
	

https://zufivizutumi.tugoduzak.com/122941440183567842158949477362135881367649?fupuxekotesemarejojizotedederubajotox=wilaxakonazovajapigipokukewepudonofalovipuxareleraregaxesanowawarozilenerukuziniluloxajatupedakanelekobapuxadoxidulutirovizonogosakirolipumoxevulujupeduvajopofakabewegeposimoruguzunumenamedagifadojejitafovud&utm_kwd=roman+numbers+1+to+100+photo&gumawajalinabowivofumogeloriwojig=xubigafalozezovekeserajenerifibuzosizogugukokonatazapadusopiporumobisikidixonufiwiwijewiruminesibojatasikekikogoranelopirukodanedoxagegalezeburelexa

You	can’t	perform	that	action	at	this	time.	You	can’t	perform	that	action	at	this	time.	What	is	this	tool	good	for:	Learn	about	how	the	Linux	page	cache	works,	and	what	syscalls	exist	to	interfere	with	its	normal	operation.	Learn	what	hacks	are	necessary	to	intercept	syscalls	via	their	libc	wrappers.	What	this	tool	is	not	good	for:	Controlling	how	your
page	cache	is	used	Why	do	you	think	some	random	tool	you	found	on	GitHub	can	do	better	than	the	Linux	Kernel?	Defending	against	cache	thrashing	Use	cgroups	to	bound	the	amount	of	memory	a	process	has.	See	below	or	search	the	internet,	this	is	widely	known,	works	reliably,	and	does	not	introduce	performance	penalties	or	potentially
dangerous	behavior	like	this	tool	does.	Making	a	binary	run	faster	nocache	intercepts	a	bunch	of	syscalls	and	does	lots	of	speculative	work;	it	will	slow	down	your	binary.	So	then	why	does	this	tool	exist?	It	was	written	in	2012,	when	cgroups,	containerization	etc.	were	all	new	things.	A	decade+	on,	they	aren’t	any	more.	Do	this	if	you	e.g.	want	to	run	a
backup	but	don’t	want	your	system	to	slow	down	due	to	page	cache	thrashing.	If	your	distro	uses	systemd,	this	is	very	easy.	Systemd	allows	to	run	a	process	(and	its	subprocesses)	in	a	“scope”,	which	is	a	cgroup,	and	you	can	specify	parameters	that	get	translated	to	cgroup	limits.	When	I	run	my	backups,	I	do:	$	systemd-run	--scope	--
property=MemoryLimit=500M	--	backup	command	The	effect	is	that	cache	space	stays	bounded	by	an	additional	max	500MiB:	Before:	$	free	-h	total	used	free	shared	buff/cache	available	Mem:	7.5G	2.4G	1.3G	1.0G	3.7G	3.7G	Swap:	9.7G	23M	9.7G	During	(notice	how	buff/cache	only	goes	up	by	~300MiB):	free	-h	total	used	free	shared	buff/cache
available	Mem:	7.5G	2.5G	1.0G	1.1G	4.0G	3.6G	Swap:	9.7G	23M	9.7G	Use	systemd-cgls	to	list	the	cgroups	systemd	creates.	On	my	system,	the	above	command	creates	a	group	called	run-u467.scope	in	the	system.slice	parent	group;	you	can	inspect	its	memory	settings	like	this:	$	mount	|	grep	cgroup	|	grep	memory	cgroup	on	/sys/fs/cgroup/memory
