
	

https://kezitamagabi.dutabuz.com/175526361445230791922125290731452811209906?mutufavigewinaxufemudobufemokinumejegalafewaverowituzilu=pofikezagatomewakazorozulirajozedevoxujakamomenusidapibojolasuxowewasujupezuzagokuxeduvudusixevonodenopawikolabozamafuzelanomamabitivubamigovatebalibupedobosukitivizelodujifawuxilukolonubowujadaxegodubowajo&utm_kwd=c%2B%2B+unit+testing&fapebarafitokapufodivirudupupakokipewupowavezimojogifozagulizudulimawax=navuregizagalixasufapodubonupelamofuwawebivoranilifolozozevixawubikonezininifesanenimozuduvedizitibekizowirezotatupev

C	unit	testing

This	article	is	the	series	on	Unit	testing	in	C	and	carries	the	discussion	on	Unit	Testing	and	its	implementation.	The	aim	of	this	series	is	to	provide	easy	and	practical	examples	that	anyone	can	understand.	This	is	the	Introduction	of	Unit	testing	–	Unit	testing	in	C	tutorial	Part	1.	You	can	also	read	ceedling	installation,	Unity,	Cmock,	and	stringizing,
token	pasting	in	C.	Unit	Testing	in	C	–	Introduction	Anyone	who	has	been	involved	in	the	software	development	life	cycle	(SDLC)	for	a	while,	will	have	encountered	some	form	of	testing.	Software	testing	is	an	acceptance	mechanism	for	discovering	how	well	a	software	works	according	to	the	specified	requirements.	Although	the	aim	of	testing	is	to
find	bugs,	it	cannot	guarantee	the	absence	of	other	faults,	no	matter	how	creative	the	test	cases	have	been	designed.	Unit	testing	enables	a	more	thorough	level	of	acceptance	testing.	What	is	Unit	Testing?	A	unit	is	simply	a	small	piece	of	code	for	any	single	function.	So	when	we	test	those	units,	it	is	called	a	unit	test.	The	unit	test	is	a	short	script	or
piece	of	code	designed	to	verify	the	behavior	of	a	particular	unit	independently	to	produce	a	pass	or	fail	result.	Unit	Testing	is	performed	during	the	application	development	phase.	Unit	testing	is	performed	usually	by	developers.	In	V-model,	SDLC,	and	STLC	the	unit	testing	is	the	first	phase	of	testing	before	integration	testing.	It	is	a	white	box
testing	technique	and	QA	engineers	can	also	perform	Unit	Testing	if	required.	However,	it	can	sometimes	be	quite	difficult	to	write	a	good	unit	test	for	a	particular	piece	of	code.	Having	difficulty	testing	their	own	or	someone	else’s	code,	developers	often	think	that	their	struggles	are	caused	by	a	lack	of	some	fundamental	testing	knowledge	or	secret
unit	testing	techniques.	In	this	unit	testing	tutorial	series,	I	intend	to	demonstrate	that	unit	tests	are	quite	easy;	the	real	problems	that	complicate	unit	testing.	Why	is	Unit	Testing	necessary	and	its	use?	Sometimes,	developers	skip	out	unit	testing	due	to	lack	of	time.	Skipping	out	unit	testing	leads	to	more	defect	fixing	costs	during	integration,	Beta,
and	system	testing.	Proper	unit	testing	at	the	time	of	application	development,	saves	time	and	money.	Here	are	the	key	reasons	to	perform	Unit	Testing.	The	defects	can	be	fixed	early	at	the	development	stage,	and	it	saves	time	and	costs.	It	helps	developers	to	understand	the	code	base	and	make	changes	quickly	that	you	think	of.	Good	unit	tests
generally	serve	as	the	project	documentation.	Unit	tests	can	be	reused	and	migrated	to	the	new	project	quickly	when	required.	You	should	tweak	the	code	a	bit	to	run	again.	Better	Design	–	When	developers	write	unit	tests,	their	emphasis	is	on	thinking	about	how	their	code	will	be	used	throughout	the	system,	which	generally	results	in	better	design.
Unit	Test	on	Embedded	Software/Firmware	Unit	tests	can	help	you	write	a	better	embedded	software.	To	allow	unit	testing	for	a	software	project,	the	R&D	team	must	write	a	testable,	modular	code	–	code	that	can	be	divided	into	self-contained	units	that	can	be	tested.	On	top	of	making	the	code	testable,	embedded	software	developers	must	make
sure	their	code	is	portable.	The	unit	test	won’t	test	the	functionality	like	how	it	is	running	in	hardware.	Do	we	need	hardware	(target)	to	run	the	unit	tests?	Not	really,	if	you	use	ceedling	framework	for	unit	tests,	then	you	don’t	need	your	target	hardware.	You	can	use	your	PC	to	run	the	unit	test.	In	our	full	unit	test	series,	we	are	going	to	discuss
ceedling	only.	So	your	PC	machine	is	enough	to	learn.	The	misconception	of	Unit	test	Our	firmware	is	very	simple,	we	don’t	need	unit	testing.	We	can’t	unit	test	microcontroller	code,	it’s	too	close	to	the	hardware.	Unit	testing	will	add	an	unnecessary	cost	burden	to	our	project.	What	is	the	unit	testing	framework?	A	unit	test	framework	is	just	some
code/application	that	makes	it	easier	to	run,	test	the	code	which	we	have	written,	and	recorded	the	results	of	unit	tests.	Frameworks	used	for	Unit	Test	So,	now	we	know	that	unit	testing	is	a	valuable	activity	for	embedded	firmware.	There	are	many	frameworks	that	are	available	for	each	programming	language.	We	have	listed	some	tools	for	our	C
and	Embedded	platform.	You	can	use	anyone	for	unit	testing.	Ceedling	Embunit	MinUnit	Criterion	LCUT	etc.	In	our	next	tutorial,	we	will	see	the	code	coverage	and	its	types.	You	can	also	read	the	below	tutorials.	Embedded	Software	|	Firmware	|	Linux	Devic	Driver	|	RTOS	Hi,	I	am	a	tech	blogger	and	an	Embedded	Engineer.	I	am	always	eager	to
learn	and	explore	tech-related	concepts.	And	also,	I	wanted	to	share	my	knowledge	with	everyone	in	a	more	straightforward	way	with	easy	practical	examples.	I	strongly	believe	that	learning	by	doing	is	more	powerful	than	just	learning	by	reading.	I	love	to	do	experiments.	If	you	want	to	help	or	support	me	on	my	journey,	consider	sharing	my	articles,
or	Buy	me	a	Coffee!	Thank	you	for	reading	my	blog!	Happy	learning!	Hits	(since	1	July	2022)	-	32,637	On-demand	pricing	that	scales	with	youFirst-class	support	for	all	major	languages	and	frameworks	using	lightweight	SDKs	and	agentsNative	integrations	with	Slack,	Github,	Jira,	Bitbucket	and	more	of	your	favorite	tools	When	it	comes	to	QA,	you're
not	alone.	We	work	side-by-side	with	your	team	to	ensure	your	testing	process	is	smooth,	efficient,	and	impactful.	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these
freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you
must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted
by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	When	you	find	yourself	(or	your	company)	with	more	code	than	anyone	could	ever	test	by	hand,
what	can	you	do?	Well,	unit	testing	has	always	been	the	perfect	solution,	as	you	can	run	tests	that	check	more	data	than	a	person	could	in	a	day	in	a	matter	of	milliseconds.	So	today	I’ll	take	a	look	into	a	few	popular	C#	unit	testing	frameworks	and	try	them	out	first	hand	so	you	can	choose	which	one	best	suits	your	project.	Unit	tests	can	be	run	as
often	as	you	want,	on	as	many	different	kinds	of	data	as	you	want	and	with	next	to	no	human	involvement	beyond	once	the	tests	are	written.	Not	only	that,	but	using	code	to	test	code	will	often	result	in	you	noticing	flaws	with	your	program	that	would	have	been	very	difficult	to	spot	from	a	programmer’s	viewpoint.	Popular	C#	unit	testing	frameworks
