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Origami	book	instructions

Traditional	Japanese	art	of	paper	folding	For	other	uses,	see	Origami	(disambiguation).	"Paper	folding"	redirects	here.	For	other	uses,	see	Paper	folding	(disambiguation).	Origami	cranes	The	folding	of	an	Origami	crane	A	group	of	Japanese	schoolchildren	dedicate	their	contribution	of	senbazuru	at	the	Sadako	Sasaki	memorial	in	Hiroshima.	Origami
(折り紙,	Japanese	pronunciation:	[oɾiɡami]	or	[oɾiꜜɡami],	from	ori	meaning	"folding",	and	kami	meaning	"paper"	(kami	changes	to	gami	due	to	rendaku))	is	the	Japanese	art	of	paper	folding.	In	modern	usage,	the	word	"origami"	is	often	used	as	an	inclusive	term	for	all	folding	practices,	regardless	of	their	culture	of	origin.	The	goal	is	to	transform	a	flat
square	sheet	of	paper	into	a	finished	sculpture	through	folding	and	sculpting	techniques.	Modern	origami	practitioners	generally	discourage	the	use	of	cuts,	glue,	or	markings	on	the	paper.	Origami	folders	often	use	the	Japanese	word	kirigami	to	refer	to	designs	which	use	cuts.	In	the	detailed	Japanese	classification,	origami	is	divided	into	stylized
ceremonial	origami	(儀礼折り紙,	girei	origami)	and	recreational	origami	(遊戯折り紙,	yūgi	origami),	and	only	recreational	origami	is	generally	recognized	as	origami.[1][2]	In	Japan,	ceremonial	origami	is	generally	called	"origata"	(ja:折形)	to	distinguish	it	from	recreational	origami.	The	term	"origata"	is	one	of	the	old	terms	for	origami.[3][4][5]	The	small
number	of	basic	origami	folds	can	be	combined	in	a	variety	of	ways	to	make	intricate	designs.	The	best-known	origami	model	is	the	Japanese	paper	crane.	In	general,	these	designs	begin	with	a	square	sheet	of	paper	whose	sides	may	be	of	different	colors,	prints,	or	patterns.	Traditional	Japanese	origami,	which	has	been	practiced	since	the	Edo	period
(1603–1868),	has	often	been	less	strict	about	these	conventions,	sometimes	cutting	the	paper	or	using	nonsquare	shapes	to	start	with.	The	principles	of	origami	are	also	used	in	stents,	packaging,	and	other	engineering	applications.[6][7]	The	word	"origami"	is	a	compound	of	two	smaller	words:	"ori"	(root	verb	"oru"),	meaning	to	fold,	and	"kami",
meaning	paper.	Until	recently,	not	all	forms	of	paper	folding	were	grouped	under	the	word	origami.	Before	that,	paper	folding	for	play	was	known	by	a	variety	of	names,	including	"orikata"	or	"origata"	(折形),	"orisue"	(折据),	"orimono"	(折物),	"tatamigami"	(畳紙)	and	others.[5][8]	Main	article:	History	of	origami	The	folding	of	two	origami	cranes	linked
together,	from	the	first	known	technical	book	on	origami,	Hiden	senbazuru	orikata,	published	in	Japan	in	1797	Distinct	paperfolding	traditions	arose	in	Europe,	China,	and	Japan	which	have	been	well-documented	by	historians.	These	seem	to	have	been	mostly	separate	traditions,	until	the	20th	century.	By	the	7th	century,	paper	had	been	introduced
to	Japan	from	China	via	the	Korean	Peninsula,	and	the	Japanese	developed	washi	by	improving	the	method	of	making	paper	in	the	Heian	period.	The	papermaking	technique	developed	in	Japan	around	805	to	809	was	called	nagashi-suki	(流し漉き),	a	method	of	adding	mucilage	to	the	process	of	the	conventional	tame-suki	(溜め漉き)	technique	to	form	a
stronger	layer	of	paper	fibers.[1][2][9][10]	With	the	development	of	Japanese	papermaking	technology	and	the	widespread	use	of	paper,	folded	paper	began	to	be	used	for	decorations	and	tools	for	religious	ceremonies	such	as	gohei,	ōnusa	(ja:大麻	(神道))	and	shide	at	Shinto	shrines.	Religious	decorations	made	of	paper	and	the	way	gifts	were	wrapped
in	folded	paper	gradually	became	stylized	and	established	as	ceremonial	origami.[1][2]	During	the	Heian	period,	the	Imperial	court	established	a	code	of	etiquette	for	wrapping	money	and	goods	used	in	ceremonies	with	folded	paper,	and	a	code	of	etiquette	for	wrapping	gifts.[3]	A	modern	ceremonial	origami	(origata)	that	follows	the	ceremonial
origami	of	the	upper	samurai	class	of	the	Muromachi	period	In	the	Muromachi	period	from	the	1300s	to	the	1400s,	various	forms	of	decorum	were	developed	by	the	Ogasawara	clan	and	Ise	clans	(ja:伊勢氏),	completing	the	prototype	of	Japanese	folded-paper	decorum	that	continues	to	this	day.	The	Ise	clan	presided	over	the	decorum	of	the	inside	of
the	palace	of	the	Ashikaga	Shogunate,	and	in	particular,	Ise	Sadachika	(ja:伊勢貞親)	during	the	reign	of	the	eighth	Shogun,	Ashikaga	Yoshimasa	(足利義政),	greatly	influenced	the	development	of	the	decorum	of	the	daimyo	and	samurai	classes,	leading	to	the	development	of	various	stylized	forms	of	ceremonial	origami.	The	shapes	of	ceremonial	origami
created	in	this	period	were	geometric,	and	the	shapes	of	noshi	to	be	attached	to	gifts	at	feasts	and	weddings,	and	origami	that	imitated	butterflies	to	be	displayed	on	sake	vessels,	were	quite	different	from	those	of	later	generations	of	recreational	origami	whose	shapes	captured	the	characteristics	of	real	objects	and	living	things.	The	"noshi"
wrapping,	and	the	folding	of	female	and	male	butterflies,	which	are	still	used	for	weddings	and	celebrations,	are	a	continuation	and	development	of	a	tradition	that	began	in	the	Muromachi	period.[1][2][11]	A	reference	in	a	poem	by	Ihara	Saikaku	from	1680	describes	the	origami	butterflies	used	during	Shinto	weddings	to	represent	the	bride	and
groom.[12]	It	is	not	certain	when	play-made	paper	models,	now	commonly	known	as	origami,	began	in	Japan.	However,	the	kozuka	of	a	Japanese	sword	made	by	Gotō	Eijō	(後藤栄乗)	between	the	end	of	the	1500s	and	the	beginning	of	the	1600s	was	decorated	with	a	picture	of	a	crane	made	of	origami,	and	it	is	believed	that	origami	for	play	existed	by
the	Sengoku	period	or	the	early	Edo	period.[5]	In	1747,	during	the	Edo	period,	a	book	titled	Ranma	zushiki	(欄間図式)	was	published,	which	contained	various	designs	of	the	ranma	(ja:欄間),	a	decoration	of	Japanese	architecture.	This	included	origami	of	various	designs,	including	paper	models	of	cranes,	which	are	still	well	known	today.	It	is	thought
that	by	this	time,	many	people	were	familiar	with	origami	for	play,	which	modern	people	recognize	as	origami.	During	this	period,	origami	was	commonly	called	orikata	(折形)	or	orisue	(折据)	and	was	often	used	as	a	pattern	on	kimonos	and	decorations.[5]	Hyakkaku	(百鶴,	One	hundred	cranes)	is	one	of	the	works	featured	in	Hiden	senbazuru	orikata.	It
is	made	by	folding	a	single	sheet	of	paper,	and	its	production	method	has	been	designated	an	Intangible	Cultural	Property	of	Kuwana	City.	Hiden	senbazuru	orikata	(ja:秘傳千羽鶴折形),	published	in	1797,	is	the	oldest	known	technical	book	on	origami	for	play.	The	book	contains	49	origami	pieces	created	by	a	Buddhist	monk	named	Gidō	(:ja:義道)	in	Ise
Province,	whose	works	were	named	and	accompanied	by	kyōka	(狂歌,	comic	tanka)	by	author	Akisato	Ritō	(秋里籬島).	These	pieces	were	far	more	technically	advanced	than	their	predecessors,	suggesting	that	origami	culture	had	become	more	sophisticated.	Gido	continued	to	produce	origami	after	the	publication	of	his	book,	leaving	at	least	158	highly
skilled	masterpieces	for	posterity.	In	1976,	Kuwana	City	in	Mie	Prefecture,	Gido's	hometown,	designated	49	of	the	methods	described	in	the	Hiden	senbazuru	orikata	as	Intangible	Cultural	Properties	of	Kuwana	City.	Kuwana	City	has	also	certified	qualified	persons	who	are	able	to	correctly	produce	these	works	and	have	in-depth	knowledge	of	the	art.