type	cgroup	(rw,nosuid,nodev,noexec	latime,memory)	$	cat	/sys/fs/cgroup/memory/system.slice/run-u467.scope/memory.limit_in_bytes	524288000	Install	cgroup-tools	and	be	prepared	to	enter	your	root	password	to	initially	create	cgroups.	sudo	env	ppid=$$	sh	-c	'	cgcreate	-g	memory:backup	;	echo	500M	>
/sys/fs/cgroup/memory/backup/memory.limit_in_bytes	;	echo	$ppid	>	/sys/fs/cgroup/memory/backup/tasks	;	'	After	entering	this,	your	shell	is	a	member	of	that	cgroup,	and	any	new	process	spawned	will	belong	to	that	cgroup,	too,	and	inherit	the	memory	limit.	The	cgroups	created	like	this	won’t	be	cleaned	up	automatically.	More	info:	The	nocache
tool	tries	to	minimize	the	effect	an	application	has	on	the	Linux	file	system	cache.	This	is	done	by	intercepting	the	open	and	close	system	calls	and	calling	posix_fadvise	with	the	POSIX_FADV_DONTNEED	parameter.	Because	the	library	remembers	which	pages	(ie.,	4K-blocks	of	the	file)	were	already	in	file	system	cache	when	the	file	was	opened,	these
will	not	be	marked	as	"don't	need",	because	other	applications	might	need	that,	although	they	are	not	actively	used	(think:	hot	standby).	Just	type	make.	Then,	prepend	./nocache	to	your	command:	./nocache	cp	-a	~/	/mnt/backup/home-$(hostname)	The	command	make	install	will	install	the	shared	library,	man	pages	and	the	nocache,	cachestats	and
cachedel	commands	under	/usr/local.	You	can	specify	an	alternate	prefix	by	using	make	install	PREFIX=/usr.	Debian	packages	are	available,	see	.	Please	note	that	nocache	will	only	build	on	a	system	that	has	support	for	the	posix_fadvise	syscall	and	exposes	it,	too.	This	should	be	the	case	on	most	modern	Unices,	but	kfreebsd	notably	has	no	support
for	this	as	of	now.	For	testing	purposes,	I	included	two	small	tools:	cachedel	calls	posix_fadvise(fd,	0,	0,	POSIX_FADV_DONTNEED)	on	the	file	argument.	Thus,	if	the	file	is	not	accessed	by	any	other	application,	the	pages	will	be	eradicated	from	the	fs	cache.	Specifying	-n	will	repeat	the	syscall	the	given	number	of	times	which	can	be	useful	in	some
circumstances	(see	below).	cachestats	has	three	modes:	In	quiet	mode	(-q),	the	exit	status	is	0	(success)	if	the	file	is	fully	cached.	In	normal	mode,	the	number	of	cached	vs.	not-cached	pages	is	printed.	In	verbose	mode	(-v),	an	actual	map	is	printed	out,	where	each	page	that	is	present	in	the	cache	is	marked	with	x.	It	looks	like	this:	$	cachestats	-v
~/somefile.mp3	pages	in	cache:	85/114	(74.6%)	[filesize=453.5K,	pagesize=4K]	cache	map:	0:	|x|	32:	|x|	64:	|x|	|	|	|	|	|	|	|	|	|	|	|	|	96:	|	|	|	|	|	|	|	|	|	|	|	|	|	|	|	|	|	|x|	Also,	you	can	use	vmstat	1	to	view	cache	statistics.
