	analyst	deploys	the	theory	to	determine	the	minimal	set	of	conditions	under	which	the	agreement	remains	stable.	The	idea	is	typically	illustrated	by	the	example	of	a	parliamentary	coalition.	Suppose	that	there	is	one	dominant	party	that	must	be	a	member	of	any
coalition	if	it	is	to	command	a	majority	of	parliamentary	votes	on	legislation	and	confidence.	There	might	then	be	a	range	of	alternative	possible	groupings	of	other	parties	that	could	sustain	it.	Imagine,	to	make	the	example	more	structured	and	interesting,	that	some	parties	will	not	serve	in	a	coalition	that	includes	certain	specific	others;	so	the
problem	faced	by	the	coalition	organizers	is	not	simply	a	matter	of	summing	potential	votes.	The	cooperative	game	theorist	identifies	the	set	of	possible	coalitions.	There	may	be	some	other	parties,	in	addition	to	the	dominant	party,	that	turn	out	to	be	needed	in	every	possible	coalition.	Identifying	these	parties	would,	in	this	example,	reveal	the	core	of
the	game,	the	elements	shared	by	all	equilibria.	The	core	is	the	key	solution	concept	of	cooperative	game	theory,	for	which	Shapley	shared	the	Nobel	prize.	(Shapley	(1953)	is	the	great	paper.)	Nash	(1953)	defined	the	“Nash	program”	as	consisting	of	verifying	a	particular	cooperative	equilibrium	by	showing	that	noncooperative	players	could	arrive	at
it	through	the	sequential	bargaining	process	specified	in	Nash	(1950b),	and	that	all	outcomes	of	such	bargaining	would	include	the	core.	In	light	of	the	example,	it	is	no	surprise	that	political	scientists	were	the	primary	users	of	cooperative	theory	during	the	years	while	noncooperative	game	theory	was	still	being	fully	developed.	It	has	also	been
applied	usefully	by	labor	economists	studying	settlement	negotiations	between	firms	and	unions,	and	by	analysts	of	international	trade	negotiations.	We	might	illustrate	the	value	of	such	application	by	reference	to	the	second	example.	Suppose	that,	given	the	weight	of	domestic	lobbies	in	South	Africa,	the	South	African	government	will	never	agree	to
any	trade	agreement	that	does	not	allow	it	to	protect	its	automative	assembly	sector.	(This	has	in	fact	been	the	case	so	far.)	Then	allowance	for	such	protection	is	part	of	the	core	of	any	trade	treaty	another	country	or	bloc	might	conclude	with	South	Africa.	Knowing	this	can	help	the	parties	during	negotiations	avoid	rhetoric	or	commitments	to	other
lobbies,	in	any	of	the	negotiating	countries,	that	would	put	the	core	out	of	reach	and	thus	guarantee	negotiation	failure.	This	example	also	helps	us	illustrate	the	limitations	of	cooperative	game	theory.	South	Africa	will	have	to	trade	off	the	interests	of	some	other	lobbies	to	protect	its	automative	industry.	Which	others	will	get	traded	off	will	be	a
function	of	the	extensive-form	play	of	non-cooperative	sequential	proposals	and	counter-proposals,	and	the	South	African	bargainers,	if	they	have	done	their	due	diligence,	must	be	attentive	to	which	paths	through	the	tree	throw	which	specific	domestic	interests	under	the	proverbial	bus.	Thus	carrying	out	the	cooperative	analysis	does	not	relieve
them	of	the	need	to	also	conduct	the	noncooperative	analysis.	Their	game	theory	consultants	might	as	well	simply	code	the	non-cooperative	parameters	into	their	Gambit	software,	which	will	output	the	core	if	asked.	But	cooperative	game	theory	did	not	die,	or	become	confined	to	political	science	applications.	There	has	turned	out	to	be	a	range	of
policy	problems,	involving	many	players	whose	attributes	vary	but	whose	ordinal	utility	functions	are	symmetrical,	for	which	noncooperative	modeling,	while	possible	in	principle,	is	absurdly	cumbersome	and	computationally	demanding,	but	for	which	cooperative	modeling	is	beautifully	suited.	That	we	be	dealing	with	ordinal	utility	functions	is
important,	because	in	the	relevant	markets	there	are	often	no	prices.	The	classic	example	(Gale	and	Shapley	1962)	is	a	marriage	market.	Abstracting	from	the	scale	of	individual	romantic	dramas	and	comedies,	society	features,	as	it	were,	a	vast	set	of	people	who	want	to	form	into	pairs,	but	care	very	much	who	they	end	up	paired	with.	Suppose	we
have	a	finite	set	of	such	people.	Imagine	that	the	match-maker,	or	app,	first	splits	the	set	into	two	proper	subsets,	and	announces	a	rule	that	everyone	in	subset	\(A\)	will	propose	to	someone	in	subset	\(B\).	Each	of	those	in	\(B\)	who	receive	a	proposal	knows	that	she	is	the	first	choice	of	someone	in	\(A\).	She	selects	her	first	choice	from	the	proposals
she	has	received	and	throws	the	rest	back	into	the	pool.	Those	in	\(A\)	whose	initial	proposals	were	not	accepted	now	each	propose	to	someone	they	did	not	propose	to	before,	but	possibly	including	people	who	are	holding	proposals	from	a	previous	round—Nkosi	knows	that	Barbara	preferred	Amalia	in	round	1,	but	Nkosi	wasn’t	part	of	that	choice	set
and	so	might	displace	Amalia	in	round	2).	Provably	there	exists	a	terminal	round	after	which	no	further	proposals	will	be	made,	and	the	matchmaking	app	will	have	found	the	core	of	the	cooperative	game	because	no	person	\(i\)	in	set	\(B\)	will	prefer	to	pair	with	someone	from	set	\(A\)	who	prefers	\(i\)	to	whoever	is	holding	that	\(A\)-set	dreamboat’s
