
	

https://godozop.gonujovux.com/868333278067902159052154531893106723395020?xexoripiwukunivebiloxetebopivepobuwotikofixotexaxunowenosuwirevifitep=panaxexusosogamukuzotuxutixogozefipukipakevutamagoridipuzevuritokipewigibapinegoziziwizatimalibekigipobuvexagafiwadoxafurisotirovidasukixuninitivenavitegiporiradejipenilupogijimixuwikunimelixorivoxede&utm_term=github+best+practices&zisedalebosugotiwogarelajomufinulesufekogavupotirewotek=kipixanadafuzejuzojulubumejavasubadogigixabafafasobapatogixiligukuditubikuvoxadaximarifewalidofirupomotasobuzanusix

Github	best	practices

AI	AI	AI	AI	AI	AI	AI	You	can’t	perform	that	action	at	this	time.	We	interviewed	hundreds	of	software	developers,	and	perfomed	code	scanning	on	thousands	of	GitHub	repositories	using	our	own	product	to	produce	this	list.These	best	practices	are	still	applicable	even	if	you	use	something	other	than	GitHub	for	version	control	or	source	control,	because
they’re	all	about	ensuring	source	code	security	and	writing	good	code.#	10	—	Don’t	just	git	commit	directly	to	masterRegardless	if	you	use	Gitflow	or	any	other	git	branching	model,	it	is	always	a	good	idea	to	turn	on	git	branch	protection	to	prevent	direct	commits	and	ensure	your	main	branch	code	is	deployable	at	all	times.	All	commits	should	be
managed	via	pull	requests.#	9	—	Do	git	commit	with	the	right	email	addressSometimes	you	commit	code	using	the	wrong	email	address,	and	as	a	result	GitHub	shows	that	your	commit	has	an	unrecognized	author.	Having	commits	with	unrecognized	authors	makes	it	more	difficult	to	track	who	wrote	which	part	of	the	code.Ensure	your	Git	client	is
configured	with	the	correct	email	address	and	linked	to	your	GitHub	user.	Check	your	pull	requests	during	code	reviews	for	unrecognized	commits.#	8	—	Define	code	owners	for	faster	code	reviewsWhen	you’re	dealing	with	dozens,	hundreds,	or	more	repositories	and	engineers,	it’s	nearly	impossible	to	know	who	owns	which	parts	of	the	codebase	and
need	to	review	your	changes.Even	in	smaller	teams	you’d	still	have	code	owners	—	for	example,	front-end	code	changes	should	be	reviewed	by	the	Front-End	Engineer.Use	Code	Owners	feature	to	define	which	teams	and	people	are	automatically	selected	as	reviewers	for	the	repository.#	7	—	Don’t	let	secrets	leak	into	source	codeSecrets,	or	secret
keys	or	secret	credentials,	include	things	like	account	passwords,	API	keys,	private	tokens,	and	SSH	keys.	You	should	not	check	them	into	your	source	code.Instead,	we	recommend	you	inject	secrets	as	environment	variables	externally	from	a	secure	store.	You	can	use	tools	like	Hashicorp	Vault	or	AWS	Secrets	Manager	to	do	this.There	are	also	tools
for	scanning	secrets	in	repos	and	prevent	them	from	getting	into	repos.Git-secrets	can	help	you	to	identify	passwords	in	your	code.Git	hooks	can	be	used	to	build	a	pre-commit	hook	and	check	every	pull	request	for	secrets.Datree	has	a	built-in	policy	rule	for	this.Read	this	tutorial	or	watch	this	video	for	a	more	detailed	explanation	on	why	you	should
manage	secrets	this	way	and	how	to	do	it	right.#	6	—	Don’t	commit	dependencies	into	source	codePushing	dependencies	into	your	remote	origin	will	increase	repository	size.	Remove	any	projects	dependencies	included	in	your	repositories	and	let	your	package	manager	download	them	in	each	build.	if	you	are	afraid	of	“dependencies	availability”	you
should	consider	using	a	binary	repository	manager	solution	like	Jfrog	or	Nexus	Repository.	Or	check	out	GitHub’s	Git-Sizer.#	5	—	Don’t	commit	configuration	files	into	source	codeWe	strongly	recommend	against	committing	your	local	config	files	to	version	control.	Usually,	those	are	private	configuration	files	you	don’t	want	to	push	to	remote	because