The	unit	testing	frameworks	I’ll	be	testing	are:	NUnit	XUnit	Built-in	Visual	Studio	testing	tools	All	of	these	unit	testing	frameworks	offer	a	similar	end	goal,	to	help	make	writing	unit	tests	faster,	simpler	and	easier!	But	there	are	still	a	few	key	differences	between	them.	Some	are	more	focused	towards	powerful	complex	tests,	while	others	rank
simplicity	and	usability	as	a	higher	priority.		In	most	versions	since	2005,	Visual	Studio	has	come	with	a	built	in	testing	framework	supported	by	Microsoft.	This	framework	certainly	wins	the	most	points	for	installation.	Though	if	your	copy	of	Visual	Studio	doesn’t	come	with	it	already	included	you	are	going	to	have	to	jump	though	a	few	hoops	to	get	it
going.	(We	wrote	a	review	of	the	2017	version	of	Visual	Studio	here.)	This	framework	is	the	simplest	of	the	three,	and	uses	an	easy	to	understand	method	attribute	structure	(much	like	most	testing	frameworks)	where	you	are	able	to	add	tags	such	as	‘[TestClass]’	and	‘[TestMethod]’	to	your	code	in	order	to	get	testing.	Visual	Studio	even	has	a	UI
panel	dedicated	to	visualizing	your	tests,	which	can	be	found	under	Test	->	Windows	->	Test	Explorer.	Now	before	we	dive	into	trying	out	this	testing	framework	let’s	introduce	our	example	classes	that	need	testing.	First	we	have	a	Raygun,	which	we	can	fire	and	recharge.	The	only	thing	we	need	to	keep	track	of	with	our	Raygun	is	it’s	ammo,	which
can	run	out.	We	also	have	a	bug,	which	we	can	shoot	at	with	our	Raygun.	But	this	bug	has	the	ability	to	dodge	our	attempts	to	shoot	it.	If	we	shoot	at	a	bug	after	it	has	just	dodged,	we	will	miss.	Though	if	we	hit	the	bug	square	on,	it’s	safe	to	assume	that	it	will	be	dead.	These	two	classes	are	defined	as	follows:	public	class	Raygun	{	private	int	ammo	=
3;	public	void	FireAt(Bug	bug)	{	if	(HasAmmo())	{	if	(bug.IsDodging())	{	bug.Miss();	}	else	{	bug.Hit();	}	ammo--;	}	}	public	void	Recharge()	{	ammo	=	3;	}	public	bool	HasAmmo()	{	return	ammo	>	0;	}	}	public	class	Bug	{	private	bool	dodging;	private	bool	dead;	public	void	Dodge()	{	dodging	=	true;	}	public	void	Hit()	{	dead	=	true;	}	public	void
Miss()	{	dodging	=	false;	}	public	bool	IsDodging()	{	return	dodging;	}	public	bool	IsDead()	{	return	dead;	}	}	Seems	simple	enough,	but	we	need	to	make	sure	that	our	Rayguns	and	bugs	behave	as	we	want	them	to.	So	then	it’s	time	to	write	some	unit	tests!	(We	wrote	about	how	to	write	robust	unit	tests	in	C#	here.)	First	up	let’s	try	a	simple
situation	where	we	want	to	shoot	at,	and	hit,	a	bug.	What	we	would	expect	is	that	afterwards	the	bug	will	be	dead,	and	the	Raygun	will	still	have	a	bit	of	juice	left	in	it.	Well,	let’s	see	if	we	are	right:	[TestClass]	public	class	Class1	{	[TestMethod]	public	void	TryShootBug()	{	Bug	bug	=	new	Bug();	Raygun	gun	=	new	Raygun();	gun.FireAt(bug);
Assert.IsTrue(bug.IsDead());	Assert.IsTrue(gun.HasAmmo());	}	}	The	two	new	things	you	will	notice	in	this	snippet	of	code	is	the	[TestClass]	and	[TestMethod]	tags,	which	certainly	don’t	just	float	around	in	normal	code.	These	tags	are	what	allow	Visual	Studio’s	built	in	testing	framework	to	recognize	this	particular	class	as	a	class	that	contains	unit
tests,	and	to	treat	the	method	TryShootBug()	as	a	test	case,	instead	of	just	an	ordinary	method.	Since	these	tools	are	built	for	Visual	Studio,	running	your	tests	from	within	Visual	Studio	is	very	simple.	Just	right	click	on	any	[TestMethod]	tags	as	shown:	And	would	you	look	at	that,	the	test	passed.	Looks	like	our	Raygun	can	at	least	hit	a	stationary	bug.
Of	course	this	is	only	showing	the	bare	basics	of	what	Visual	Studio’s	testing	tools	can	do.	Some	other	very	useful	tags	you	will	surely	be	using	are	the	[TestInitialize]	and	[TestCleanup]	tags.	These	tags	allow	you	to	specify	code	that	is	run	before	(initialize)	and	after	(cleanup)	every	individual	test	is	run.	So	if	you	want	to	reload	your	Raygun	after	every
encounter	like	a	stylish	gunslinger,	then	this	should	do	the	trick:	[TestInitialize]	public	void	Initialize()	{	gun	=	new	Raygun();	}	[TestCleanup]	public	void	Cleanup()	{	gun.Recharge();	}	Stylish.	While	we	are	still	talking	about	the	Visual	Studio	testing	tools	I’ll	quickly	mention	the	[ExpectedException]	tag,	which	is	incredibly	useful	for	when	you	want	to
deliberately	cause	an	exception	in	your	test	(which	you	will	certainly	want	to	do	at	some	point	to	make	sure	your	program	isn’t	accepting	data	it	shouldn’t).	Here’s	a	quick	example	of	how	you	would	write	a	test	that	results	in	an	exception:	[TestMethod]	[ExpectedException(typeof(System.IndexOutOfRangeException))]	public	void
TryMakingHeapsOfGuns()	{	Raygun[]	guns	=	new	Raygun[5];	Bug	bug	=	new	Bug();	guns[5].FireAt(bug);	}	Don’t	worry	about	the	index	out	of	bounds	exception,	thanks	to	the	[ExpectedException]	tag	the	exception	will	be	treated	as	a	success	and	your	test	will	pass.	On	the	contrary	if	the	exception	isn’t	thrown	then	the	test	will	fail.	Anyway,	it’s	about
time	we	moved	on	to	some	more	testing	platforms!	Overall	the	built	in	Visual	Studio	testing	tools	do	exactly	what	they	say	on	the	box.	They	are	simple,	easy	to	use	and	handle	all	the	basic	testing	functionality	you	would	need.	Plus	if	you’re	already	working	in	Visual	Studio	then	they	are	already	ready	to	use!	Next	up	is	arguably	the	most	popular	C#
testing	platform,	NUnit	NUnit	is	an	incredibly	widely	used	tool	for	testing,	and	it	serves	as	an	excellent	example	of	the	open	source	unit	testing	frameworks.	It’s	a	broad	and	powerful	testing	solution.	In	fact	it’s	what	we	use	here	at	Raygun	for	the	bulk	of	our	unit	testing.	NUnit	is	installed	via	a	NuGet	package,	which	you	can	search	for	within	Visual
Studio.	The	packages	I’ve	used	for	this	example	are	NUnit	and	NUnit.ConsoleRunner,	though	you	also	have	the	option	of	installing	a	GUI-based	plugin	for	Visual	Studio.	NUnit	uses	a	very	similar	attribute	style	system	just	like	the	visual	studio	testing	tools,	but	now	we	will	be	referring	to	a	[TestClass]	as	a	[TestFixture],	and	a	[TestMethod]	as	simply	a
[Test].	Now	let’s	go	back	to	our	Rayguns	and	bugs	and	have	a	look	at	another	example,	but	this	time	using	NUnit.	This	time	let’s	make	sure	our	dodges	and	ammo	are	working	properly,	so	let’s	try	and	shoot	a	much	more	mobile	bug:	[TestFixture]	public	class	NUnitTests	{	[Test]	public	void	TryShootDodgingBug()	{	Bug	bug	=	new	Bug();	Raygun	gun
=	new	Raygun();	bug.Dodge();	gun.FireAt(bug);	bug.Dodge();	gun.FireAt(bug);	bug.Dodge();	gun.FireAt(bug);	Assert.IsFalse(bug.IsDead());	Assert.IsFalse(gun.HasAmmo());	}	}	Notice	the	new	[TestFixture]	and	[Test]	tags.	Now	in	order	to	run	this	test	using	NUnit,	we	need	to	seek	the	command	line	(unless	of	course	you’ve	chosen	to	install	a	GUI