Kuwana	City	has	published	some	of	the	origami	production	methods	on	YouTube.[13][14][15]	From	the	late	Edo	period	to	the	Bakumatu	period,	origami	that	imitated	the	six	legendary	Japanese	poets,	rokkasen	(六歌仙)	listed	in	the	Kokin	Wakashū	(古今和歌集)	compiled	in	the	900s	and	the	characters	in	Chūshingura	became	popular,	but	today	they	are
rarely	used	as	subjects	for	origami.[13]	In	Europe,	there	was	a	well-developed	genre	of	napkin	folding,	which	flourished	during	the	17th	and	18th	centuries.	After	this	period,	this	genre	declined	and	was	mostly	forgotten;	historian	Joan	Sallas	attributes	this	to	the	introduction	of	porcelain,	which	replaced	complex	napkin	folds	as	a	dinner-table	status
symbol	among	nobility.[16]	However,	some	of	the	techniques	and	bases	associated	with	this	tradition	continued	to	be	a	part	of	European	culture;	folding	was	a	significant	part	of	Friedrich	Fröbel's	"Kindergarten"	method,	and	the	designs	published	in	connection	with	his	curriculum	are	stylistically	similar	to	the	napkin	fold	repertoire.	Another	example
of	early	origami	in	Europe	is	the	"pajarita,"	a	stylized	bird	whose	origins	date	from	at	least	the	nineteenth	century.[17]	When	Japan	opened	its	borders	in	the	1860s,	as	part	of	a	modernization	strategy,	they	imported	Fröbel's	Kindergarten	system—and	with	it,	German	ideas	about	paperfolding.	This	included	the	ban	on	cuts,	and	the	starting	shape	of	a
bicolored	square.	These	ideas,	and	some	of	the	European	folding	repertoire,	were	integrated	into	the	Japanese	tradition.	Before	this,	traditional	Japanese	sources	use	a	variety	of	starting	shapes,	often	had	cuts,	and	if	they	had	color	or	markings,	these	were	added	after	the	model	was	folded.[18]	In	Japan,	the	first	kindergarten	was	established	in	1875,
and	origami	was	promoted	as	part	of	early	childhood	education.	The	kindergarten's	1877	regulations	listed	25	activities,	including	origami	subjects.	Shōkokumin	(小国民),	a	magazine	for	boys,	frequently	published	articles	on	origami.	Origami	Zusetsu	(折紙図説),	published	in	1908,	clearly	distinguished	ceremonial	origami	from	recreational	origami.
These	books	and	magazines	carried	both	the	traditional	Japanese	style	of	origami	and	the	style	inspired	by	Fröbel.[8]	In	the	early	1900s,	Akira	Yoshizawa,	Kosho	Uchiyama,	and	others	began	creating	and	recording	original	origami	works.	Akira	Yoshizawa	in	particular	was	responsible	for	a	number	of	innovations,	such	as	wet-folding	and	the
Yoshizawa–Randlett	diagramming	system,	and	his	work	inspired	a	renaissance	of	the	art	form.[19]	In	1974,	origami	was	offered	in	the	USSR	as	an	additional	activity	for	elementary	school	children.[20]	During	the	1980s	a	number	of	folders	started	systematically	studying	the	mathematical	properties	of	folded	forms,	which	led	to	a	rapid	increase	in	the
complexity	of	origami	models.[21]	Starting	in	the	late	20th	century,	there	has	been	a	renewed	interest	in	understanding	the	behavior	of	folding	matter,	both	artistically	and	scientifically.	The	"new	origami,"	which	distinguishes	it	from	old	craft	practices,	has	had	a	rapid	evolution	due	to	the	contribution	of	computational	mathematics	and	the
development	of	techniques	such	as	box-pleating,	tessellations	and	wet-folding.	Artists	like	Robert	J.	Lang,	Erik	Demaine,	Sipho	Mabona,	Giang	Dinh,	Paul	Jackson,	and	others,	are	frequently	cited	for	advancing	new	applications	of	the	art.	The	computational	facet	and	the	interchanges	through	social	networks,	where	new	techniques	and	designs	are
introduced,	have	raised	the	profile	of	origami	in	the	21st	century.[22][23][24]	A	list	of	nine	basic	origami	folds:	the	valley	(or	mountain),	the	pleat,	the	rabbit	ear,	the	outside	reverse,	the	inside	reverse,	the	crimp,	the	squash,	the	sink	and	the	petal	Main	article:	Yoshizawa–Randlett	system	Many	origami	books	begin	with	a	description	of	basic	origami
techniques	which	are	used	to	construct	the	models.	This	includes	simple	diagrams	of	basic	folds	like	valley	and	mountain	folds,	pleats,	reverse	folds,	squash	folds,	and	sinks.	There	are	also	standard	named	bases	which	are	used	in	a	wide	variety	of	models,	for	instance	the	bird	base	is	an	intermediate	stage	in	the	construction	of	the	flapping	bird.[25]
Additional	bases	are	the	preliminary	base	(square	base),	fish	base,	waterbomb	base,	and	the	frog	base.[26]	Main	article:	Origami	paper	A	crane	and	papers	of	the	same	size	used	to	fold	it	Almost	any	laminar	(flat)	material	can	be	used	for	folding;	the	only	requirement	is	that	it	should	hold	a	crease.	Origami	paper,	often	referred	to	as	"kami"	(Japanese
for	paper),	is	sold	in	prepackaged	squares	of	various	sizes	ranging	from	2.5	cm	(1	in)	to	25	cm	(10	in)	or	more.	It	is	commonly	colored	on	one	side	and	white	on	the	other;	however,	dual	coloured	and	patterned	versions	exist	and	can	be	used	effectively	for	color-changed	models.	Origami	paper	weighs	slightly	less	than	copy	paper,	making	it	suitable	for
a	wider	range	of	models.	Normal	copy	paper	with	weights	of	70–90	g/m2	(19–24	lb)	can	be	used	for	simple	folds,	such	as	the	crane	and	waterbomb.	Heavier	weight	papers	of	100	g/m2	(approx.	25	lb)	or	more	can	be	wet-folded.	This	technique	allows	for	a	more	rounded	sculpting	of	the	model,	which	becomes	rigid	and	sturdy	when	it	is	dry.	Foil-backed