they	are	holding	secrets,	personal	preferences,	history	or	general	information	that	should	stay	only	in	your	local	environment.#	4	—	Create	a	meaningful	git	ignore	fileA	.gitignore	file	is	a	must	in	each	repository	to	ignore	predefined	files	and	directories.	It	will	help	you	to	prevent	secret	keys,	dependencies	and	many	other	possible	discrepancies	in
your	code.	You	can	choose	a	relevant	template	from	Gitignore.io	to	get	started	quickly.#	3	—	Archive	dead	repositoriesOver	time,	for	various	reasons,	we	find	ourselves	with	unmaintained	repositories.	Sometimes	developers	create	repos	for	an	ad	hoc	use	case,	a	POC,	or	some	other	reason.	Sometimes	they	inherit	repos	with	old	and	irrelevant	code.In
any	case,	these	repos	were	left	intact.	No	one	is	doing	any	development	work	in	those	repos	anymore,	so	you	want	to	clean	them	up	and	avoid	the	risk	of	other	people	using	them.	The	best	practice	is	to	archive	them,	i.e.	make	them	“read-only”	to	everyone.#	2	—	Lock	package	versionYour	manifest	file	contains	information	about	all	packages	and
dependencies	in	your	project	and	their	versions.	The	best	practice	is	to	specify	a	version	or	version	range	for	every	package	and	dependency	listed	in	the	manifest.	Otherwise,	you	can’t	be	sure	which	version	will	get	installed	during	the	next	build,	and	consequently	your	code	may	break.#	1	—	Align	packages	versioningEven	when	everyone	on	your
team	are	using	the	same	packages,	reusing	code	and	tests	across	different	projects	can	still	be	difficult	if	the	packages	are	of	different	versions.If	you	have	a	package	that	is	used	in	multiple	projects,	try	at	a	minimum	to	use	the	same	major	version	of	the	package.What’s	next?All	that’s	left	for	you	to	do	is	check	off	each	of	the	aforementioned	best
practices,	on	each	of	your	repositories,	one	by	one…Or,	save	your	sanity	and	connect	with	Datree’s	GitHub	app	to	scan	your	repositories	and	generate	your	free	status	report	to	assess	if	your	repositories	align	with	the	listed	best	practices.	A	demonstration	animation	of	a	code	editor	using	GitHub	Copilot	Chat,	where	the	user	requests	GitHub	Copilot
to	refactor	duplicated	logic	and	extract	it	into	a	reusable	function	for	a	given	code	snippet.Build	code	quickly	and	more	securely	with	GitHub	Copilot	embedded	throughout	your	workflows.With	GitHub	Copilot	embedded	throughout	the	platform,	you	can	simplify	your	toolchain,	automate	tasks,	and	improve	the	developer	experience.A	Copilot	chat
window	with	extensions	enabled.	The	user	inputs	the	@	symbol	to	reveal	a	list	of	five	Copilot	Extensions.	@Sentry	is	selected	from	the	list,	which	shifts	the	window	to	a	chat	directly	with	that	extension.	There	are	three	sample	prompts	at	the	bottom	of	the	chat	window,	allowing	the	user	to	Get	incident	information,	Edit	status	on	incident,	or	List	the
latest	issues.	The	last	one	is	activated	to	send	the	prompt:	@Sentry	List	the	latest	issues.	The	extension	then	lists	several	new	issues	and	their	metadata.Optimize	your	process	with	simple	and	secured	CI/CD.A	list	of	workflows	displays	a	heading	‘45,167	workflow	runs’	at	the	top.	Below	are	five	rows	of	completed	workflows	accompanied	by	their
completion	time	and	their	duration	formatted	in	minutes	and	seconds.Discover	GitHub	ActionsStart	building	instantly	with	a	comprehensive	dev	environment	in	the	cloud.A	GitHub	Codespaces	setup	for	the	landing	page	of	a	game	called	OctoInvaders.	On	the	left	is	a	code	editor	with	some	HTML	and	Javascript	files	open.	On	the	right	is	a	live	render	of