based	plugin.)	First,	you	must	make	sure	you	are	in	your	project’s	root	directory	(e.g.	C:\UsersyourUserName\Documents\Visual	Studio	2015\ProjectsYourProjectName)	and	then	enter	the	following	command	in	a	new	cmd	window:	packages\NUnit.ConsoleRunner.3.6.0\toolsunit3-console.exe		YourProjectName\bin\DebugYourProjectName.dll
Assuming	everything	is	set	up	properly,	the	NUnit	console	runner	will	run	all	the	tests	in	your	project	and	give	you	a	nice	little	report	on	how	things	went:	Looks	like	our	bug	sure	can	dodge	and	our	Raygun	can	certainly	run	out	of	ammo!	One	feature	of	NUnit	that	makes	it	incredibly	useful	is	the	ability	to	include	parameters	in	your	tests!	This	means
that	you	can	write	a	test	case	with	arguments,	then	easily	run	the	same	test	with	a	range	of	unique	data.	This	removes	the	need	to	write	unique	test	cases	for	every	set	of	arguments	you	want	to	test.	Here’s	a	quick	example	test	case	we	could	use	to	make	sure	our	Raygun	was	actually	running	out	of	ammo	at	the	right	time,	in	a	much	smarter	way	than
before:	[TestCase(1)]	[TestCase(2)]	[TestCase(3)]	[TestCase(4)]	public	void	FireMultipleTimes(int	fireCount)	{	Bug	bug	=	new	Bug();	Raygun	gun	=	new	Raygun();	for(int	i	=	0;	i	<	fireCount;	i++)	{	gun.FireAt(bug);	}	if	(fireCount	>=	3)	{	Assert.IsFalse(gun.HasAmmo());	}	else	{	Assert.IsTrue(gun.HasAmmo());	}	}	Excellent,	with	this	one	test	case	we
were	able	to	make	sure	a	Raygun	which	has	fired	two	shots	still	has	ammo,	while	one	that	has	fired	three	is	empty.	And	thanks	to	the	[TestCase]	tag	we	were	easily	able	to	test	a	whole	bunch	of	other	values	while	we	were	at	it!	Overall	NUnit	is	an	excellent	testing	framework,	and	as	you	delve	deeper	into	what	it	can	offer,	it	surely	exceeds	what
Microsoft’s	built	in	testing	can	offer.	Anyway,	let’s	look	at	our	last	testing	framework,	and	our	last	attempt	as	shooting	bugs	with	Rayguns!	If	you	like	the	sound	of	Facts	and	Theories,	then	it’s	time	to	look	at	XUnit	XUnit	is	an	open	source	testing	platform	with	a	larger	focus	in	extensibility	and	flexibility.	XUnit	follows	a	more	community	minded
development	structure	and	focuses	on	being	easy	to	expand	upon.	XUnit	actually	refers	to	a	grouping	of	frameworks,	but	we	will	be	focusing	on	the	C#	version.	Other	versions	include	JUnit,	a	very	well	known	testing	framework	for	Java.	XUnit	also	uses	a	more	modern	and	unique	style	of	testing,	by	doing	away	with	the	standard	[test]	[testfixture]
terminology	and	using	new	fancy	tags	like	Facts	and	Theories.	NUnit	and	XUnit	are	actually	quite	similar	in	many	ways,	as	NUnit	serves	as	a	base	for	a	lot	of	the	new	features	XUnit	brings	forward.	Note	that	XUnit	is	also	installed	via	a	NuGet	package	much	like	NUnit,	which	you	can	search	for	within	Visual	Studio.	The	packages	I’ve	used	for	this
example	are	XUnit	and	XUnit.ConsoleRunner,	though	you	also	have	the	option	of	installing	a	GUI-based	plugin	for	Visual	Studio.	Much	like	the	[TestCase]	tag	in	NUnit,	XUnit	has	its	own	solution	to	providing	parameters	to	a	test	case.	To	do	so	we	will	be	using	the	new	[InLineData]	tag	and	Theories.	In	general,	a	test	case	that	has	no	parameters	(so	it
doesn’t	rely	on	any	changing	data)	is	referred	to	as	a	Fact	in	XUnit,	meaning	that	it	will	always	execute	the	same	(so	‘Fact’	suits	it	pretty	well).	On	the	other	hand,	we	have	Theories,	which	refers	to	a	test	case	that	can	take	data	directly	from	[InLineData]	tags	or	even	from	an	Excel	spreadsheet	So	with	all	these	new	fancy	keywords	in	mind,	let’s	write
a	test	in	XUnit	that	uses	a	theory	to	test	our	bugs	dodge	ability:	[Theory]	[InlineData(true,	false)]	[InlineData(false,	true)]	public	void	TestBugDodges(bool	didDodge,	bool	shouldBeDead)	{	Bug	bug	=	new	Bug();	Raygun	gun	=	new	Raygun();	if	(didDodge)	{	bug.Dodge();	}	gun.FireAt(bug);	if	(shouldBeDead)	{	Assert.True(bug.IsDead());	}	else	{
Assert.False(bug.IsDead());	}	}	This	test	covers	both	cases	at	once,	where	the	bug	dodges	and	survives,	or	doesn’t	dodge	and	gets	hit.	Lovely!	Now,	last	step,	lets	run	the	XUnit	test	runner	from	the	command	line	(note	that	much	like	NUnit,	XUnit	also	has	a	GUI	based	visual	studio	plugin	available	for	you	to	run	tests	with).	First	you	must	make	sure
you	are	in	your	project’s	root	directory,	just	like	NUnit	(e.g.	C:\UsersyourUserName\Documents\Visual	Studio	2015\ProjectsYourProjectName)	and	then	enter	the	following	command	in	a	new	cmd	window:	packages\xunit.runner.console.2.1.0\tools\xunit.console.exe		YourProjectName\bin\DebugYourProjectName.dll	Assuming	everything	is	set	up
properly,	the	XUnit	console	runner	will	run	all	the	tests	in	your	project	and	let	you	know	how	your	tests	turned	out.	Looks	like	our	dodging	tests	passed!	Overall	XUnit	acts	as	the	more	contemporary	version	of	NUnit,	offering	flexible	and	usable	testing	with	a	fresh	coat	of	paint.	In	conclusion…	Regardless	of	which	of	the	unit	testing	frameworks	you
use,	you’re	going	to	be	getting	all	the	basics.	However,	there	are	a	few	differences	between	them	that	I	hope	I’ve	highlighted	so	you	can	choose	the	right	one	for	your	project.	Whether	it’s	the	convenience	of	Microsoft’s	built	in	unit	testing	framework,	the	solid	and	well	proven	status	of	NUnit,	or	the	modern	take	on	unit	testing	that	XUnit	provides,
theres	always	something	out	there	that	will	give	you	exactly	what	you	need!	Want	to	add	an	extra	layer	of	protection	for	your	code?	Catch	the	errors	that	fall	through	the	cracks	with	Raygun.	Take	a	free	trial	here.		Complex	embedded	projects	have	thousands	and	frequently	tens	of	thousands	lines	of	code.	The	majority	of	that	code	is	entirely	software
(rather	than	“firmware”),	and	software	in	every	industry	is	typically	unit	tested.	However,	in	the	embedded	and	firmware	industry,	unit	testing	is	typically	an	after-thought	or	a	task	that	is	begun	after	working	on	a	project	for	months	or	even	years.	Today’s	firmware	projects	require	filesystems,	BLE	and	Wi-Fi	stacks,	specialized	data	structures	(both
in-memory	and	in-flash),	and	complex	algorithms,	such	as	those	interpreting	accelerometer	and	gyroscope	data.	All	of	these	items	can	be	easily	unit	tested	after	becoming	acquainted	with	best	practices	and	writing	a	few	tests	of	your	own.	In	this	post,	we	go	into	detail	on	how	to	properly	build	abstractions	to	stub,	fake,	and	mock	out	implementations
of	low	level	embedded	software	and	provide	a	full	real-world	example	of	a	unit	test	using	the	CppUTest	3.8	unit	test	framework.	This	is	the	second	post	in	our	Building	Better	Firmware	series,	following	the	post	about	Continuous	Integration	for	firmware	projects,	which	is	a	wonderful	pre-cursor	to	this	post.	Unit	Testing	Overview	Unit	testing	is	a
method	of	testing	software	where	individual	software	components	are	isolated	and	tested	for	correctness.	Ideally,	these	unit	tests	are	able	to	cover	most	if	not	all	of	the	code	paths,	argument	bounds,	and	failure	cases	of	the	software	under	test.	Through	proper	use	of	unit	tests,	and	especially	while	using	practices	from	Test	Driven	Development