paper,	as	its	name	implies,	is	a	sheet	of	thin	foil	glued	to	a	sheet	of	thin	paper.	Related	to	this	is	tissue	foil,	which	is	made	by	gluing	a	thin	piece	of	tissue	paper	to	kitchen	aluminium	foil.	A	second	piece	of	tissue	can	be	glued	onto	the	reverse	side	to	produce	a	tissue/foil/tissue	sandwich.	Foil-backed	paper	is	available	commercially,	but	not	tissue	foil;	it
must	be	handmade.	Both	types	of	foil	materials	are	suitable	for	complex	models.	Washi	(和紙)	is	the	traditional	origami	paper	used	in	Japan.	Washi	is	generally	tougher	than	ordinary	paper	made	from	wood	pulp,	and	is	used	in	many	traditional	arts.	Washi	is	commonly	made	using	fibres	from	the	bark	of	the	gampi	tree,	the	mitsumata	shrub
(Edgeworthia	papyrifera),	or	the	paper	mulberry	but	can	also	be	made	using	bamboo,	hemp,	rice,	and	wheat.	Artisan	papers	such	as	unryu,	lokta,	hanji[citation	needed],	gampi,	kozo,	saa,	and	abaca	have	long	fibers	and	are	often	extremely	strong.	As	these	papers	are	floppy	to	start	with,	they	are	often	backcoated	or	resized	with	methylcellulose	or
wheat	paste	before	folding.	Also,	these	papers	are	extremely	thin	and	compressible,	allowing	for	thin,	narrowed	limbs	as	in	the	case	of	insect	models.	Paper	money	from	various	countries	is	also	popular	to	create	origami	with;	this	is	known	variously	as	Dollar	Origami,	Orikane,	and	Money	Origami.	Bone	folders	It	is	common	to	fold	using	a	flat	surface,
but	some	folders	like	doing	it	in	the	air	with	no	tools,	especially	when	displaying	the	folding.[citation	needed]	Some	folders	believe	that	no	tool	should	be	used	when	folding.[citation	needed]	However	a	couple	of	tools	can	help	especially	with	the	more	complex	models.	For	instance	a	bone	folder	allows	sharp	creases	to	be	made	in	the	paper	easily,
paper	clips	can	act	as	extra	pairs	of	fingers,	and	tweezers	can	be	used	to	make	small	folds.	When	making	complex	models	from	origami	crease	patterns,	it	can	help	to	use	a	ruler	and	ballpoint	embosser	to	score	the	creases.	Completed	models	can	be	sprayed	so	that	they	keep	their	shape	better,	and	a	spray	is	needed	when	wet	folding.	Main	article:
Action	origami	In	addition	to	the	more	common	still-life	origami,	there	are	also	moving	object	designs;	origami	can	move.	Action	origami	includes	origami	that	flies,	requires	inflation	to	complete,	or,	when	complete,	uses	the	kinetic	energy	of	a	person's	hands,	applied	at	a	certain	region	on	the	model,	to	move	another	flap	or	limb.	Some	argue	that,
strictly	speaking,	only	the	latter	is	really	"recognized"	as	action	origami.	Action	origami,	first	appearing	with	the	traditional	Japanese	flapping	bird,	is	quite	common.	One	example	is	Robert	Lang's	instrumentalists;	when	the	figures'	heads	are	pulled	away	from	their	bodies,	their	hands	will	move,	resembling	the	playing	of	music.	A	stellated	icosahedron
made	from	custom	papers	Main	article:	Modular	origami	Modular	origami	consists	of	putting	a	number	of	identical	pieces	together	to	form	a	complete	model.	Often	the	individual	pieces	are	simple,	but	the	final	assembly	may	be	more	difficult.	Many	modular	origami	models	are	decorative	folding	balls	such	as	kusudama,	which	differ	from	classical
origami	in	that	the	pieces	may	be	held	together	using	thread	or	glue.	Chinese	paper	folding,	a	cousin	of	origami,	includes	a	similar	style	called	golden	venture	folding	where	large	numbers	of	pieces	are	put	together	to	create	elaborate	models.	This	style	is	most	commonly	known	as	"3D	origami".	However,	that	name	did	not	appear	until	Joie	Staff
published	a	series	of	books	titled	3D	Origami,	More	3D	Origami,	and	More	and	More	3D	Origami.[citation	needed]	This	style	originated	from	some	Chinese	refugees	while	they	were	detained	in	America	and	is	also	called	Golden	Venture	folding	from	the	ship	they	came	on.[citation	needed]	Main	article:	Wet-folding	Wet-folding	is	an	origami	technique
for	producing	models	with	gentle	curves	rather	than	geometric	straight	folds	and	flat	surfaces.	The	paper	is	dampened	so	it	can	be	moulded	easily,	and	the	final	model	keeps	its	shape	when	it	dries.	It	can	be	used,	for	instance,	to	produce	very	natural	looking	animal	models.	Size,	an	adhesive	that	is	crisp	and	hard	when	dry,	but	dissolves	in	water	when
wet	and	becoming	soft	and	flexible,	is	often	applied	to	the	paper	either	at	the	pulp	stage	while	the	paper	is	being	formed,	or	on	the	surface	of	a	ready	sheet	of	paper.	The	latter	method	is	called	external	sizing	and	most	commonly	uses	Methylcellulose,	or	MC,	paste,	or	various	plant	starches.	Main	article:	Pureland	origami	Pureland	origami	adds	the
restrictions	that	only	simple	mountain/valley	folds	may	be	used,	and	all	folds	must	have	straightforward	locations.	It	was	developed	by	John	Smith	in	the	1970s	to	help	inexperienced	folders	or	those	with	limited	motor	skills.	Some	designers	also	like	the	challenge	of	creating	within	the	very	strict	constraints.	Origami	tessellation	is	a	branch	that	has
grown	in	popularity	after	2000.	A	tessellation	is	a	collection	of	figures	filling	a	plane	with	no	gaps	or	overlaps.	In	origami	tessellations,	pleats	are	used	to	connect	molecules	such	as	twist	folds	together	in	a	repeating	fashion.	During	the	1960s,	Shuzo	Fujimoto	was	the	first	to	explore	twist	fold	tessellations	in	any	systematic	way,	coming	up	with	dozens
of	patterns	and	establishing	the	genre	in	the	origami	mainstream.	Around	the	same	time	period,	Ron	Resch	patented	some	tessellation	patterns	as	part	of	his	explorations	into	kinetic	sculpture	and	developable	surfaces,	although	his	work	was	not	known	by	the	origami	community	until	the	1980s.	Chris	Palmer	is	an	artist	who	has	extensively	explored