the	page.	In	front	of	this	split	editor	window	is	a	screenshot	of	two	active	GitHub	Codespaces	environments	with	their	branch	names	and	a	button	to	‘Create	codespace	on	main.’Check	out	GitHub	CodespacesManage	projects	and	chat	with	GitHub	Copilot	from	anywhere.Two	smartphone	screens	side	by	side.	The	left	screen	shows	a	Notification	inbox,
listing	issues	and	pull	requests	from	different	repositories	like	TensorFlow	and	GitHub’s	OctoArcade	octoinvaders.	The	right	screen	shows	a	new	conversation	in	GitHub	Copilot	chat.Download	GitHub	MobileSync	with	17,000+	integrations	and	a	growing	library	of	Copilot	Extensions.A	grid	of	fifty	app	tiles	displays	logos	for	integrations	and	extensions
for	companies	like	Stripe,	Slack,	and	Docker.	The	tiles	extend	beyond	the	bounds	of	the	image	to	indicate	a	wide	array	of	apps.	Visit	GitHub	MarketplaceCollaborate	with	your	teams,	use	management	tools	that	sync	with	your	projects,	and	code	from	anywhere—all	on	a	single,	integrated	platform.It	helps	us	onboard	new	software	engineers	and	get
them	productive	right	away.	We	have	all	our	source	code,	issues,	and	pull	requests	in	one	place...	GitHub	is	a	complete	platform	that	frees	us	from	menial	tasks	and	enables	us	to	do	our	best	work.Create	issues	and	manage	projects	with	tools	that	adapt	to	your	code.Display	of	task	tracking	within	an	issue,	showing	the	status	of	related	sub-issues	and
their	connection	to	the	main	issue.Explore	GitHub	IssuesCreate	space	for	open-ended	conversations	alongside	your	project.A	GitHub	Discussions	thread	where	a	GitHub	user	suggests	a	power-up	idea	involving	Hubot	revealing	a	path	and	protecting	Mona.	The	post	has	received	5	upvotes	and	several	reactions.	Below,	three	other	users	add	to	the
discussion,	suggesting	Hubot	could	provide	different	power-ups	depending	on	levels	and	appreciating	the	collaboration	idea.Discover	GitHub	DiscussionsCreate	review	processes	that	improve	code	quality	and	fit	neatly	into	your	workflow.Two	code	review	approvals	by	helios-ackmore	and	amanda-knox,	which	are	followed	by	three	successful	checks
for	‘Build,’	‘Test,’	and	‘Publish.’Learn	about	code	reviewBecome	an	open	source	partner	and	support	the	tools	and	libraries	that	power	your	work.A	GitHub	Sponsors	popup	displays	‘$15,000	a	month’	with	a	progress	bar	showing	87%	towards	a	$15,000	goal.Dive	into	GitHub	SponsorsWhether	you’re	scaling	your	development	process	or	just	learning
how	to	code,	GitHub	is	where	you	belong.	Join	the	world’s	most	widely	adopted	AI-powered	developer	platform	to	build	the	technologies	that	redefine	what’s	possible.	You	can’t	perform	that	action	at	this	time.	As	a	DevOps	engineer,	managing	GitHub	repositories	is	as	crucial	as	the	code	they	contain.	A	well-maintained	Github	repo	sets	the	stage	for
effective	collaboration,	code	quality,	and	streamlined	workflows.	In	this	blog,	we'll	discuss	and	look	at	my	top	10	tips	for	best	practices	in	managing	GitHub	repositories	effectively.	Tip	1:	Use	a	Clear	Repository	Naming	Convention	A	clear	repository	naming	convention	in	GitHub	is	a	vital	as	it	helps	with	organisation	and	clarity,	which	are	crucial	in	a
collaborative	environment.	A	clear	repository	naming	convention	makes	it	easier	to:	Identify	the	purpose	and	content	of	a	repository	at	a	glance.	Search	and	retrieve	repositories	more	effectively.	Adopt	a	standardised	approach	across	teams	and	projects.	Implement	automation	to	work	more	effectively	by	predicting	the	structure	and	naming	of
repositories.	For	example,	CI/CD	workflows	can	deploy	versions	based	on	naming	conventions.	Lets	look	at	some	examples:	Prefix	by	Project	or	Team:	If	your	organisation	has	several	projects	or	teams,	you	could	start	with	a	prefix	that	identifies	them	e.g.	teamalpha_authentication_service	or	teambravo_data_pipeline.	Use	Descriptive	Names:
Repositories	should	have	descriptive	and	specific	names	that	tell	you	what's	inside	e.g.	customer_support_ticketing_system	or	machine_learning_model_trainer.	Include	the	Technology	Stack:	It	can	be	useful,	particularly	for	microservices	architectures,	to	include	the	primary	technology	stack	in	the	name	e.g.	image_processor_python	or
frontend_react_app.	Versioning	or	Status	Tags:	If	you	maintain	different	versions	of	a	tool	or	library,	or	when	a	repository	holds	something	at	a	specific	stage	of	development,	indicate	this	within	the	name	e.g.	payment_gateway_v2	or	inventory_management_deprecated.	Avoid	Special	Characters:	Stick	to	simple	alphanumeric	characters	and
hyphens/underscores	to	maintain	URL	compatibility	and	avoid	confusion	e.g.	invoice-generator	or	invoice_generator.	Use	Case:	Sometimes	indicating	whether	the	repository	is	a	library,	service,	demo,	or	documentation	can	be	helpful	e.g.	authentication_lib,	payment_api_service,	demo_inventory_app,	api_documentation.	By	adhering	to	a	clear	and
standardised	repository	naming	convention,	you	ensure	that	everyone	on	the	team	can	navigate	repositories	more	efficiently,	anticipate	the	nature	and	content	of	each	repository	before	delving	into	it,	and	work	cohesively	with	an	intuitive	structure	guiding	them.	This	ultimately	leads	to	better	collaboration,	time-saving,	and	fewer	mistakes,	allowing
teams	to	focus	on	building	and	deploying	rather	than	being	bogged	down	with	organisational	confusion.	Tip	2:	Classify	Repositories	with	Topics	GitHub	allows	you	to	classify	repositories	with	topics.	Topics	are	labels	that	can	be	added	to	repositories	to	help	categorise	and	discover	projects.	They	are	a	great	way	to	organise	and	group	repositories
based	on	their	purpose,	technology	stack,	or	any	other	relevant	criteria.	Topics	can	be	added	to	a	repository	by	navigating	to	the	repository's	About	settings	to	edit	repository	details	and	selecting	the	Topics	tab.	You	can	then	add	topics	that	are	relevant	to	the	repository.	It	is	useful	to	add	topics	to	repositories	for	several	reasons,	including:
Discoverability:	Make	it	easier	for	others	to	find	your	repository.	When	someone	searches	for	a	topic,	repositories	with	that	topic	will	be	included	in	the	search	results.	Organisation:	Help	you	organise	your	repositories.	You	can	group	repositories	based	on	their	purpose,	technology	stack,	or	any	other	relevant	criteria.	Community:	Help	you	connect
with	others	who	are	interested	in	the	same	topics.	When	someone	views	a	repository	with	a	topic,	they	can	see	other	repositories	with	the	same	topic.	Insights:	Provide	insights	into	the	technologies	and	tools	that	are	popular	in	your	organisation.	You	can	use	this	information	to	identify	trends	and	make	informed	decisions	about	the	technologies	and
tools	you	use.	Standardisation:	Help	you	standardise	the	way	you	categorise	repositories.	You	can	use	the	same	topics	across	all	your	repositories	to	ensure	consistency.	When	adding	topics	to	a	repository,	it's	important	to	choose	topics	that	are	relevant	and	meaningful.	You	should	choose	topics	that	accurately	describe	the	purpose,	technology	stack,
or	other	relevant	criteria	of	the	repository.	You	can	get	more	information	on	topics	and	how	to	use	them	effectively	from	GitHub	repo	topics	documentation.	Tip	3:	Use	README.md	to	Document	the	Repository	A	well-documented	repository	is	a	treasure	trove	for	developers,	contributors,	and	maintainers.	The	README.md	file	is	the	first	thing	a	visitor