(TDD)1,	the	time	it	takes	to	stabilize	embedded	software	can	decrease	dramatically,	making	individuals	and	teams	more	productive	and	firmware	less	likely	to	experience	functional	bugs,	control	flow	bugs,	and	even	fatal	issues,	such	as	memory	leaks	and	(gasp!)	bootloops.	Life	Before	Unit	Testing	Here	are	a	few	examples	that	I’ve	experienced	in	the
past	that	were	alleviated	by	the	team	doubling	down	on	unit	testing	the	firmware.	You	find	testing	on	target	hardware	slow	and	inconvenient,	especially	when	multiple	devices	(e.g.	a	mobile	phone)	or	prior	setup	(e.g.	a	factory	reset)	is	required	Bugs	and	regressions	occur	repeatedly	in	a	single	piece	of	software.	Deadlocks,	HardFaults	and	Memory
Leaks	are	the	norm	and	have	become	accepted	(unit	testing	example	for	preventing	deadlocks	included	below!).	The	amount	of	time	spent	debugging	and	testing	firmware	is	60%	or	more2.	The	first	instinct	when	starting	a	new	software	module	is	to	write	a	chunk	of	code	and	test	on	hardware.	Life	After	Unit	Testing	(Possibly)	At	a	previous	company,
after	scrapping	most	legacy	code	and	writing	new	modules	with	90%+	code	coverage	and	through	the	use	of	TDD,	this	is	what	development	felt	like	sometimes.	You	write	a	new	file,	maybe	an	in-flash	log	storage	module,	and	it	works	the	first	time	when	flashed	on	the	device	(no	better	feeling).	Regressions	are	caught	immediately	when	runnings	tests
locally	or	in	CI.	Memory	leaks	are	raised	as	errors	in	unit	tests.	Testing	a	majority	of	the	firmware	only	takes	a	minute.	The	overall	codebase	has	better	structure	and	cleaner	boundaries	between	modules.	Disclaimers	Unit	tests	in	the	embedded	space	is	a	controversial	topics,	so	I	want	to	clear	set	up	expectations	up	front.	This	post	covers	how	to	test
embedded	software.	Testing	firmware	drivers	and	hardware	is	very	different	and	time	is	best	spent	writing	functional	and	integration	tests	that	run	on	target	to	validate	hardware	components.	As	soon	as	drivers	are	written	and	stable,	switch	to	the	unit	test	approaches	provided	in	this	post.	I	do	not	suggest	rewriting	all	of	your	code	to	accommodate
unit	tests,	or	writing	tests	for	the	current	code	base,	but	I	heavily	suggest	writing	unit	tests	for	most	new	modules	and	heavily	suggesting	them	in	code	reviews.	Integration	tests	and	on-target	tests	have	their	place.	This	infrastructure	is	a	huge	time	and	money	investment,	and	the	tests	run	in	minutes	and	hours.	Keep	these	to	a	minimum	at	first	to
ensure	hardware	stability,	and	leave	software	stability	to	unit	tests.	If	time	allows,	then	build	these	types	of	tests.	Like	Interrupt?	Subscribe	to	get	our	latest	posts	straight	to	your	inbox.	Framework-less	Unit	Tests	It	is	very	common	to	initially	write	unit	tests	using	one-off	.c	files.	Below	is	an	example	of	a	test	that	is	commonly	found	in	firmware
projects	or	written	by	the	author	of	a	piece	of	firmware	code.	#include	//	In	my_sum.c	int	my_sum(int	a,	int	b)	{	return	a	+	b;	}	//	In	test_my_sum.c	int	main(int	argc,	char	*argv[])	{	assert(2	==	my_sum(1,	1));	assert(-2	==	my_sum(-1,	-1));	assert(0	==	my_sum(0,	0));	//	...	return(0);	}	This	works	for	a	short	period	of	time,	but	as	a	firmware	project
grows	in	complexity,	lines	of	code,	and	number	of	developers,	there	are	a	few	things	that	become	a	requirement.	Running	Unit	Tests	in	Continuous	Integration	Reporting	results	of	the	tests,	e.g.	number	of	tests	failed,	runtime	duration,	etc.	Reporting	code	coverage	to	give	insight	into	how	much	of	a	codebase	is	unit	tested3.	Ability	for	a	developer	to
create	a	new	unit	test	easily	and	quickly.	The	most	scalable	way	to	write	unit	tests	in	C	is	using	a	unit	testing	framework,	such	as:	CppUTest	Unity	Google	Test	Even	though	CppUTest	and	Google	Test	are	written	in	C++,	they	can	be	used	to	test	C	source	code,	as	long	as	the	C	header	files	includes	are	wrapped	with	extern	"C".	extern	"C"	{	#include
"my_sum.h"	}	Minimal	Unit	Test	Example	Let’s	come	up	with	a	bare	bones	unit	test	to	instrument	our	simple	my_sum	module.	NOTE:	Our	examples	use	the	CppUTest	framework.	If	you	want	to	follow	along,	check	out	the	Setting	Up	CppUTest	section	first.	The	source	code	for	the	my_sum.c	module	is	as	follows:	#include	"my_sum.h"	int	my_sum(int	a,
int	b)	{	return	(a	+	b);	}	A	unit	test	generally	contains	the	following	pieces:	Setup	and	Teardown	functions,	which	run	before	and	after	each	test	respectively.	Individual	tests	that	test	logical	components	or	paths	of	a	module.	Many	checks,	such	as	LONGS_EQUAL	which	compares	integer	values	and	STRCMP_EQUAL	which	would	compare	string
values.	Our	basic	unit	test	is	as	follows:	#include	"CppUTest/TestHarness.h"	extern	"C"	{	#include	"my_sum.h"	}	TEST_GROUP(TestMySum)	{	void	setup()	{	//	This	gets	run	before	every	test	}	void	teardown()	{	//	This	gets	run	after	every	test	}	};	TEST(TestMySum,	Test_MySumBasic)	{	LONGS_EQUAL(7,	my_sum(3,	4));	}	Although	the	example	is
basic,	let’s	go	over	what	is	happening	here.	We	import	my_sum.h	inside	of	the	extern	"C"	{}	section	so	that	it	is	compiled	as	C	instead	of	C++.	We	have	empty	setup()	and	teardown()	functions	since	the	modules	we	are	testing	don’t	require	any	initial	setup	or	cleanup	routines.	We	have	a	single	LONGS_EQUAL	state,	which	compares	==	after	the
my_sum	function	is	called.	We	did	not	include	any	fakes	or	stubs,	as	our	module	didn’t	have	any	dependencies.	If	this	test	passes,	we	get	something	like:	Running	build/sum/sum_tests	.	OK	(1	tests,	1	ran,	1	checks,	0	ignored,	0	filtered	out,	0	ms)	And	if	the	test	fails	(for	example,	change	7	to	6):	Running	build/sum/sum_tests	src/test_my_sum.cpp:17:
error:	Failure	in	TEST(TestMySum,	Test_MySumBasic)	expected	but	was	.	Errors	(1	failures,	1	tests,	1	ran,	1	checks,	0	ignored,	0	filtered	out,	1	ms)	To	build	and	run	this	unit	test,	we	give	the	unit	test	harness	the	test	name,	the	list	of	files	to	compile	into	the	test	binary,	and	any	extra	compilation	flags	necessary.	COMPONENT_NAME=sum
SRC_FILES	=	\	$(PROJECT_SRC_DIR)/my_sum.c	\	TEST_SRC_FILES	=	\	$(UNITTEST_SRC_DIR)/test_my_sum.c	Here,	we	have	SRC_FILES,	which	would	contain	any	sources	files	used	by	the	test,	and	TEST_SRC_FILES	which	contains	the	test	files	that	contain	the	tests	themselves.	Unit	Testing	Best	Practices	The	“Minimal	Example”	is	a	contrived
example	and	very	rarely	will	there	be	a	test	with	no	other	dependencies.	Firmware	is	naturally	coupled	with	other	parts	of	hardware,	and	that	makes	it	difficult	at	first	to	set	up	a	unit	test.	For	example,	a	flash	storage	module	may	call	an	analytics_inc()	function	to	record	the	number	of	writes,	a	watchdog_feed()	function	during	a	large	flash	erase
operation,	and	timer_schedule()	to	help	defragment	the	flash	later	in	the	future.	If	we	are	testing	only	the	flash	key/value	store,	we	do	not	want	to	include	the	analytics,	watchdog,	and	timer	source	files	into	our	unit	test.	That	brings	us	to	a	few	best	practices	to	follow,	especially	when	writing	unit	tests	for	complex	and	entangled	code.	Each	TEST()