tessellations	after	seeing	the	Zilij	patterns	in	the	Alhambra,	and	has	found	ways	to	create	detailed	origami	tessellations	out	of	silk.	Robert	Lang	and	Alex	Bateman	are	two	designers	who	use	computer	programs	to	create	origami	tessellations.	The	first	international	convention	devoted	to	origami	tessellations	was	hosted	in	Brasília	(Brazil)	in	2006,[27]
and	the	first	instruction	book	on	tessellation	folding	patterns	was	published	by	Eric	Gjerde	in	2008.[28]	Since	then,	the	field	has	grown	very	quickly.	Tessellation	artists	include	Polly	Verity	(Scotland);	Joel	Cooper,	Christine	Edison,	Ray	Schamp	and	Goran	Konjevod	from	the	US;	Roberto	Gretter	(Italy);	Christiane	Bettens	(Switzerland);	Carlos	Natan
López	(Mexico);	and	Jorge	C.	Lucero	(Brazil).	Main	article:	Kirigami	Kirigami	is	a	Japanese	term	for	paper	cutting.	Cutting	was	often	used	in	traditional	Japanese	origami,	but	modern	innovations	in	technique	have	made	the	use	of	cuts	unnecessary.	Most	origami	designers	no	longer	consider	models	with	cuts	to	be	origami,	instead	using	the	term
Kirigami	to	describe	them.	This	change	in	attitude	occurred	during	the	1960s	and	70s,	so	early	origami	books	often	use	cuts,	but	for	the	most	part	they	have	disappeared	from	the	modern	origami	repertoire,	and	most	modern	books	do	not	even	mention	cutting.[29]	Strip	folding	is	a	combination	of	paper	folding	and	paper	weaving.[30]	A	common
example	of	strip	folding	is	called	the	Lucky	Star,	also	called	Chinese	lucky	star,	dream	star,	wishing	star,	or	simply	origami	star.	Another	common	fold	is	the	Moravian	star	which	is	made	by	strip	folding	in	a	3-dimensional	design	to	include	16	spikes.[30]	Example	of	folded	"tea	bag"	paper	Teabag	folding	is	credited	to	Dutch	artist	Tiny	van	der	Plas,
who	developed	the	technique	in	1992	as	a	papercraft	art	for	embellishing	greeting	cards.	It	uses	small	square	pieces	of	paper	(e.g.,	a	tea	bag	wrapper)	bearing	symmetrical	designs	that	are	folded	in	such	a	way	that	they	interlock	and	produce	a	three-dimensional	version	of	the	underlying	design.	The	basic	kite	fold	is	used	to	produce	rosettes	that	are
a	3	dimensional	version	of	the	2D	design.	The	basic	rosette	design	requires	eight	matching	squares	to	be	folded	into	the	'kite'	design.	Mathematics	teachers	find	the	designs	very	useful	as	a	practical	way	of	demonstrating	some	basic	properties	of	symmetry.[citation	needed]	Spring	Into	Action,	designed	by	Jeff	Beynon,	made	from	a	single	rectangular
piece	of	paper[31]	Main	article:	Mathematics	of	paper	folding	The	practice	and	study	of	origami	encapsulates	several	subjects	of	mathematical	interest.	For	instance,	the	problem	of	flat-foldability	(whether	a	crease	pattern	can	be	folded	into	a	2-dimensional	model)	has	been	a	topic	of	considerable	mathematical	study.	A	number	of	technological
advances	have	come	from	insights	obtained	through	paper	folding.	For	example,	techniques	have	been	developed	for	the	deployment	of	car	airbags	and	stent	implants	from	a	folded	position.[32]	The	problem	of	rigid	origami	("if	we	replaced	the	paper	with	sheet	metal	and	had	hinges	in	place	of	the	crease	lines,	could	we	still	fold	the	model?")	has	great
practical	importance.	For	example,	the	Miura	map	fold	is	a	rigid	fold	that	has	been	used	to	deploy	large	solar	panel	arrays	for	space	satellites.	Origami	can	be	used	to	construct	various	geometrical	designs	not	possible	with	compass	and	straightedge	constructions.	For	instance	paper	folding	may	be	used	for	angle	trisection	and	doubling	the	cube.
Technical	origami,	known	in	Japanese	as	origami	sekkei	(折り紙設計),	is	an	origami	design	approach	in	which	the	model	is	conceived	as	an	engineered	crease	pattern,	rather	than	developed	through	trial-and-error.	With	advances	in	origami	mathematics,	the	basic	structure	of	a	new	origami	model	can	be	theoretically	plotted	out	on	paper	before	any
actual	folding	even	occurs.	This	method	of	origami	design	was	developed	by	Robert	Lang,	Meguro	Toshiyuki	and	others,	and	allows	for	the	creation	of	extremely	complex	multi-limbed	models	such	as	many-legged	centipedes,	human	figures	with	a	full	complement	of	fingers	and	toes,	and	the	like.	The	crease	pattern	is	a	layout	of	the	creases	required	to
form	the	structure	of	the	model.	Paradoxically	enough,	when	origami	designers	come	up	with	a	crease	pattern	for	a	new	design,	the	majority	of	the	smaller	creases	are	relatively	unimportant	and	added	only	towards	the	completion	of	the	model.	What	is	more	important	is	the	allocation	of	regions	of	the	paper	and	how	these	are	mapped	to	the	structure
of	the	object	being	designed.	By	opening	up	a	folded	model,	you	can	observe	the	structures	that	comprise	it;	the	study	of	these	structures	led	to	a	number	of	crease-pattern-oriented	design	approaches	The	pattern	of	allocations	is	referred	to	as	the	'circle-packing'	or	'polygon-packing'.	Using	optimization	algorithms,	a	circle-packing	figure	can	be
computed	for	any	uniaxial	base	of	arbitrary	complexity.[33]	Once	this	figure	is	computed,	the	creases	which	are	then	used	to	obtain	the	base	structure	can	be	added.	This	is	not	a	unique	mathematical	process,	hence	it	is	possible	for	two	designs	to	have	the	same	circle-packing,	and	yet	different	crease	pattern	structures.	As	a	circle	encloses	the