sees	when	they	land	on	your	repository.	It's	a	great	place	to	provide	a	quick	overview	of	the	repository,	its	purpose,	and	how	to	get	started	with	it.	It	could	include	useful	information	such	as:	Project	description	Setup	instructions	Usage	examples	Contribution	guidelines	License	information	A	well-written	README.md	file	can	help	you:	Attract
Contributors:	Attract	contributors	to	your	project.	It	provides	them	with	the	information	they	need	to	understand	the	project	and	get	started	with	it.	Onboarding:	Help	new	team	members	get	up	to	speed	with	the	project.	It	provides	them	with	the	information	they	need	to	understand	the	project	and	start	contributing	to	it.	Documentation:	Serve	as
documentation	for	the	project.	It	provides	users	with	the	information	they	need	to	use	the	project.	Promotion:	Help	promote	your	project.	It	provides	potential	users	with	the	information	they	need	to	understand	the	project	and	decide	whether	to	use	it.	Standardisation:	Help	standardise	the	way	you	document	your	projects.	It	provides	a	consistent
structure	for	documenting	your	projects.	When	writing	a	README.md	file,	it's	important	to	keep	it	concise	and	to	the	point.	You	should	include	the	most	important	information	at	the	top	of	the	file,	and	provide	links	to	more	detailed	information	where	necessary.	You	should	also	use	formatting	to	make	the	file	easy	to	read,	and	include	images	and
other	media	where	appropriate.	You	can	get	more	information	on	how	to	write	a	good	README.md	file	in	the	GitHub	repo	readme	documentation.	Tip	4:	Embrace	a	consistent	branching	strategy	A	consistent	branching	strategy	is	crucial	for	effective	collaboration	and	code	management.	It	provides	a	clear	structure	for	how	code	changes	are	managed
and	integrated	into	the	codebase.	It	also	helps	to	maintain	a	clean	and	stable	codebase,	and	reduces	the	risk	of	conflicts	and	errors.	There	are	several	branching	strategies	that	you	can	adopt,	such	as:	Gitflow:	A	popular	branching	strategy	that	uses	two	main	branches,	master	and	develop,	and	a	variety	of	supporting	branches	to	aid	parallel
development	and	release	management.	Feature	Branching:	A	strategy	where	each	feature	or	task	is	developed	in	a	dedicated	branch,	and	then	merged	into	the	main	branch	once	complete.	Trunk-Based	Development:	A	strategy	where	all	changes	are	made	directly	to	the	main	branch,	and	feature	toggles	or	other	techniques	are	used	to	manage
incomplete	features.	GitHub	Flow:	A	lightweight	branching	strategy	that	uses	a	single	main	branch,	and	feature	branches	are	created	for	each	new	feature	or	bug	fix.	GitLab	Flow:	A	strategy	similar	to	GitHub	Flow,	but	with	the	addition	of	environments	and	release	branches	for	managing	the	release	process.	Release	Branching:	A	strategy	where	a
release	branch	is	created	from	the	main	branch	to	prepare	for	a	new	release,	and	then	merged	back	into	the	main	branch	once	the	release	is	complete.	Environment	Branching:	A	strategy	where	branches	are	used	to	manage	different	environments,	such	as	development,	staging	and	production.	When	choosing	a	branching	strategy,	it's	important	to
consider	the	needs	of	your	team	and	project.	You	should	choose	a	strategy	that	is	simple,	flexible,	and	scalable,	and	that	supports	the	way	your	team	works.	You	should	also	document	the	branching	strategy	and	make	sure	that	everyone	on	the	team	understands	how	it	works	and	follows	it	consistently.	You	can	get	more	information	on	branching	and
how	to	use	branches	by	checking	the	official	documentation:	GitHub	repo	branch	documentation.	Tip	5:	secure	your	repository	with	branch	protection	rules	Branch	protection	rules	are	a	powerful	feature	of	GitHub	that	allow	you	to	enforce	certain	restrictions	and	requirements	on	branches.	They	can	help	you	maintain	a	clean	and	stable	codebase.