proposal.	Everyone	from	set	B	will	now	accept	the	proposal	they	are	holding,	and,	if	the	two	sets	had	the	same	cardinality	and	everyone	would	rather	pair	with	someone	than	pair	with	no	one,	then	nobody	will	go	off	alone.	This	is	not	a	directly	applicable	model	of	a	marriage	market,	so	there	is	no	money	to	be	made	in	selling	the	simple	matchmaking
app	described	above.	The	problem	is	that	we	have	no	guarantee	that,	in	the	example,	Nkosi	and	Amalia	aren’t	one	another’s	partners	of	destiny,	but	cannot	get	paired	because	they	both	began	in	subset	\(A\).	In	game	theory	textbooks	this	problem	is	often	finessed	by	assuming	that	Set	\(A\)	contains	men	and	Set	\(B\)	contains	women,	and	that
everyone	is	so	committed	to	heterosexuality	that	they’d	rather	pair	with	anyone	of	the	opposite	sex	than	anyone	of	their	own	sex.	On	the	other	hand,	the	model	provides	some	insight,	in	the	way	that	models	typically	do,	if	we	don’t	insist	on	applying	it	too	literally.	After	working	through	it,	one	sees	the	logic	of	facts	about	society	that	someone
designing	a	real	matchmaking	app	had	better	understand:	that	the	app	will	have	to	log	proposals	under	consideration	but	not	yet	accepted,	leave	people	holding	proposals	under	consideration	on	the	market,	and	remember	who	has	previously	rejected	whom	(without	creating	a	generalised	emotional	catastrophe	by	publicly	posting	this	information).
The	real	app	will	not	be	able	to	reliably	find	the	core	of	the	cooperative	game,	unless	the	set	of	people	in	the	market	is	small,	restricted,	and	has	self-sorted	into	subsets	to	at	least	some	extent	by	providing	such	information	as	“\(X\)-type	person	seeks	\(Y\)-type	person”	for	\(X\)	and	\(Y\)	properties	that	everyone	prioritizes.	(Are	there	such	properties,	at
least	as	an	approximation?)	But	the	real	matchmaking	apps	seem	to	work	well	enough	to	be	transforming	the	way	in	which	most	young	people	now	find	mates	in	countries	with	generally	available	internet	access.	Relationships	between	theoretically	idealized	and	real	marriage	markets	are	comprehensively	reviewed	in	Chiappori	(2017).	The	revival	of
cooperative	game	theory	as	site	of	renewed	interest	has	occurred	because	policy	problems	have	been	encountered	that,	unlike	the	original	toy	illustration	using	the	all-straights	marriage	market,	satisfy	the	model’s	crucial	assumptions.	Leading	instances	are	matching	university	applicants	and	universities,	and	matching	people	needing	organ
transplants	with	donors	(see	Roth	2015).	In	these	markets,	there	is	no	ambivalence	about	partitioning	the	sets	to	be	matched.	Ordinal	preferences	are	the	relevant	ones:	universities	don’t	auction	off	places	to	the	highest	bidder	(or	at	least	not	in	general),	and	organs	are	not	for	sale	(or	at	least	not	legally).	The	models	are	really	applied,	and	they
demonstrably	have	improved	efficiency	and	saved	lives.	It	is	common	in	science	for	models	that	are	practically	clumsy	fits	to	their	original	problems	to	turn	out	to	furnish	highly	efficient	solutions	to	new	problems	thrown	up	by	technological	change.	The	internet	has	created	an	environment	for	applications	of	matching	algorithms—travellers	and	flat
renters,	diners	and	restaurants,	students	and	tutors,	and	(regrettably)	socially	alienated	people	and	purveyors	of	propaganda	and	fanaticism—that	could	have	been	designed	by	a	theorist	at	any	time	since	Shapley’s	original	innovations,	but	would	previously	have	been	practically	impossible	to	implement.	These	applications	of	cooperative	game	theory
are	often	applied	conjointly	with	the	noncooperative	game	theory	of	auctions	(Klemperer	2004)	to	drive	market	designs	for	goods	and	services	so	efficient	as	to	be	annihilating	the	once	mighty	shopping	mall	in	even	the	suburban	USA.	Why	are	hotels	more	profitable	and	easily	available	than	was	the	case	in	all	but	the	largest	cities	before	about	2007?
The	answer	is	that	dynamic	pricing	algorithms	(Gershkov	and	Moldovanu	2014)	blend	matching	theory	and	auction	theory	to	allow	hotels,	combined	with	online	travel	service	aggregators,	to	find	customers	willing	to	pay	premium	rates	for	their	ideal	locations	and	times,	and	then	fill	the	remaining	rooms	with	bargain	hunters	whose	preferences	are
more	flexible.	Airlines	operate	similar	technology.	Game	theory	thus	continues	to	be	one	of	the	20th-century	inventions	that	is	driving	social	revolutions	in	the	21st,	and	Samuelson	(2016)	predicts	a	coming	surge	of	renewed	interest	in	the	deeper	mathematics	of	cooperative	games	and	their	relationships	to	noncooperative	games.	A	range	of	further
applications	of	both	classical	and	evolutionary	game	theory	have	been	developed,	but	we	have	hopefully	now	provided	enough	to	convince	the	reader	of	the	tremendous,	and	constantly	expanding,	utility	of	this	analytical	tool.	The	reader	whose	appetite	for	more	has	been	aroused	should	find	that	she	now	has	sufficient	grasp	of	fundamentals	to	be	able
to	work	through	the	large	literature,	of	which	some	highlights	are	listed	below.