maximum	amount	of	area	for	a	given	perimeter,	circle	packing	allows	for	maximum	efficiency	in	terms	of	paper	usage.	However,	other	polygonal	shapes	can	be	used	to	solve	the	packing	problem	as	well.	The	use	of	polygonal	shapes	other	than	circles	is	often	motivated	by	the	desire	to	find	easily	locatable	creases	(such	as	multiples	of	22.5	degrees)
and	hence	an	easier	folding	sequence	as	well.	One	popular	offshoot	of	the	circle	packing	method	is	box-pleating,	where	squares	are	used	instead	of	circles.	As	a	result,	the	crease	pattern	that	arises	from	this	method	contains	only	45	and	90	degree	angles,	which	often	makes	for	a	more	direct	folding	sequence.	A	number	of	computer	aids	to	origami
such	as	TreeMaker	and	Oripa,	have	been	devised.[34]	TreeMaker	allows	new	origami	bases	to	be	designed	for	special	purposes[35]	and	Oripa	tries	to	calculate	the	folded	shape	from	the	crease	pattern.[36]	Copyright	in	origami	designs	and	the	use	of	models	has	become	an	increasingly	important	issue	in	the	origami	community,	as	the	internet	has
made	the	sale	and	distribution	of	pirated	designs	very	easy.[37]	It	is	considered	good	etiquette	to	always	credit	the	original	artist	and	the	folder	when	displaying	origami	models.	It	has	been	claimed	that	all	commercial	rights	to	designs	and	models	are	typically	reserved	by	origami	artists;	however,	the	degree	to	which	this	can	be	enforced	has	been
disputed.	Under	such	a	view,	a	person	who	folds	a	model	using	a	legally	obtained	design	could	publicly	display	the	model	unless	such	rights	were	specifically	reserved,	whereas	folding	a	design	for	money	or	commercial	use	of	a	photo	for	instance	would	require	consent.[38]	The	Origami	Authors	and	Creators	group	was	set	up	to	represent	the
copyright	interests	of	origami	artists	and	facilitate	permissions	requests.	However,	a	court	in	Japan	has	asserted	that	the	folding	method	of	an	origami	model	"comprises	an	idea	and	not	a	creative	expression,	and	thus	is	not	protected	under	the	copyright	law".[39]	Further,	the	court	stated	that	"the	method	to	folding	origami	is	in	the	public	domain;
one	cannot	avoid	using	the	same	folding	creases	or	the	same	arrows	to	show	the	direction	in	which	to	fold	the	paper".	Therefore,	it	is	legal	to	redraw	the	folding	instructions	of	a	model	of	another	author	even	if	the	redrawn	instructions	share	similarities	to	the	original	ones,	as	long	as	those	similarities	are	"functional	in	nature".	The	redrawn
instructions	may	be	published	(and	even	sold)	without	necessity	of	any	permission	from	the	original	author.	A	Japanese	sword	authentication	paper	(Origami)	from	1702	that	Hon'ami	Kōchū	certified	a	tantō	made	by	Yukimitsu	in	the	14th	century	as	authentic	From	a	global	perspective,	the	term	'origami'	refers	to	the	folding	of	paper	to	shape	objects
for	entertainment	purposes,	but	it	has	historically	been	used	in	various	ways	in	Japan.	For	example,	the	term	'origami'	also	refers	to	the	certificate	of	authenticity	that	accompanies	a	Japanese	sword	or	tea	utensil.	The	people	of	the	Hon'ami	clan,	who	were	the	authority	on	Japanese	sword	appraisal	from	the	Muromachi	period	to	the	Edo	period,
responded	to	the	requests	of	the	shogun,	daimyo	and	samurai	by	appraising	Japanese	swords,	determining	when	and	by	which	school	the	sword	was	made,	whether	the	inscription	on	the	nakago	was	genuine	or	not,	and	what	the	price	was,	and	then	issuing	origami	with	the	results	written	on	it.	This	has	led	to	the	Japanese	word	'origami	tsuki'	(折り紙付
き)	meaning	'origami	is	attached'	meaning	that	the	quality	of	the	object	or	the	ability	of	the	person	is	sufficiently	high.[40]	The	term	'origami'	also	referred	to	a	specific	style	of	old	documents	in	Japan.	The	paper	folded	vertically	is	called	'tategami'	(竪紙),	while	the	paper	folded	horizontally	is	called	'origami',	and	origami	has	a	lower	status	than
tategami.	This	style	of	letter	began	to	be	used	at	the	end	of	the	Heian	period,	and	in	the	Kamakura	period	it	was	used	as	a	complaint,	and	origami	came	to	refer	to	the	complaint	itself.	Furthermore,	during	the	Muromachi	period,	origami	was	often	used	as	a	command	document	or	a	catalog	of	gifts,	and	it	came	to	refer	to	the	catalog	of	gifts	itself.[41]
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of	a	three-dimensional	Cartesian	coordinate	system	In	geometry,	a	three-dimensional	space	(3D	space,	3-space	or,	rarely,	tri-dimensional	space)	is	a	mathematical	space	in	which	three	values	(coordinates)	are	required	to	determine	the	position	of	a	point.	Most	commonly,	it	is	the	three-dimensional	Euclidean	space,	that	is,	the	Euclidean	space	of
dimension	three,	which	models	physical	space.	More	general	three-dimensional	spaces	are	called	3-manifolds.	The	term	may	also	refer	colloquially	to	a	subset	of	space,	a	three-dimensional	region	(or	3D	domain),[1]	a	solid	figure.	Technically,	a	tuple	of	n	numbers	can	be	understood	as	the	Cartesian	coordinates	of	a	location	in	a	n-dimensional
Euclidean	space.	The	set	of	these	n-tuples	is	commonly	denoted	R	n	,	{\displaystyle	\mathbb	{R}	^{n},}	and	can	be	identified	to	the	pair	formed	by	a	n-dimensional	Euclidean	space	and	a	Cartesian	coordinate	system.	When	n	=	3,	this	space	is	called	the	three-dimensional	Euclidean	space	(or	simply	"Euclidean	space"	when	the	context	is	clear).[2]	In