They	can	also	help	you	prevent	mistakes	and	errors,	and	improve	the	quality	and	security	of	your	code.	To	name	a	few,	you	can	use	branch	protection	rules	to:	Require	pull	request	reviews:	Require	that	a	certain	number	of	reviewers	approve	a	pull	request	before	it	can	be	merged.	Require	status	checks:	Require	that	certain	status	checks,	such	as
CI/CD	checks,	pass	before	a	pull	request	can	be	merged.	Require	conversation	resolution	before	merging:	Require	that	all	conversations	on	a	pull	request	are	resolved	before	it	can	be	merged.	Require	signed	commits:	Require	that	commits	are	signed	with	a	verified	signature	before	they	can	be	merged.	Require	linear	history:	Require	that	the	commit
history	of	a	pull	request	is	linear	before	it	can	be	merged.	Require	merge	queue:	Require	that	pull	requests	are	merged	using	a	merge	queue,	such	as	GitHub	Actions	or	a	third-party	service	to	run	required	checks	on	pull	requests	in	a	merge	queue.	Require	deployments	to	succeed	before	merging:	Require	that	deployments	to	certain	environments,
such	as	production,	succeed	before	a	pull	request	can	be	merged.	You	can	get	more	information	on	branch	protection	rules	and	how	to	use	them	at	GitHub	repo	branch	protection	documentation.	When	using	branch	protection	rules,	it's	important	to	strike	a	balance	between	enforcing	restrictions	and	requirements,	and	allowing	your	team	to	work
effectively.	You	should	consider	the	needs	of	your	team	and	project,	and	choose	rules	that	support	the	way	your	team	works.	You	should	also	document	the	rules	and	make	sure	that	everyone	on	the	team	understands	how	they	work	and	follows	them	consistently.	Tip	6:	Maintain	a	Clean	Commit	History	A	clean	commit	history	is	crucial	for	effective
collaboration	and	code	management.	It	provides	a	clear	record	of	the	changes	that	have	been	made	to	the	codebase,	and	helps	to	maintain	a	clean	and	stable	codebase.	It	also	makes	it	easier	to	understand	the	history	of	the	codebase,	and	reduces	the	risk	of	conflicts	and	errors.	There	are	several	best	practices	that	you	can	adopt	to	maintain	a	clean
commit	history,	such	as:	Write	descriptive	commit	messages:	Write	clear	and	descriptive	commit	messages	that	explain	the	purpose	and	context	of	the	changes	that	have	been	made.	Use	atomic	commits:	Make	small,	focused	commits	that	contain	a	single	logical	change.	This	makes	it	easier	to	understand	the	history	of	the	codebase,	and	reduces	the
risk	of	conflicts	and	errors.	Use	meaningful	commit	titles:	Use	meaningful	commit	titles	that	summarise	the	purpose	of	the	changes	that	have	been	made.	Use	consistent	formatting:	Use	consistent	formatting	for	your	commit	messages,	such	as	using	the	imperative	mood	and	keeping	the	first	line	to	50	characters	or	less.	Use	signed	commits:	Use
signed	commits	to	verify	the	authenticity	of	your	commits	and	protect	against	tampering.	For	example,	a	good	commit	message	looks	like	this::	git	commit	-m	"Add	user	authentication	mechanism	to	the	inventory	management	system"	It's	bad	practice	to	have	vague	messages	such	as:	git	commit	-m	"Fixed	stuff"	When	maintaining	a	clean	commit
history,	it's	important	to	consider	the	needs	of	your	team	and	project.	You	should	choose	practices	that	are	simple,	flexible,	and	scalable,	and	that	support	the	way	your	team	works.	You	should	also	document	the	practices	and	make	sure	that	everyone	on	the	team	understands	how	they	work	and	follows	them	consistently.	Tip	7:	Utilise	.gitignore	The
.gitignore	file	is	a	simple	and	effective	way	to	manage	the	files	and	directories	that	you	want	to	exclude	from	version	control.	It	allows	you	to	specify	patterns	that	match	files	and	directories	that	you	want	to	ignore,	and	prevents	them	from	being	added	to	the	repository.	To	name	a	few,	the	.gitignore	file	is	particularly	useful	for:	Ignoring	build
artifacts:	Ignore	files	and	directories	that	are	generated	during	the	build	process,	such	as	log	files,	temporary	files,	and	build	artifacts.	Ignoring	sensitive	information:	Ignore	files	and	directories	that	contain	sensitive	information,	such	as	passwords,	API	keys,	and	configuration	files.	Ignoring	user-specific	files:	Ignore	files	and	directories	that	are