For	debugging	purposes,	you	can	specify	a	filename	that	nocache	should	log	debugging	messages	to	via	the	-D	command	line	switch,	e.g.	use	nocache	-D	/tmp/nocache.log	….	Note	that	for	simple	testing	the	file	/dev/stderr	might	be	a	good	choice.	Without	nocache,	the	file	will	be	fully	cached	when	you	copy	it	somewhere:	$./cachestats	~/file.mp3
pages	in	cache:	154/1945	(7.9%)	[filesize=7776.2K,	pagesize=4K]	$	cp	~/file.mp3	/tmp	$./cachestats	~/file.mp3	pages	in	cache:	1945/1945	(100.0%)	[filesize=7776.2K,	pagesize=4K]	With	nocache,	the	original	caching	state	will	be	preserved.	$./cachestats	~/file.mp3	pages	in	cache:	154/1945	(7.9%)	[filesize=7776.2K,	pagesize=4K]	$./nocache	cp
~/file.mp3	/tmp	$./cachestats	~/file.mp3	pages	in	cache:	154/1945	(7.9%)	[filesize=7776.2K,	pagesize=4K]	The	pre-loaded	library	tries	really	hard	to	catch	all	system	calls	that	open	or	close	a	file.	This	happens	by	"hijacking"	the	libc	functions	that	wrap	the	actual	system	calls.	In	some	cases,	this	may	fail,	for	example	because	the	application	does
some	clever	wrapping.	(That	is	the	reason	why	__openat_2	is	defined:	GNU	tar	uses	this	instead	of	a	regular	openat.)	However,	since	the	actual	fadvise	calls	are	performed	right	before	the	file	descriptor	is	closed,	this	may	not	happen	if	they	are	left	open	when	the	application	exits,	although	the	destructor	tries	to	do	that.	There	are	timing	issues	to
consider,	as	well.	If	you	consider	nocache	cat	,	in	most	(all?)	cases	the	cache	will	not	be	restored.	For	discussion	and	possible	solutions	see	.	My	experience	showed	that	in	many	cases	you	could	"fix"	this	by	doing	the	posix_fadvise	call	twice.	For	both	tools	nocache	and	cachedel	you	can	specify	the	number	using	-n,	like	so:	$	nocache	-n	2	cat	~/file.mp3
This	actually	only	sets	the	environment	variable	NOCACHE_NR_FADVISE	to	the	specified	value,	and	the	shared	library	reads	out	this	value.	If	test	number	3	in	t/basic.t	fails,	then	try	increasing	this	number	until	it	works,	e.g.:	$	env	NOCACHE_NR_FADVISE=2	make	test	One	could	also	consider	that	the	fact	pages	are	kept	mean	the	kernel	considers
they	are	hot,	and	decide	the	overhead	of	allocating	one	byte	per	page	for	mincore	and	the	actual	mincore	calls	are	not	worth	it	when	the	kernel	actually	does	keep	some	pages	when	it	wants	to.	In	this	case	you	can	either	run	nocache	with	-f	or	set	the	NOCACHE_FLUSHALL	environment	variable	to	1,	e.g.:	$	nocache	-f	cat	~/file.mp3	$	env
NOCACHE_FLUSHALL=1	make	test	By	default	nocache	will	only	keep	track	of	file	descriptors	less	than	2^20	that	are	opened	by	your	application,	in	order	to	bound	its	memory	consumption.	If	you	want	to	change	this	threshold,	you	can	supply	the	environment	variable	NOCACHE_MAX_FDS	and	set	it	to	a	higher	(or	lower)	value.	It	should	specify	a
value	one	greater	than	the	maximum	file	descriptor	that	will	be	handled	by	nocache.	Most	of	the	application	logic	is	from	Tobias	Oetiker's	patch	for	rsync	.	Note	however,	that	rsync	uses	sockets,	so	if	you	try	a	nocache	rsync,	only	the	local	process	will	be	intercepted.	The	CACHE	option	specifies	that	the	blocks	retrieved	for	the	table	are	placed	at	the
most	recently	used	end	of	the	LRU	list	in	the	buffer	cache	when	a	FULL	table	scan	is	performed.	The	NOCACHE	option	specifies	that	the	blocks	retrieved	for	the	table	are	placed	at	the	least	recently	used	end	of	the	LRU	list	in	the	buffer	cache	when	a	FULL	table	scan	is	performed.	This	will	cause	the	blocks	read	with	a	full	table	scan	to	be
immediately	flushed	from	the	buffer	cache.	You	would	normally	CACHE	a	table	when	it	was	VERY	small,	one	or	two	data	buffers	but	frequently	used,	lookup	tables	may	fit	this.	In	this	scenario	you	may	find	that	unindexed	full	table	scan	from	the	SGA	is	faster	than	an	index,	so	you	want	the	table	to	stay	in	the	SGA.	For	most	full	table	scans,	you	do	NOT
want	the	data	kept,	you	want	the	current	SGA	to	remain	as	unchanged	as	possible,	so	NOCACHE	is	the	default.	I	tried	to	remain	child-like,	all	I	acheived	was	childish.	You	may	also	use	this	keyword	when	creating	sequences.	This	means	that	no	values	are	buffered	in	memory	for	future	requests.	Regards,	Dima	Thanks	for	the	answers.	Jimbo,	you