within	a	unit	test	file	should	ideally	test	a	single	path	or	feature	of	the	module.	A	test	called	TestEverything	is	an	anti-pattern.	Each	test	should	be	quick.	A	few	milliseconds	is	ideal,	and	one	second	is	the	worst	case	run	time.	Each	unit	test	should	ideally	include	one	real	implementation	of	a	module.	The	rest	should	be	stubbed	or	fake	versions	of	the
modules	not	under	test.	Those	stubbed	and	fake	versions	of	modules	should	be	written	early,	reused,	and	shared.	Which	brings	us	to	explaining	what	are	stubs,	fakes,	and	mocks?	Stubs,	Fakes,	and	Mocks	When	starting	to	write	unit	tests,	it	is	common	to	write	alternate	implementations	to	modules	that	make	sense	for	a	particular	unit	test.	Since	unit
tests	will	be	run	on	the	host	machine,	they	won’t	have	hardware,	such	as	an	LED.	But	if	a	module	within	a	unit	test	calls	Enable_LED(),	we	could	instead	have	a	virtual	LED	and	a	state	boolean	value	saving	whether	the	LED	is	on	or	off.	These	alternate	implementations	of	modules	have	different	types.	Let’s	explain	them.	Fakes	are	a	working
implementation,	but	will	usually	substitute	their	dependencies	with	something	simpler	and	easier	for	a	test	environment.	Example:	an	in-memory	key/value	store	vs	a	NOR	Flash	backed	Key/Value	store.	Stubs	are	a	trivial	implementation	that	returns	canned	values,	generally	always	returning	valid	or	invalid	values.	Mocks	are	an	implementation	that	is
controlled	by	the	unit	test.	They	can	be	pre-programmed	with	return	values,	check	values	of	arguments,	and	help	verify	that	functions	are	called.	After	having	worked	at	two	software	oriented	hardware	companies	with	20+	firmware	engineers	each,	my	favorite	way	to	organize	the	test	directory	is	as	follows:	├──	header_overrides	│			├──	string.h	│		
└──	error_codes.h	├──	fakes	│			├──	fake_analytics.c	│			├──	fake_analytics.h	│			├──	fake_kv_store.c	│			├──	fake_mutex.c	│			└──	fake_mutex.h	├──	stubs	│	├──	stub_analytics.h	│	├──	stub_kv_store.h	│	└──	stub_mutex.h	├──	mocks	│	├──	mock_analytics.h	│	└──	mock_kv_store.h	├──	src	│			├──	AllTests.cpp	│			├──	test_kv_store.cpp	│			├──
test_littlefs_basic.cpp	│			└──	test_littlefs_format.cpp	└──	makefiles				├──	Makefile_littlefs_basic.mk				├──	Makefile_littlefs_format.mk				└──	Makefile_settings_file.mk	where	header_overrides/	-	headers	that	override	complex,	auto-generated,	or	target	specific	headers.	src/	-	The	unit	tests	themselves.	makefiles/	-	Makefiles	to	build	the	individual	unit
tests.	Stubs	These	are	used	when	the	implementation	of	specific	functions	or	their	return	values	do	not	matter	to	the	module	under	test.	They	are	primarily	used	to	fix	the	linker’s	ld:	symbol(s)	not	found	errors.	These	should	generally	have	only	a	return	statement	that	always	returns	true,	false,	0,	NULL,	or	whatever	makes	sense	in	the	context	of	the
module.	If	there	is	anything	more	complex	than	a	return	statement,	consider	implementing	a	Fake	instead.	Examples:	Hardware	or	peripheral	initialization	functions	since	they	have	little	relevance	in	testing	on	the	host	(x86	machine).	A	time	module	which	returns	the	time	of	day	(just	return	a	random	time).	Mutex	stubs	when	the	locking	or	unlocking
isn’t	being	tested.	(shown	below)	#include	"mutex/mutex.h"	//	Stubs	Mutex	*mutex_create(void)	{	return	NULL;	}	void	mutex_lock(Mutex	*mutex)	{	return;	}	void	mutex_unlock(Mutex	*mutex)	{	return;	}	Fakes	A	Fake	is	commonly	used	in	firmware	where	it	is	impractical	to	use	the	real	implementation	for	reasons	such	as:	It	requires	specific
hardware	(flash	chip,	peripherals,	LED’s,	etc.)	Examples:	A	mutex	module	which	checks	at	the	end	of	the	test	that	all	mutexes	were	properly	unlocked	(example	provided	later	in	the	post).	A	RAM	based	NOR	flash	implementation,	which	flips	bits	from	1	to	0	when	written	to	and	requires	“erasing”	(flipping	bits	back	to	1)	before	writing	new	data.	A
RAM	based	key-value	store	(example	shown	below).	#include	"kv_store.h"	#include	#include	typedef	struct	{	char	*key;	void	*val;	uint32_t	len;	}	KvEntry;	static	KvEntry	s_kv_store[256];	bool	kv_store_write(const	char	*key,	const	void	*val,	uint32_t	len)	{	//	Write	key/value	into	RAM	store	}	bool	kv_store_read(const	char	*key,	void	*buf,	uint32_t
buf_len,	uint32_t	*len_read)	{	//	Read	key/value	from	RAM	store	into	buffer	}	bool	kv_store_delete(const	char	*key)	{	//	Delete	key/value	from	RAM	store	}	Mocks	Mocks	are	incredibly	useful	if	you	want	to	declare	each	and	every	return	value	of	a	given	function.	Using	many	mocks	in	a	single	unit	test	is	also	the	easiest	way	to	test	every	single	code
path	of	the	module	under	test,	as	you	can	force	any	function	to	return	error	codes,	NULL	values,	and	invalid	pointers.	These	are	the	most	powerful,	provide	the	programmer	the	most	control,	and	isolate	the	module	under	test	the	best,	but	they	are	also	the	most	cumbersome	and	verbose	to	use,	as	every	return	value	has	to	be	pre-programmed.
Common	mocking	frameworks	include:	We	are	not	going	to	cover	examples	of	mocks	and	how	to	implement	them	(the	topic	is	big	enough	for	another	post),	but	some	pseudo	code	is	shown	below	to	give	an	understanding:	Learn	more	about	mocks	in	our	separate	post,	Unit	Testing	with	Mocks.	TEST(TestKvStore,	Test_InitMutexCreated)	{	//	On	the
next	call	to	`my_malloc`,	return	the	value	`NULL`.	MOCK_my_malloc.return_value	=	NULL;	//	This	calls	`my_malloc`	in	its	implementation.	void	*buf	=	allocate_buffer();	//	Ensure	that	`my_malloc`	was	called	once	and	only	once.	LONGS_EQUAL(1,	MOCK_my_malloc.call_count);	//	Ensure	that	the	buffer	returned	was	indeed	`NULL`	since	`my_malloc`
returned	`NULL`.	POINTERS_EQUAL(NULL,	buf);	}	Examples:	A	malloc	implementation	that	can	be	pre-programmed	with	return	values	(return	real	buffers	vs	NULL).	A	mock	flash	driver	which	returns	error	codes	and	forces	different	paths	in	a	higher	level	module.	A	Bluetooth	socket	implementation	which	is	fed	artfully	crafted	packed	data	to
instrument	protocols.	Later	in	this	post,	we	will	go	over	how	to	set	up	CppUTest	to	run	these	examples	by	downloading	the	example	code,	as	well	as	give	some	short	instructions	to	how	to	set	up	your	own	project	to	run	unit	tests.	For	now,	the	concepts	are	more	important	than	the	framework	and	process	used	to	unit	test	firmware	code.	Real	World
Unit	Test	Example	Let’s	come	up	with	a	more	complicated	example	which	more	accurately	mirrors	what	a	developer	on	a	firmware	team	would	experience.	This	example	uses	a	stub,	a	fake,	setup()	and	teardown()	functions,	and	it	also	compiles	littlefs	in	its	entirety,	a	filesystem	by	ARM	designed	for	microcontrollers4.	Overview	We	are	tasked	with
writing	a	Key/Value	storage	module	in	a	firmware	project.	The	requirements	are	as	follows:	The	module	should	have	the	ability	to	read,	write,	and	delete	key/value	pairs.	The	backing	data	should	be	stored	in	littlefs.	The	number	of	times	a	key/value	pair	is	read,	written,	or	deleted	is	counted	using	an	analytics.c	module	with	a	function	call	to