specific	to	individual	users,	such	as	editor	settings,	local	configuration,	and	temporary	files.	Ignoring	large	files:	Ignore	files	and	directories	that	are	large	and	not	necessary	for	version	control,	such	as	media	files,	binary	files,	and	archives.	Ignoring	logs	and	caches:	Ignore	files	and	directories	that	are	created	as	part	of	the	logging	and	caching
process,	such	as	log	files,	cache	files,	and	temporary	files.	Ignoring	test	files:	You	can	use	.gitignore	to	ignore	files	and	directories	that	are	created	as	part	of	the	testing	process,	such	as	test	results,	test	logs,	and	test	artifacts.	When	using	.gitignore,	it's	important	to	consider	the	needs	of	your	team	and	project.	You	should	choose	patterns	that	are
simple,	flexible,	and	scalable,	and	that	support	the	way	your	team	works.	You	should	also	document	the	patterns	and	make	sure	that	everyone	on	the	team	understands	how	they	work	and	follows	them	consistently.	You	can	get	more	information	on	.gitignore	and	how	to	use	it	effectively	in	the	GitHub	repo	.gitignore	documentation.	Tip	8:	Use	GitHub
Actions	for	CI/CD	GitHub	Actions	is	a	a	powerful	feature	of	GitHub	that	allows	you	to	automate	you	tasks	through	workflows.	It	provides	a	flexible	and	scalable	way	to	build,	test,	and	deploy	your	code,	and	helps	you	to	maintain	a	clean	and	stable	codebase.	GitHub	Actions	is	a	big	topic	on	it's	own	but	to	touch	on	few	topics,	you	can	use	GitHub	Actions
to:	Automate	build	processes:	Build	your	code	automatically	whenever	a	change	is	made	to	the	repository.	Automate	tests:	Run	your	tests	automatically	whenever	a	change	is	made	to	the	repository.	Automate	deployment	processes:	Deploy	your	code	automatically	whenever	a	change	is	made	to	the	repository.	Automate	releases:	Create	releases
automatically	whenever	a	change	is	made	to	the	repository.	Automate	documentation:	Use	GitHub	Actions	to	generate	documentation	automatically	whenever	a	change	is	made	to	the	repository.	Automate	IaC:	Automate	infrastructure	as	code	(IaC)	tasks	such	as	provisioning,	configuring,	and	deploying	infrastructure.	Automate	security	checks:
Automate	security	checks	such	as	vulnerability	scanning,	dependency	analysis,	and	code	analysis.	The	list	goes	on,	but	the	point	is	that	GitHub	Actions	is	a	powerful	tool	that	can	help	you	automate	many	of	the	tasks	that	are	involved	in	managing	a	codebase.	It's	important	to	consider	the	needs	of	your	team	and	project.	You	should	choose	workflows
that	are	simple,	flexible,	and	scalable,	and	that	support	the	way	your	team	works.	You	should	also	document	the	workflows	and	make	sure	that	everyone	on	the	team	understands	how	they	work	and	follows	them	consistently.	You	can	get	more	information	on	GitHub	Actions	and	how	to	use	them	effectively	from	the	official	GitHub	Actions
documentation.	Tip	9:	Leverage	Issue	Tracking	and	Projects	GitHub	provides	a	powerful	issue	tracking	system	that	allows	you	to	manage	and	track	issues,	bugs,	and	feature	requests.	It	also	provides	project	status	boards	that	allow	you	to	manage	and	track	the	progress	of	your	work.	Github	Projects	can	also	help	you	to	manage	your	work	more
effectively,	and	improve	the	collaboration	and	communication	within	your	team.	Issue	tracking	and	Projects	are	useful	for	several	reasons,	including:	Track	issues	and	bugs:	Track	issues	and	bugs,	and	manage	the	process	of	fixing	them.	Track	feature	requests:	Track	feature	requests,	and	manage	the	process	of	implementing	them.	Plan	and	prioritise
work:	Plan	and	prioritise	your	work,	and	manage	the	process	of	completing	it.	Manage	releases:	Manage	releases,	and	track	the	progress	of	your	work	through	milestones.	Collaborate	and	communicate:	Collaborate	and	communicate	with	your	team,	and	improve	the	quality	and	security	of	your	code.	Labelling:	Use	labels	to	categorise	issues,	and
make	it	easier	to	manage	and	track	them.	(e.g.	bug,	enhancement,	help	wanted).	You	can	get	more	information	on	issue	tracking	and	project	boards	and	how	to	use	them	effectively	from	the	official	GitHub	issue	tracking	documentation	and	GitHub	projects	documentation.	Tip	10:	Make	use	of	GitHub	security	features	GitHub	provides	a	range	of