classical	physics,	it	serves	as	a	model	of	the	physical	universe,	in	which	all	known	matter	exists.	When	relativity	theory	is	considered,	it	can	be	considered	a	local	subspace	of	space-time.[3]	While	this	space	remains	the	most	compelling	and	useful	way	to	model	the	world	as	it	is	experienced,[4]	it	is	only	one	example	of	a	3-manifold.	In	this	classical
example,	when	the	three	values	refer	to	measurements	in	different	directions	(coordinates),	any	three	directions	can	be	chosen,	provided	that	these	directions	do	not	lie	in	the	same	plane.	Furthermore,	if	these	directions	are	pairwise	perpendicular,	the	three	values	are	often	labeled	by	the	terms	width/breadth,	height/depth,	and	length.	Books	XI	to
XIII	of	Euclid's	Elements	dealt	with	three-dimensional	geometry.	Book	XI	develops	notions	of	orthogonality	and	parallelism	of	lines	and	planes,	and	defines	solids	including	parallelpipeds,	pyramids,	prisms,	spheres,	octahedra,	icosahedra	and	dodecahedra.	Book	XII	develops	notions	of	similarity	of	solids.	Book	XIII	describes	the	construction	of	the	five
regular	Platonic	solids	in	a	sphere.	In	the	17th	century,	three-dimensional	space	was	described	with	Cartesian	coordinates,	with	the	advent	of	analytic	geometry	developed	by	René	Descartes	in	his	work	La	Géométrie	and	Pierre	de	Fermat	in	the	manuscript	Ad	locos	planos	et	solidos	isagoge	(Introduction	to	Plane	and	Solid	Loci),	which	was
unpublished	during	Fermat's	lifetime.	However,	only	Fermat's	work	dealt	with	three-dimensional	space.	In	the	19th	century,	developments	of	the	geometry	of	three-dimensional	space	came	with	William	Rowan	Hamilton's	development	of	the	quaternions.	In	fact,	it	was	Hamilton	who	coined	the	terms	scalar	and	vector,	and	they	were	first	defined
within	his	geometric	framework	for	quaternions.	Three	dimensional	space	could	then	be	described	by	quaternions	q	=	a	+	u	i	+	v	j	+	w	k	{\displaystyle	q=a+ui+vj+wk}	which	had	vanishing	scalar	component,	that	is,	a	=	0	{\displaystyle	a=0}	.	While	not	explicitly	studied	by	Hamilton,	this	indirectly	introduced	notions	of	basis,	here	given	by	the
quaternion	elements	i	,	j	,	k	{\displaystyle	i,j,k}	,	as	well	as	the	dot	product	and	cross	product,	which	correspond	to	(the	negative	of)	the	scalar	part	and	the	vector	part	of	the	product	of	two	vector	quaternions.	It	was	not	until	Josiah	Willard	Gibbs	that	these	two	products	were	identified	in	their	own	right,	and	the	modern	notation	for	the	dot	and	cross
product	were	introduced	in	his	classroom	teaching	notes,	found	also	in	the	1901	textbook	Vector	Analysis	written	by	Edwin	Bidwell	Wilson	based	on	Gibbs'	lectures.	Also	during	the	19th	century	came	developments	in	the	abstract	formalism	of	vector	spaces,	with	the	work	of	Hermann	Grassmann	and	Giuseppe	Peano,	the	latter	of	whom	first	gave	the
modern	definition	of	vector	spaces	as	an	algebraic	structure.	Main	article:	Coordinate	system	GeometryProjecting	a	sphere	to	a	plane	Branches	Euclidean	Non-Euclidean	Elliptic	Spherical	Hyperbolic	Non-Archimedean	geometry	Projective	Affine	Synthetic	Analytic	Algebraic	Arithmetic	Diophantine	Differential	Riemannian	Symplectic	Discrete
differential	Complex	Finite	Discrete/Combinatorial	Digital	Convex	Computational	Fractal	Incidence	Noncommutative	geometry	Noncommutative	algebraic	geometry	ConceptsFeaturesDimension	Straightedge	and	compass	constructions	Angle	Curve	Diagonal	Orthogonality	(Perpendicular)	Parallel	Vertex	Congruence	Similarity	Symmetry	Zero-
dimensional	Point	One-dimensional	Line	segment	ray	Length	Two-dimensional	Plane	Area	Polygon	Triangle	Altitude	Hypotenuse	Pythagorean	theorem	Parallelogram	Square	Rectangle	Rhombus	Rhomboid	Quadrilateral	Trapezoid	Kite	Circle	Diameter	Circumference	Area	Three-dimensional	Volume	Cube	cuboid	Cylinder	Dodecahedron	Icosahedron
Octahedron	Pyramid	Platonic	Solid	Sphere	Tetrahedron	Four-/other-dimensional	Tesseract	Hypersphere	Geometers	by	name	Aida	Aryabhata	Ahmes	Alhazen	Apollonius	Archimedes	Atiyah	Baudhayana	Bolyai	Brahmagupta	Cartan	Chern	Coxeter	Descartes	Euclid	Euler	Gauss	Gromov	Hilbert	Huygens	Jyeṣṭhadeva	Kātyāyana	Khayyám	Klein	Lobachevsky
Manava	Minkowski	Minggatu	Pascal	Pythagoras	Parameshvara	Poincaré	Riemann	Sakabe	Sijzi	al-Tusi	Veblen	Virasena	Yang	Hui	al-Yasamin	Zhang	List	of	geometers	by	period	BCE	Ahmes	Baudhayana	Manava	Pythagoras	Euclid	Archimedes	Apollonius	1–1400s	Zhang	Kātyāyana	Aryabhata	Brahmagupta	Virasena	Alhazen	Sijzi	Khayyám	al-Yasamin	al-
Tusi	Yang	Hui	Parameshvara	1400s–1700s	Jyeṣṭhadeva	Descartes	Pascal	Huygens	Minggatu	Euler	Sakabe	Aida	1700s–1900s	Gauss	Lobachevsky	Bolyai	Riemann	Klein	Poincaré	Hilbert	Minkowski	Cartan	Veblen	Coxeter	Chern	Present	day	Atiyah	Gromov	vte	In	mathematics,	analytic	geometry	(also	called	Cartesian	geometry)	describes	every	point	in
three-dimensional	space	by	means	of	three	coordinates.	Three	coordinate	axes	are	given,	each	perpendicular	to	the	other	two	at	the	origin,	the	point	at	which	they	cross.	They	are	usually	labeled	x,	y,	and	z.	Relative	to	these	axes,	the	position	of	any	point	in	three-dimensional	space	is	given	by	an	ordered	triple	of	real	numbers,	each	number	giving	the
distance	of	that	point	from	the	origin	measured	along	the	given	axis,	which	is	equal	to	the	distance	of	that	point	from	the	plane	determined	by	the	other	two	axes.[5]	Other	popular	methods	of	describing	the	location	of	a	point	in	three-dimensional	space	include	cylindrical	coordinates	and	spherical	coordinates,	though	there	are	an	infinite	number	of