mentioned	a	"look	up	table."	What	do	you	mean	by	that?	Is	that	a	faster	way	of	doing	SELECT	*	from	table_name?	Thanks	Generally	speaking,	lookup	tables	are	reference	tables.	They	are	small	in	size	and	are	predominently	used	to	do	cade	lookups.	Because	they	are	small	in	size	it's	better	to	cash	them.	Hope	this	helps.	Anand.	Many	of	the	Apps	I	use
have	a	master	table	with	such	parameters	as:	modules	I	own,	the	language	my	users	speak,	the	next	PO	number	to	assign	to	a	PO,	etc.	small	tables	but	frequently	accessed,	and	often	very	static.	Forcing	them	to	stay	in	the	SGA	can	speed	up	routine	actions	(every	form	may	check	the	user's	language)	You	may	also	have	lookup	tables	that	remember
Oracle	anonoumus	Keys	this	regular	code	becomes	that	overtime	code	this	temporary	Foreman	code	become	that	overtime	temporary	foreman	code	(my	table	like	this	only	has	12	rows,	it	all	fits	in	one	data	block,	when	an	employee	goes	over	40	hours	I	lookup	his	new	pay	code)	I	tried	to	remain	child-like,	all	I	acheived	was	childish.	The	Cache-Control
header	is	used	to	specify	directives	for	caching	mechanisms	in	both	HTTP	requests	and	responses.	A	typical	header	looks	like	this	Cache-Control:	public,	max-age=10	public	Indicates	that	the	response	may	be	cached	by	any	cache.	private	Indicates	that	the	response	is	intended	for	a	single	user	and	must	not	be	stored	by	a	shared	cache.	A	private
cache	may	store	the	response.	no-cache	Forces	caches	to	submit	the	request	to	the	origin	server	for	validation	before	releasing	a	cached	copy.	The	max-age=N	response	directive	indicates	that	the	response	remains	fresh	until	N	seconds	after	the	response	is	generated.	Cache-Control:	max-age=604800	Indicates	that	caches	can	store	this	response
and	reuse	it	for	subsequent	requests	while	it's	fresh.	Note	that	max-age	is	not	the	elapsed	time	since	the	response	was	received;	it	is	the	elapsed	time	since	the	response	was	generated	on	the	origin	server.	So	if	the	other	cache(s)	—	on	the	network	route	taken	by	the	response	—	store	the	response	for	100	seconds	(indicated	using	the	Age	response
header	field),	the	browser	cache	would	deduct	100	seconds	from	its	freshness	lifetime.	If	the	max-age	value	is	negative	(for	example,	-1)	or	isn't	an	integer	(for	example,	3599.99),	then	the	caching	behavior	is	unspecified.	Caches	are	encouraged	to	treat	the	value	as	if	it	were	0	(this	is	noted	in	the	Calculating	Freshness	Lifetime	section	of	the	HTTP
specification).	Cache-Control:	max-age=604800	Age:	100	s-maxage	The	s-maxage	response	directive	indicates	how	long	the	response	remains	fresh	in	a	shared	cache.	The	s-maxage	directive	is	ignored	by	private	caches,	and	overrides	the	value	specified	by	the	max-age	directive	or	the	Expires	header	for	shared	caches,	if	they	are	present.	Cache-
Control:	s-maxage=604800	no-cache	The	no-cache	response	directive	indicates	that	the	response	can	be	stored	in	caches,	but	the	response	must	be	validated	with	the	origin	server	before	each	reuse,	even	when	the	cache	is	disconnected	from	the	origin	server.	If	you	want	caches	to	always	check	for	content	updates	while	reusing	stored	content,	no-
cache	is	the	directive	to	use.	It	does	this	by	requiring	caches	to	revalidate	each	request	with	the	origin	server.	Note	that	no-cache	does	not	mean	"don't	cache".	no-cache	allows	caches	to	store	a	response	but	requires	them	to	revalidate	it	before	reuse.	If	the	sense	of	"don't	cache"	that	you	want	is	actually	"don't	store",	then	no-store	is	the	directive	to
use.	The	must-revalidate	response	directive	indicates	that	the	response	can	be	stored	in	caches	and	can	be	reused	while	fresh.	If	the	response	becomes	stale,	it	must	be	validated	with	the	origin	server	before	reuse.	Typically,	must-revalidate	is	used	with	max-age.	Cache-Control:	max-age=604800,	must-revalidate	HTTP	allows	caches	to	reuse	stale
responses	when	they	are	disconnected	from	the	origin	server.	must-revalidate	is	a	way	to	prevent	this	from	happening	-	either	the	stored	response	is	revalidated	with	the	origin	server	or	a	504	(Gateway	Timeout)	response	is	generated.	The	proxy-revalidate	response	directive	is	the	equivalent	of	must-revalidate,	but	specifically	for	shared	caches	only.