security	features	that	can	help	you	to	improve	the	security	of	your	codebase.	These	features	can	help	you	to	identify	and	fix	security	vulnerabilities,	and	proactively	protect	your	code	from	security	threats	and	leaks.	To	name	a	few,	you	can	use	GitHub	security	features	to:	Security	Alerts	for	Vulnerable	Dependencies:	Get	alerts	when	your	repository
has	a	vulnerable	dependency.	Code	and	Secret	Scanning:	Scan	your	code	for	security	vulnerabilities,	secrets	committed	in	code	and	coding	errors.	Dependabot	Security/Dependency	Updates:	Automatically	update	your	dependencies	to	the	latest	secure	version	using	Github	Dependabot.	Security	Policies	and	Advisories:	Create	and	manage	security
policies	and	advisories	for	your	repository.	Dependency	Insights:	Get	insights	into	the	security/dependencies	of	your	codebase,	and	identify	areas	for	improvement	using	dependency	graph.	For	more	information	and	also	to	take	a	deeper	dive	into	some	of	the	security	features	and	tooling	available	in	GitHub	natively	I	recommend	checking	an	earlier
blog	post	of	this	blog	Series:	Securing	Your	Code	with	GitHub	Conclusion	In	this	blog,	we	only	touched	on	a	few	topics,	and	we	discussed	a	few	best	practices	for	managing	GitHub	repositories	effectively.	But	for	more	valuable	information	follow	this	link	to	get	additional	guidelines	on	how	to	set	up	your	project	for	healthy	contributions.	I	hope	you
have	enjoyed	this	post	and	have	learned	something	new.	❤		Author	Like,	share,	follow	me	on:		GitHub	|		X/Twitter	|		LinkedIn	Learn	to	automate	dependency	management	using	GitHub	Copilot,	GitHub	Actions,	and	Dependabot	to	eliminate	manual	checks,	improve	security,	and	save	time	for	what	really	matters.	Andrea	Griffiths	·	March	5,	2025	Explore
GitHub’s	top	blogs	of	2024,	featuring	new	tools,	AI	breakthroughs,	and	tips	to	level	up	your	developer	game.	Laura	Lindeman	·	December	30,	2024	As	part	of	the	GitHub	for	Beginners	guide,	learn	how	to	improve	the	security	of	your	profile	and	create	a	profile	README.	This	will	let	you	give	your	GitHub	account	a	little	more	personality.	Kedasha	Kerr
·	September	9,	2024	Using	Git	in	the	CLI	can	improve	your	development	speed	and	power.	Here	are	our	top	eight	commands	for	using	GitHub	via	your	command	line.	Michelle	Duke	·	August	15,	2024	As	part	of	the	GitHub	for	Beginners	guide,	learn	how	to	create	pull	requests.	This	will	enable	you	to	suggest	changes	to	existing	repositories.	Kedasha
Kerr	·	August	12,	2024	Take	the	next	step	in	our	GitHub	for	Beginners	series	and	add	code	to	your	repository.	Learn	how	to	create	branches	and	upload	changes	into	a	pull	request.	Kedasha	Kerr	·	July	29,	2024	GitHub	Staff	Engineer	Sarah	Vessels	discusses	her	philosophy	of	code	review,	what	separates	good	code	review	from	bad,	her	strategy	for
finding	and	reviewing	code,	and	how	to	get	the	most	from	reviews	of	her	own	code.	Sarah	Vessels	·	July	23,	2024	The	next	step	in	our	GitHub	for	Beginners	series	is	learning	how	to	add	files	and	folders	to	your	GitHub	repository.	Kedasha	Kerr	·	July	8,	2024	Git	started	on	your	first	repository	in	the	third	installment	of	GitHub	for	Beginners.	Discover
the	essential	features	and	settings	to	manage	your	projects	effectively.	Kedasha	Kerr	·	June	24,	2024	The	latest	installment	of	GitHub	for	Beginners,	where	we	cover	the	essential	Git	commands	to	get	you	Git-literate.	Kedasha	Kerr	·	June	10,	2024	GitHub	Copilot	increases	efficiency	for	our	engineers	by	allowing	us	to	automate	repetitive	tasks,	stay
focused,	and	more.	Holger	Staudacher	·	April	9,	2024	GitHub	Copilot	is	a	powerful	AI	assistant.	Learn	practical	strategies	to	get	the	most	out	of	GitHub	Copilot	to	generate	the	most	relevant	and	useful	code	suggestions	in	your	editor.	Kedasha	Kerr	·	March	25,	2024	Unlock	the	secret	to	organization	and	collaboration	magic	with	our	GitHub	Projects
tips	and	tricks	roundup.	Sara	Verdi	·	March	21,	2024	Learn	what	GitHub	Copilot	can	help	your	business	achieve	in	this	expert-guided	GitHub	Learning	Pathway,	featuring	insights	from	tech	leaders	at	top	organizations.	Ryan	J.	Salva	·	March	4,	2024	Learn	how	we’re	managing	feature	releases	and	establishing	best	practices	within	and	across	teams	at
GitHub	using	GitHub	Projects.	Riley	Broughten	·	February	28,	2024