possible	methods.	For	more,	see	Euclidean	space.	Below	are	images	of	the	above-mentioned	systems.	Cartesian	coordinate	system	Cylindrical	coordinate	system	Spherical	coordinate	system	Two	distinct	points	always	determine	a	(straight)	line.	Three	distinct	points	are	either	collinear	or	determine	a	unique	plane.	On	the	other	hand,	four	distinct
points	can	either	be	collinear,	coplanar,	or	determine	the	entire	space.	Two	distinct	lines	can	either	intersect,	be	parallel	or	be	skew.	Two	parallel	lines,	or	two	intersecting	lines,	lie	in	a	unique	plane,	so	skew	lines	are	lines	that	do	not	meet	and	do	not	lie	in	a	common	plane.	Two	distinct	planes	can	either	meet	in	a	common	line	or	are	parallel	(i.e.,	do
not	meet).	Three	distinct	planes,	no	pair	of	which	are	parallel,	can	either	meet	in	a	common	line,	meet	in	a	unique	common	point,	or	have	no	point	in	common.	In	the	last	case,	the	three	lines	of	intersection	of	each	pair	of	planes	are	mutually	parallel.	A	line	can	lie	in	a	given	plane,	intersect	that	plane	in	a	unique	point,	or	be	parallel	to	the	plane.	In	the
last	case,	there	will	be	lines	in	the	plane	that	are	parallel	to	the	given	line.	A	hyperplane	is	a	subspace	of	one	dimension	less	than	the	dimension	of	the	full	space.	The	hyperplanes	of	a	three-dimensional	space	are	the	two-dimensional	subspaces,	that	is,	the	planes.	In	terms	of	Cartesian	coordinates,	the	points	of	a	hyperplane	satisfy	a	single	linear
equation,	so	planes	in	this	3-space	are	described	by	linear	equations.	A	line	can	be	described	by	a	pair	of	independent	linear	equations—each	representing	a	plane	having	this	line	as	a	common	intersection.	Varignon's	theorem	states	that	the	midpoints	of	any	quadrilateral	in	R	3	{\displaystyle	\mathbb	{R}	^{3}}	form	a	parallelogram,	and	hence	are
coplanar.	Main	article:	Sphere	A	perspective	projection	of	a	sphere	onto	two	dimensions	A	sphere	in	3-space	(also	called	a	2-sphere	because	it	is	a	2-dimensional	object)	consists	of	the	set	of	all	points	in	3-space	at	a	fixed	distance	r	from	a	central	point	P.	The	solid	enclosed	by	the	sphere	is	called	a	ball	(or,	more	precisely	a	3-ball).	The	volume	of	the
ball	is	given	by	V	=	4	3	π	r	3	,	{\displaystyle	V={\frac	{4}{3}}\pi	r^{3},}	and	the	surface	area	of	the	sphere	is	A	=	4	π	r	2	.	{\displaystyle	A=4\pi	r^{2}.}	Another	type	of	sphere	arises	from	a	4-ball,	whose	three-dimensional	surface	is	the	3-sphere:	points	equidistant	to	the	origin	of	the	euclidean	space	R4.	If	a	point	has	coordinates,	P(x,	y,	z,	w),	then
x2	+	y2	+	z2	+	w2	=	1	characterizes	those	points	on	the	unit	3-sphere	centered	at	the	origin.	This	3-sphere	is	an	example	of	a	3-manifold:	a	space	which	is	'looks	locally'	like	3-D	space.	In	precise	topological	terms,	each	point	of	the	3-sphere	has	a	neighborhood	which	is	homeomorphic	to	an	open	subset	of	3-D	space.	Main	article:	Polyhedron	In	three
dimensions,	there	are	nine	regular	polytopes:	the	five	convex	Platonic	solids	and	the	four	nonconvex	Kepler-Poinsot	polyhedra.	Regular	polytopes	in	three	dimensions	Class	Platonic	solids	Kepler-Poinsot	polyhedra	Symmetry	Td	Oh	Ih	Coxeter	group	A3,	[3,3]	B3,	[4,3]	H3,	[5,3]	Order	24	48	120	Regularpolyhedron	{3,3}	{4,3}	{3,4}	{5,3}	{3,5}	{5/2,5}
{5,5/2}	{5/2,3}	{3,5/2}	Main	article:	Surface	of	revolution	A	surface	generated	by	revolving	a	plane	curve	about	a	fixed	line	in	its	plane	as	an	axis	is	called	a	surface	of	revolution.	The	plane	curve	is	called	the	generatrix	of	the	surface.	A	section	of	the	surface,	made	by	intersecting	the	surface	with	a	plane	that	is	perpendicular	(orthogonal)	to	the	axis,
is	a	circle.	Simple	examples	occur	when	the	generatrix	is	a	line.	If	the	generatrix	line	intersects	the	axis	line,	the	surface	of	revolution	is	a	right	circular	cone	with	vertex	(apex)	the	point	of	intersection.	However,	if	the	generatrix	and	axis	are	parallel,	then	the	surface	of	revolution	is	a	circular	cylinder.	Main	article:	Quadric	surface	In	analogy	with	the
conic	sections,	the	set	of	points	whose	Cartesian	coordinates	satisfy	the	general	equation	of	the	second	degree,	namely,	A	x	2	+	B	y	2	+	C	z	2	+	F	x	y	+	G	y	z	+	H	x	z	+	J	x	+	K	y	+	L	z	+	M	=	0	,	{\displaystyle	Ax^{2}+By^{2}+Cz^{2}+Fxy+Gyz+Hxz+Jx+Ky+Lz+M=0,}	where	A,	B,	C,	F,	G,	H,	J,	K,	L	and	M	are	real	numbers	and	not	all	of	A,	B,	C,	F,	G
and	H	are	zero,	is	called	a	quadric	surface.[6]	There	are	six	types	of	non-degenerate	quadric	surfaces:	Ellipsoid	Hyperboloid	of	one	sheet	Hyperboloid	of	two	sheets	Elliptic	cone	Elliptic	paraboloid	Hyperbolic	paraboloid	The	degenerate	quadric	surfaces	are	the	empty	set,	a	single	point,	a	single	line,	a	single	plane,	a	pair	of	planes	or	a	quadratic
cylinder	(a	surface	consisting	of	a	non-degenerate	conic	section	in	a	plane	π	and	all	the	lines	of	R3	through	that	conic	that	are	normal	to	π).[6]	Elliptic	cones	are	sometimes	considered	to	be	degenerate	quadric	surfaces	as	well.	Both	the	hyperboloid	of	one	sheet	and	the	hyperbolic	paraboloid	are	ruled	surfaces,	meaning	that	they	can	be	made	up	from
a	family	of	straight	lines.	In	fact,	each	has	two	families	of	generating	lines,	the	members	of	each	family	are	disjoint	and	each	member	one	family	intersects,	with	just	one	exception,	every	member	of	the	other	family.[7]	Each	family	is	called	a	regulus.	Another	way	of	viewing	three-dimensional	space	is	found	in	linear	algebra,	where	the	idea	of