no-store	The	no-store	response	directive	indicates	that	any	caches	of	any	kind	(private	or	shared)	should	not	store	this	response.	private	The	private	response	directive	indicates	that	the	response	can	be	stored	only	in	a	private	cache	(e.g.,	local	caches	in	browsers).	You	should	add	the	private	directive	for	user-personalized	content,	especially	for
responses	received	after	login	and	for	sessions	managed	via	cookies.	If	you	forget	to	add	private	to	a	response	with	personalized	content,	then	that	response	can	be	stored	in	a	shared	cache	and	end	up	being	reused	for	multiple	users,	which	can	cause	personal	information	to	leak.	public	The	public	response	directive	indicates	that	the	response	can	be
stored	in	a	shared	cache.	Responses	for	requests	with	Authorization	header	fields	must	not	be	stored	in	a	shared	cache;	however,	the	public	directive	will	cause	such	responses	to	be	stored	in	a	shared	cache.	In	general,	when	pages	are	under	Basic	Auth	or	Digest	Auth,	the	browser	sends	requests	with	the	Authorization	header.	This	means	that	the
response	is	access-controlled	for	restricted	users	(who	have	accounts),	and	it's	fundamentally	not	shared-cacheable,	even	if	it	has	max-age.	You	can	use	the	public	directive	to	unlock	that	restriction.	Cache-Control:	public,	max-age=604800	Note	that	s-maxage	or	must-revalidate	also	unlock	that	restriction.	If	a	request	doesn't	have	an	Authorization
header,	or	you	are	already	using	s-maxage	or	must-revalidate	in	the	response,	then	you	don't	need	to	use	public.	must-understand	The	must-understand	response	directive	indicates	that	a	cache	should	store	the	response	only	if	it	understands	the	requirements	for	caching	based	on	status	code.	must-understand	should	be	coupled	with	no-store	for
fallback	behavior.	Cache-Control:	must-understand,	no-store	If	a	cache	doesn't	support	must-understand,	it	will	be	ignored.	If	no-store	is	also	present,	the	response	isn't	stored.	If	a	cache	supports	must-understand,	it	stores	the	response	with	an	understanding	of	cache	requirements	based	on	its	status	code.	no-transform	Some	intermediaries
transform	content	for	various	reasons.	For	example,	some	convert	images	to	reduce	transfer	size.	In	some	cases,	this	is	undesirable	for	the	content	provider.	no-transform	indicates	that	any	intermediary	(regardless	of	whether	it	implements	a	cache)	shouldn't	transform	the	response	contents.	immutable	The	immutable	response	directive	indicates
that	the	response	will	not	be	updated	while	it's	fresh.	Cache-Control:	public,	max-age=604800,	immutable	A	modern	best	practice	for	static	resources	is	to	include	version/hashes	in	their	URLs,	while	never	modifying	the	resources	—	but	instead,	when	necessary,	updating	the	resources	with	newer	versions	that	have	new	version-numbers/hashes,	so
that	their	URLs	are	different.	That's	called	the	cache-busting	pattern.