analytics_increment.	This	might	be	used	to	track	roughly	how	often	the	flash	chip	is	written	to.	The	module	should	be	locked	by	a	mutex	so	that	only	one	consumer	can	be	writing,	reading,	or	deleting	from	the	/kv	directory	of	littlefs.	In	an	ideal	world,	and	in	our	realistic	one	as	well,	it	is	possible	for	us	to	write	this	entire	module	and	test	it	without
actually	using	real	hardware.	Let’s	get	started!	Basic	Implementation	of	Key/Value	Store	Below	is	our	first	attempt	at	kv_store.c	which	is	the	skeleton	of	our	file.	#include	"kv_store.h"	#include	#include	"lfs.h"	void	kv_store_init(lfs_t	*lfs)	{	}	bool	kv_store_write(const	char	*key,	const	void	*val,	uint32_t	len)	{	return	true;	}	bool	kv_store_read(const
char	*key,	void	*buf,	uint32_t	buf_len,	uint32_t	*len_read)	{	return	true;	}	bool	kv_store_delete(const	char	*key)	{	return	true;	}	Believe	it	or	not,	we	are	ready	to	create	a	unit	test	to	test	that	things	are	working.	It’s	usually	easier	to	write	a	unit	test	earlier	rather	than	later	since	the	number	of	dependencies	can	grow	out	of	hand	quickly.	Below	is	a
unit	test	which	we	mainly	create	to	test	compilation	and	the	harness.	#include	"CppUTest/TestHarness.h"	extern	"C"	{	#include	"kv_store/kv_store.h"	}	TEST_GROUP(TestKvStore)	{	void	setup()	{	}	void	teardown()	{	}	};	TEST(TestKvStore,	Test_SimpleKvStore)	{	//	Just	make	sure	that	our	file	is	hooked	up	LONGS_EQUAL(true,	kv_store_read(NULL,
NULL,	0,	NULL));	}	Let’s	run	the	test	and	see	what	prints!	$	cd	complex/tests	$	make	compiling	kv_store.c	Building	archive	build/kv_store/lib/libkv_store.a	Linking	build/kv_store/kv_store_tests	Running	build/kv_store/kv_store_tests	.	OK	(1	tests,	1	ran,	1	checks,	0	ignored,	0	filtered	out,	1	ms)	Looks	like	our	test	passes	and	we	are	ready	to	move	onto	a
(more)	realistic	test.	Add	littlefs	Implementation	Our	requirement	was	that	our	kv_store	implementation	must	use	littlefs	to	store	its	data.	At	first,	the	task	seems	daunting!	How	are	we	supposed	to	write	to	a	filesystem	that	doesn’t	exist	on	our	host	machine?	Also,	a	filesystem	is	a	complicated	piece	of	software!	Thankfully,	littlefs	includes	an	emulated
version	of	its	filesystem	which	runs	directly	on	a	PC.	These	source	files	are	under	littlefs/emubd,	and	we	can	add	them	to	our	unit	test	to	make	a	fully	functional	littlefs	filesystem.	In	this	example,	we	can	imagine	that	the	emubd	portion	of	littlefs	is	a	fake.	The	strategy	we	use	to	store	various	key/value	pairs	is	that	each	key	will	be	a	new	filename	under
the	/kv	directory,	and	the	value	will	be	written	as	the	file	data.	Let’s	try	writing	the	source	code!	#define	SETTINGS_DIR	"/kv"	static	char	s_fname[256];	static	lfs_file_t	s_file;	static	lfs_t	*s_lfs_ptr;	static	const	char	*prv_prefix_fname(const	char	*key)	{	snprintf(s_fname,	sizeof(s_fname),	"%s/%s",	SETTINGS_DIR,	key);	return	s_fname;	}	void
kv_store_init(lfs_t	*lfs)	{	s_lfs_ptr	=	lfs;	lfs_mkdir(s_lfs_ptr,	"/kv");	}	bool	kv_store_write(const	char	*key,	const	void	*val,	uint32_t	len)	{	lfs_file_open(s_lfs_ptr,	&s_file,	prv_prefix_fname(key),	LFS_O_WRONLY	|	LFS_O_CREAT);	uint32_t	rv	=	lfs_file_write(s_lfs_ptr,	&s_file,	val,	len);	lfs_file_close(s_lfs_ptr,	&s_file);	return	(rv	==	len);	}	bool
kv_store_read(const	char	*key,	void	*buf,	uint32_t	buf_len,	uint32_t	*len_read)	{	int	rv	=	lfs_file_open(s_lfs_ptr,	&s_file,	prv_prefix_fname(key),	LFS_O_RDONLY);	if	(rv	<	0)	{	return	false;	}	uint32_t	len	=	lfs_file_size(s_lfs_ptr,	&s_file);	if	(buf_len	<	len)	{	return	false;	}	len	=	lfs_file_read(s_lfs_ptr,	&s_file,	buf,	buf_len);	lfs_file_close(s_lfs_ptr,	&s_file);
*len_read	=	len;	return	len;	}	bool	kv_store_delete(const	char	*key)	{	lfs_remove(s_lfs_ptr,	prv_prefix_fname(key));	return	true;	}	This	is	a	reasonable	start	for	our	module.	It	could	use	more	error	checking,	but	the	basics	are	there.	Let’s	test	things	out.	One	thing	to	note	is	that	we’ll	have	to	add	the	source	files	for	littlefs,	so	we	add	those	in	our
Makefile	as	shown	below.	If	we	try	to	run	the	unit	test	without	adding	the	source	files,	we	run	into	linker	errors	telling	us	that	symbols	are	missing.	$	make	Linking	build/kv_store/kv_store_tests	Undefined	symbols	for	architecture	x86_64:	"_lfs_file_close",	referenced	from:	_kv_store_write	in	libkv_store.a(kv_store.o)	_kv_store_read	in
libkv_store.a(kv_store.o)	"_lfs_file_open",	referenced	from:	_kv_store_write	in	libkv_store.a(kv_store.o)	_kv_store_read	in	libkv_store.a(kv_store.o)	...	We	can	simply	add	these	source	files	to	our	compilation	and	then	all	should	be	well.	If	these	new	files	had	dependencies	of	their	own,	we’d	have	to	fix	those	linker	errors	as	well.
COMPONENT_NAME=kv_store	SRC_FILES	=	\	$(PROJECT_SRC_DIR)/littlefs/lfs.c	\	$(PROJECT_SRC_DIR)/littlefs/lfs_util.c	\	$(PROJECT_SRC_DIR)/littlefs/emubd/lfs_emubd.c	\	$(PROJECT_SRC_DIR)/kv_store/kv_store.c	\	TEST_SRC_FILES	=	\	$(UNITTEST_SRC_DIR)/test_kv_store.c	include	$(CPPUTEST_MAKFILE_INFRA)	Add	littlefs	Initialization	Just
because	we	got	the	files	to	compile	in	our	unit	test	does	not	mean	littlefs	will	magically	work.	We	need	to	initialize	the	filesystem	and	set	up	and	tear	it	down	before	and	after	each	test	respectively.	To	learn	how	to	do	this,	we	can	go	to	the	existing	littlefs	tests	directory	and	take	inspiration	from	the	template	and	a	basic	file	test,	both	linked	below.	This
ultimately	results	in	the	following	changes	necessary	for	the	unit	test	file.	extern	"C"	{	...	#include	"lfs.h"	#include	"emubd/lfs_emubd.h"	//	Contains	lfs,	cfg,	variables	with	default	configuration.	#include	"defs/lfs_default_config.h"	}	TEST_GROUP(TestKvStore)	{	void	setup()	{	lfs_emubd_create(&cfg,	"blocks");	lfs_format(&lfs,	&cfg);	lfs_mount(&lfs,
&cfg);	kv_store_init(&lfs);	}	void	teardown()	{	lfs_emubd_destroy(&cfg);	lfs_unmount(&lfs);	}	};	The	unit	test	will	now,	at	the	start	of	every	test,	create	a	directory	called	blocks/,	format	and	mount	the	filesystem	there,	and	initialize	the	key/value	store,	and	at	the	end	of	the	test,	destroy	and	unmount	the	filesystem	so	the	next	test	starts	with	a	clean
environment.	Since	we	now	have	a	filesystem	backing	our	key/value	store,	we	can	write	a	simple	test!	TEST(TestKvStore,	Test_SimpleKvStore)	{	bool	success;	const	char	*key	=	"hello";	const	char	*val	=	"world";	success	=	kv_store_write(key,	(void	*)val,	sizeof(val));	CHECK(success);	char	buf[16];	uint32_t	read_len;	success	=	kv_store_read(key,	buf,
sizeof(buf),	&read_len);	CHECK(success);	STRCMP_EQUAL(val,	buf);	//	Buffer	length	too	short.	Should	return	false.	success	=	kv_store_read(key,	buf,	0,	&read_len);	CHECK_FALSE(success);	}	This	test	writes	a	key	“hello”	with	the	value	“world”,	reads	the	value	stored	at	key	“hello”	into	a	buffer,	and	compares	it	against	the	expected	value	“world”.
We	also	check	the	failure	case	of	kv_store_read	by	passing	in	a	buffer	that	is	too	small.	It	passes!	This	means	our	littlefs	was	set	up	correctly,	and	that	our	initial	logic	in	kv_store.c	was	(mostly)	correct.	Add	Analytics	Our	next	requirement	was	to	add	analytics	tracking	how	many	times	key/value	pairs	were	written,	read,	and	deleted.	We	can	do	this	by
simply	calling	a	function	analytics_inc	which	will	increment	the	count	of	the	given	key	by	one.	The	additions	to	our	source	code	are	shown	below:	...	#include	"analytics/analytics.h"	bool	kv_store_write(const	char	*key,	const	void	*val,	uint32_t	len)	{	...	analytics_inc(kSettingsFileWrite);	return	(rv	==	len);	}	bool	kv_store_read(const	char	*key,	void
*buf,	uint32_t	buf_len,	uint32_t	*len_read)	{	...	analytics_inc(kSettingsFileRead);	return	len;	}	bool	kv_store_delete(const	char	*key)	{	...	analytics_inc(kSettingsFileDelete);	return	true;	}	If	we	run	the	test	now,	as	usual,	we	will	receive	linker	errors.	Linking	build/kv_store/kv_store_tests	Undefined	symbols	for	architecture	x86_64:	"_analytics_inc",
referenced	from:	_kv_store_write	in	libkv_store.a(kv_store.o)	_kv_store_read	in	libkv_store.a(kv_store.o)	_kv_store_delete	in	libkv_store.a(kv_store.o)	Since	this	isn’t	a	core	functionality	of	the	kv_store	module,	and	it’s	likely	something	we	don’t	need	to	verify,	we	are	going	to	provide	a	stub	for	this	function,	rather	than	use	the	real	implementation	or	a
fake.	We	can	do	that	by	creating	a	header	called	stub_analytics.h	//	Analytics	Stub	#include	"analytics/analytics.h"	void	analytics_inc(eAnalyticsKey	key)	{	return;	}	which	we	include	in	our	unit	test	as	shown	below.	extern	"C"	{	...	#include	"stubs/stub_analytics.h"	}	Add	Mutex	Locking	Almost	done!	We’ve	also	been	advised	to	add	locking	around	our
filesystem	calls	to	ensure	that	only	one	client	can	read	and	write	to	the	/kv	directory	at	one	time.	In	our	implementation,	we	add	mutex_lock()	and	a	mutex_unlock()	at	the	start	of	the	function	and	just	before	the	analytics_inc	calls	respectively.	#include	"mutex/mutex.h"	static	Mutex	*s_mutex;	void	kv_store_init(lfs_t	*lfs)	{	...	s_mutex	=	mutex_create();
}	bool	kv_store_write(const	char	*key,	const	void	*val,	uint32_t	len)	{	mutex_lock(s_mutex);	//	New	...	mutex_unlock(s_mutex);	//	New	analytics_inc(kSettingsFileWrite);	return	(rv	==	len);	}	bool	kv_store_read(const	char	*key,	void	*buf,	uint32_t	buf_len,	uint32_t	*len_read)	{	mutex_lock(s_mutex);	//	New	int	rv	=	lfs_file_open(s_lfs_ptr,	&s_file,
prv_prefix_fname(key),	LFS_O_RDONLY);	if	(rv	<	0)	{	return	false;	}	uint32_t	len	=	lfs_file_size(s_lfs_ptr,	&s_file);	if	(buf_len	<	len)	{	return	false;	}	len	=	lfs_file_read(s_lfs_ptr,	&s_file,	buf,	buf_len);	lfs_file_close(s_lfs_ptr,	&s_file);	*len_read	=	len;	mutex_unlock(s_mutex);	//	New	analytics_inc(kSettingsFileRead);	return	true;	}	bool
kv_store_delete(const	char	*key)	{	mutex_lock(s_mutex);	//	New	...	mutex_unlock(s_mutex);	//	New	analytics_inc(kSettingsFileDelete);	return	true;	}	If	we	run	our	test	now,	we’ll	receive	linker	errors	for	the	missing	mutex_*	symbols.	Since	mutexes	are	rather	important	to	this	module,	and	we	wouldn’t	want	to	forget	to	unlock	a	mutex,	we	are	going	to
try	writing	a	fake	mutex	implementation	instead	of	a	stub.	Fake	Mutex	Implementation	The	reason	we	chose	to	write	a	fake	implementation	for	the	mutex	module	is	that	we	want	to	ensure	that	equal	number	of	lock	and	unlock	calls	are	made	so	that	there	are	no	bugs	when	we	actually	use	the	kv_store	in	a	real	environment.	This	may	seem	difficult,	but
it’s	rather	easy.	To	create	a	fake,	we	create	two	files,	fake_mutex.h,	and	fake_mutex.c.	The	reason	for	both	the	.h	and	.c	files	is	because	the	fake	implementation	defines	new	functions	that	are	only	relevant	to	using	the	fake	in	a	unit	test.	Here	is	most	of	the	source	code	for	fake_mutex.c.	#define	NUM_MUTEXES	256	typedef	struct	Mutex	{	uint8_t
lock_count;	}	Mutex;	static	Mutex	s_mutexes[NUM_MUTEXES];	static	uint32_t	s_mutex_index;	//	Fake	Helpers	void	fake_mutex_init(void)	{	memset(s_mutexes,	0,	sizeof(s_mutexes));	}	bool	fake_mutex_all_unlocked(void)	{	for	(int	i	=	0;	i	<	NUM_MUTEXES;	i++)	{	if	(s_mutexes[i].lock_count	>	0)	{	return	false;	}	}	return	true;	}	//	Implementation
Mutex	*mutex_create(void)	{	assert(s_mutex_index	<	NUM_MUTEXES);	return	&s_mutexes[s_mutex_index++];	}	void	mutex_lock(Mutex	*mutex)	{	mutex->lock_count++;	}	void	mutex_unlock(Mutex	*mutex)	{	mutex->lock_count--;	}	Let’s	go	over	what	the	fake	is	doing.	We	allocate	a	large	number	(256)	of	mutex	slots.	Since	we	are	running	our	test
on	a	host,	large	allocations	are	fine.	We	have	gigabytes	of	RAM,	unlike	the	limited	embedded	counterparts.	We	define	a	new	typedef	struct	Mutex	type	which	only	stores	the	lock_count.	If	the	type	Mutex	was	properly	hidden	within	a	.c	file	in	the	real	implementation,	this	should	work.	fake_mutex_init	resets	the	state	of	this	module.	This	should	be
called	in	the	setup()	function	of	every	unit	test	using	this	module.	Otherwise,	the	state	will	be	carried	over	between	tests,	which	isn’t	desired.	fake_mutex_all_unlocked	ensures	that	all	mutexes	are	unlocked	when	called.	We	can	call	this	manually	or	at	the	end	of	every	test	in	the	teardown()	function.	mutex_create	allocates	a	slot	for	a	new	mutex	in	our
array	and	returns	this	pointer	to	the	client.	Since	the	client	only	uses	the	Mutex	*	as	an	opaque	type,	it	shouldn’t	matter	that	it’s	a	fake	Mutex.	mutex_lock	and	mutex_unlock	increment	and	decrement	the	lock	count	respectively.	Now	we	can	use	this	fake	in	our	unit	test.	After	adding	the	source	file	to	our	compilation	scripts,	we	make	the	follow
changes	to	the	unit	test.	TEST_GROUP(TestKvStore)	{	void	setup()	{	fake_mutex_init();	...	}	void	teardown()	{	...	CHECK(fake_mutex_all_unlocked());	}	};	If	we	run	our	code	above	with	the	naive	top/bottom	mutex	additions,	we	realize	quickly	that	we	have	a	mistake.	Our	fake_mutex_all_unlocked	check	failed!	complex/tests/src/test_kv_store.cpp:42:
error:	Failure	in	TEST(TestKvStore,	Test_SimpleKvStore)	complex/tests/src/test_kv_store.cpp:38:	error:	CHECK(fake_mutex_all_unlocked())	failed	.	Errors	(1	failures,	1	tests,	1	ran,	5	checks,	0	ignored,	0	filtered	out,	8	ms)	Looking	back,	hopefully	the	issue	is	obvious.	We	forgot	to	unlock	on	our	failure	cases	within	kv_store_read.	The	follow	change	is
necessary:	if	(rv	<	0)	{	mutex_unlock(s_mutex);	//	ADD	return	false;	}	uint32_t	len	=	lfs_file_size(s_lfs_ptr,	&s_file);	if	(buf_len	<	len)	{	mutex_unlock(s_mutex);	//	ADD	return	false;	}	Thankfully	we	wrote	and	used	our	fake	mutex	implementation,	as	deadlocks	are	the	worst	to	debug!	If	you	do	find	that	deadlocks	are	a	constant	issue,	do	check	out
Memfault.	It	will	help	you	track	them	down	easily.	Setting	Up	CppUTest	CppUTest	is	one	of	many	C/C++	unit	test	frameworks,	and	the	reason	it	was	chosen	is	because	of	my	familiarity	with	it	and	that	it	doesn’t	have	any	dependencies	other	than	Make.	No	matter	what	anyone	says,	the	framework	you	use	does	not	matter.	As	long	as	the	framework
has	the	minimum	features	listed	above,	it	is	as	good	as	any.	Initial	Setup	We	first	need	to	install	a	pre-compiled	version	of	CppUTest	so	we	can	easily	run	tests	without	needing	to	compile	the	binary	ourselves	from	source	before	every	test	run.	The	easiest	way	to	do	this	is	to	use	your	system’s	package	manager.	On	macOS,	CppUTest	can	be	installed
using	brew:	On	Ubuntu,	it	can	be	installed	using	apt:	$	sudo	apt	install	cpputest	Project	CppUTest	Harness	Since	it	is	a	decent	amount	of	boilerplate	due	to	the	CppUTest	harness	setup	required,	this	example	will	start	with	a	clone	of	the	example	repository	and	then	go	over	the	components	within	it,	briefly	covering	the	CppUTest	Makefiles.	Feel	free
to	use	the	code	in	any	way	you	like,	and	even	copy	it	into	your	project.	It	should	build	quite	easily	once	some	paths	are	patched	up.	$	git	clone	$	cd	interrput/examples/unit-testing/minimal/tests	#	macOS	$	make	#	Ubuntu	$	make	CPPUTEST_HOME=/usr	TARGET_PLATFORM=x86_64-linux-gnu	compiling	test_my_sum.cpp	compiling	AllTests.cpp	...
Linking	build/sum/sum_tests	Running	build/sum/sum_tests	.	OK	(1	tests,	1	ran,	1	checks,	0	ignored,	0	filtered	out,	1	ms)	To	set	CPPUTEST_HOME	and	TARGET_PLATFORM	for	your	platform,	edit	the	first	few	lines	of	MarkefileWorkerOverrides.mk.	CPPUTEST_HOME	?=	/usr/local/Cellar/cpputest/3.8	TARGET_PLATFORM	?=	Tips	&	Tricks	Debugging	a
Unit	Test	Most	unit	test	frameworks	will	generate	separate	binaries	for	each	.cpp	unit	test	file	written	so	that	you	can	load	them	in	a	debugger	(lldb	or	gdb).	$	lldb	build/sum/sum_tests	(lldb)	target	create	"build/sum/sum_tests"	Current	executable	set	to	'build/sum/sum_tests'	(x86_64).	(lldb)	run	Process	257894	launched:	'build/sum/sum_tests'	(x86_64)
.	OK	(1	tests,	1	ran,	1	checks,	0	ignored,	0	filtered	out,	0	ms)	Process	257894	exited	with	status	=	0	(0x00000000)	Code	Coverage	One	of	the	wonderful	parts	about	unit	testing	is	that	you	can	generate	a	code	coverage	report.	This	shows	which	paths	were	covered	in	a	given	set	of	unit	tests,	so	you	can	be	sure	that	the	piece	of	code	was	tested	in	some
capacity.	Note	that	code	coverage	doesn’t	measure	the	different	behaviors	a	code	path	could	take,	but	only	that	a	particular	code	path	was	taken.	To	generate	a	coverage	report	for	our	minimal	example,	let’s	first	install	lcov.	#	macOS	$	brew	install	lcov	#	Linux	$	sudo	apt	install	lcov	Next,	we’ll	run	our	unit	tests	while	testing	for	coverage.	$	make
lcov	make	-f	minimal/tests/makefiles/Makefile_sum.mk	make[1]:	Entering	directory	'minimal/tests'	Running	build/sum/sum_tests	.	OK	(1	tests,	1	ran,	1	checks,	0	ignored,	0	filtered	out,	0	ms)	make[1]:	Leaving	directory	'minimal/tests'	lcov	--base-directory	.	--directory	.	-c	-o	build/lcov.info	--exclude	"*cpputest/*"	--exclude	"*tests/*"	...	Overall	coverage
rate:	lines......:	100.0%	(2	of	2	lines)	functions..:	100.0%	(1	of	1	function)	You	can	see	the	very	end	reports	a	simple	coverage	report	in	the	terminal,	but	a	more	detailed	report	can	be	found	in	the	HTML	website	that	was	generated.	We	can	open	it	from	the	terminal:	#	macOS	$	open	build/test_coverage/index.html	#	Linux	$	firefox
build/test_coverage/index.html	Below	is	the	coverage	report	for	our	minimal	example.	It’s	quite	basic	because	there	isn’t	much	code	being	tested.	Below	is	a	more	realistic	report	from	the	Memfault	Public	SDK5.	Address	Sanitizing	To	raise	use-after-free	and	buffer	overflow	errors	in	unit	tests,	use	the	compiler	option	-fsanitize=address	when
compiling	unit	tests.	You	can	find	out	more	about	the	Address	Sanitizer	by	reading	the	documentation6.	Common	Issues	with	C/C++	Unit	Tests	Writing	unit	tests	in	C	isn’t	as	simple	as	writing	tests	in	some	languages.	Here	are	some	common	errors	and	mistakes	that	everyone	runs	into	and	possible	solutions.	Linking	build/kv_store/kv_store_tests
Undefined	symbols	for	architecture	x86_64:	"_analytics_inc",	referenced	from:	_kv_store_write	in	libkv_store.a(kv_store.o)	_kv_store_read	in	libkv_store.a(kv_store.o)	_kv_store_delete	in	libkv_store.a(kv_store.o)	ld:	symbol(s)	not	found	for	architecture	x86_64	This	error	is	generated	by	the	linker	to	tell	the	user	that	there	are	undefined	symbols.	In	the
example	above,	the	function	analytics_inc	is	called	from	three	different	functions,	but	isn’t	defined	anywhere.	The	possible	solutions	to	the	issue	are:	Create	a	fake,	stub,	or	mock	file	which	implements	this	function	and	add	it	either	to	the	headers	or	compile	it	into	the	library	Define	the	function	within	the	unit	test	file	itself,	probably	at	the	top	of	the
file.	If	it	is	a	C	function	being	called	by	C	code,	place	it	within	the	extern	"C"	{}	section.	As	a	last	resort,	one	can	compile	out	the	function	calls	and	implementations	using	a	define	for	unit	tests.	e.g.	#if	!INSIDE_UNITTESTS	Linking	build/kv_store/kv_store_tests	duplicate	symbol	'_mutex_create'	in:	build/kv_store/objs/complex/tests/src/test_kv_store.o
build/kv_store/lib/libkv_store.a(fake_mutex.o)	ld:	1	duplicate	symbol	for	architecture	x86_64	This	error	is	generated	by	the	linker	when	more	than	one	implementation	of	a	function	is	found	and	used.	This	is	usually	because	more	than	one	of	the	following	were	included	in	the	unit	test:	real	implementation,	fake,	stub,	or	mock.	In	the	example	above,	I
had	included	a	fake_mutex.c	file	and	included	the	stub_mutex.h	header,	which	caused	a	duplicate	mutex_create	symbol.	The	solution	would	be	to	remove	one	or	the	other.	State	carrying	over	between	tests	If	there	is	a	fake	or	module	which	contains	static	or	global	state,	and	it	is	being	used	across	multiple	tests	in	a	single	file,	then	that	state	ideally
should	be	cleared	out.	This	is	usually	done	by:	Defining	a	fake__reset	if	the	module	is	a	fake.	Defining	a	_deinit	if	the	module	is	a	real	one	that	is	used	in	production	code.	Make	sure	to	compile	this	function	out	of	the	production	code	by	using	#if	!INSIDE_UNITTESTS,	or	ensuring	the	linker	removes	it	from	the	final	binary.	Code	space	is	precious!	Final
Thoughts	Unit	testing	was	something	that	a	co-worker	of	mine	suggested	to	me	4	years	ago	when	writing	a	complicated	raw	flash	storage	to	filesystem	migration	for	our	firmware.	After	having	spent	a	month	doing	cycling	between	the	1.	Write	Code,	2.	Setup	hardware,	3.	Test,	which	took	10	minutes	each	iteration,	I	invested	2	days	writing	a	unit	test
and	was	able	to	shrink	the	test	cycle	down	to	2	seconds.	The	rest	of	the	project	took	two	days.	Everyone	has	a	moment	where	unit	testing	finally	clicks	for	them	and	this	was	mine.	I	hope	this	post	has	been	useful	and	that	it	has	inspired	you	to	consider	writing	a	unit	test	for	your	next	new	embedded	software	module.	Want	to	keep	reading?	Check	out
our	next	post	about	unit	testing,	Unit	Testing	with	Mocks.	You	can	find	the	examples	shown	in	this	post	here.	Like	Interrupt?	Subscribe	to	get	our	latest	posts	straight	to	your	inbox.