independence	is	crucial.	Space	has	three	dimensions	because	the	length	of	a	box	is	independent	of	its	width	or	breadth.	In	the	technical	language	of	linear	algebra,	space	is	three-dimensional	because	every	point	in	space	can	be	described	by	a	linear	combination	of	three	independent	vectors.	Main	article:	Dot	productA	vector	can	be	pictured	as	an
arrow.	The	vector's	magnitude	is	its	length,	and	its	direction	is	the	direction	the	arrow	points.	A	vector	in	R	3	{\displaystyle	\mathbb	{R}	^{3}}	can	be	represented	by	an	ordered	triple	of	real	numbers.	These	numbers	are	called	the	components	of	the	vector.	The	dot	product	of	two	vectors	A	=	[A1,	A2,	A3]	and	B	=	[B1,	B2,	B3]	is	defined	as:[8]	A	⋅	B
=	A	1	B	1	+	A	2	B	2	+	A	3	B	3	=	∑	i	=	1	3	A	i	B	i	.	{\displaystyle	\mathbf	{A}	\cdot	\mathbf	{B}	=A_{1}B_{1}+A_{2}B_{2}+A_{3}B_{3}=\sum	_{i=1}^{3}A_{i}B_{i}.}	The	magnitude	of	a	vector	A	is	denoted	by	||A||.	The	dot	product	of	a	vector	A	=	[A1,	A2,	A3]	with	itself	is	A	⋅	A	=	‖	A	‖	2	=	A	1	2	+	A	2	2	+	A	3	2	,	{\displaystyle	\mathbf	{A}	\cdot
\mathbf	{A}	=\|\mathbf	{A}	\|^{2}=A_{1}^{2}+A_{2}^{2}+A_{3}^{2},}	which	gives	‖	A	‖	=	A	⋅	A	=	A	1	2	+	A	2	2	+	A	3	2	,	{\displaystyle	\|\mathbf	{A}	\|={\sqrt	{\mathbf	{A}	\cdot	\mathbf	{A}	}}={\sqrt	{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}}},}	the	formula	for	the	Euclidean	length	of	the	vector.	Without	reference	to	the	components	of	the
vectors,	the	dot	product	of	two	non-zero	Euclidean	vectors	A	and	B	is	given	by[9]	A	⋅	B	=	‖	A	‖	‖	B	‖	cos	⁡	θ	,	{\displaystyle	\mathbf	{A}	\cdot	\mathbf	{B}	=\|\mathbf	{A}	\|\,\|\mathbf	{B}	\|\cos	\theta	,}	where	θ	is	the	angle	between	A	and	B.	Main	article:	Cross	product	The	cross	product	or	vector	product	is	a	binary	operation	on	two	vectors	in	three-
dimensional	space	and	is	denoted	by	the	symbol	×.	The	cross	product	A	×	B	of	the	vectors	A	and	B	is	a	vector	that	is	perpendicular	to	both	and	therefore	normal	to	the	plane	containing	them.	It	has	many	applications	in	mathematics,	physics,	and	engineering.	In	function	language,	the	cross	product	is	a	function	×	:	R	3	×	R	3	→	R	3	{\displaystyle	\times
:\mathbb	{R}	^{3}\times	\mathbb	{R}	^{3}\rightarrow	\mathbb	{R}	^{3}}	.	The	components	of	the	cross	product	are	A	×	B	=	[	A	2	B	3	−	B	2	A	3	,	A	3	B	1	−	B	3	A	1	,	A	1	B	2	−	B	1	A	2	]	{\displaystyle	\mathbf	{A}	\times	\mathbf	{B}	=[A_{2}B_{3}-B_{2}A_{3},A_{3}B_{1}-B_{3}A_{1},A_{1}B_{2}-B_{1}A_{2}]}	,	and	can	also	be	written	in
components,	using	Einstein	summation	convention	as	(	A	×	B	)	i	=	ε	i	j	k	A	j	B	k	{\displaystyle	(\mathbf	{A}	\times	\mathbf	{B}	)_{i}=\varepsilon	_{ijk}A_{j}B_{k}}	where	ε	i	j	k	{\displaystyle	\varepsilon	_{ijk}}	is	the	Levi-Civita	symbol.	It	has	the	property	that	A	×	B	=	−	B	×	A	{\displaystyle	\mathbf	{A}	\times	\mathbf	{B}	=-\mathbf	{B}	\times
\mathbf	{A}	}	.	Its	magnitude	is	related	to	the	angle	θ	{\displaystyle	\theta	}	between	A	{\displaystyle	\mathbf	{A}	}	and	B	{\displaystyle	\mathbf	{B}	}	by	the	identity	‖	A	×	B	‖	=	‖	A	‖	⋅	‖	B	‖	⋅	|	sin	⁡	θ	|	.	{\displaystyle	\left\|\mathbf	{A}	\times	\mathbf	{B}	\right\|=\left\|\mathbf	{A}	\right\|\cdot	\left\|\mathbf	{B}	\right\|\cdot	\left|\sin	\theta	\right|.}	The
space	and	product	form	an	algebra	over	a	field,	which	is	not	commutative	nor	associative,	but	is	a	Lie	algebra	with	the	cross	product	being	the	Lie	bracket.	Specifically,	the	space	together	with	the	product,	(	R	3	,	×	)	{\displaystyle	(\mathbb	{R}	^{3},\times	)}	is	isomorphic	to	the	Lie	algebra	of	three-dimensional	rotations,	denoted	s	o	(	3	)
{\displaystyle	{\mathfrak	{so}}(3)}	.	In	order	to	satisfy	the	axioms	of	a	Lie	algebra,	instead	of	associativity	the	cross	product	satisfies	the	Jacobi	identity.	For	any	three	vectors	A	,	B	{\displaystyle	\mathbf	{A}	,\mathbf	{B}	}	and	C	{\displaystyle	\mathbf	{C}	}	A	×	(	B	×	C	)	+	B	×	(	C	×	A	)	+	C	×	(	A	×	B	)	=	0	{\displaystyle	\mathbf	{A}	\times	(\mathbf
{B}	\times	\mathbf	{C}	)+\mathbf	{B}	\times	(\mathbf	{C}	\times	\mathbf	{A}	)+\mathbf	{C}	\times	(\mathbf	{A}	\times	\mathbf	{B}	)=0}	One	can	in	n	dimensions	take	the	product	of	n	−	1	vectors	to	produce	a	vector	perpendicular	to	all	of	them.	But	if	the	product	is	limited	to	non-trivial	binary	products	with	vector	results,	it	exists	only	in	three	and
seven	dimensions.[10]	The	cross-product	in	respect	to	a	right-handed	coordinate	system	See	also:	vector	space	It	can	be	useful	to	describe	three-dimensional	space	as	a	three-dimensional	vector	space	V	{\displaystyle	V}	over	the	real	numbers.	This	differs	from	R	3	{\displaystyle	\mathbb	{R}	^{3}}	in	a	subtle	way.	By	definition,	there	exists	a	basis	B
=	{	e	1	,	e	2	,	e	3	}	{\displaystyle	{\mathcal	{B}}=\{e_{1},e_{2},e_{3}\}}	for	V	{\displaystyle	V}	.	This	corresponds	to	an	isomorphism	between	V	{\displaystyle	V}	and	R	3	{\displaystyle	\mathbb	{R}	^{3}}	:	the	construction	for	the	isomorphism	is	found	here.	However,	there	is	no	'preferred'	or	'canonical	basis'	for	V	{\displaystyle	V}	.	On	the	other
hand,	there	is	a	preferred	basis	for	R	3	{\displaystyle	\mathbb	{R}	^{3}}	,	which	is	due	to	its	description	as	a	Cartesian	product	of	copies	of	R	{\displaystyle	\mathbb	{R}	}	,	that	is,	R	3	=	R	×	R	×	R	{\displaystyle	\mathbb	{R}	^{3}=\mathbb	{R}	\times	\mathbb	{R}	\times	\mathbb	{R}	}	.	This	allows	the	definition	of	canonical	projections,	π	i	:	R	3	→
R	{\displaystyle	\pi	_{i}:\mathbb	{R}	^{3}\rightarrow	\mathbb	{R}	}	,	where	1	≤	i	≤	3	{\displaystyle	1\leq	i\leq	3}	.	For	example,	π	1	(	x	1	,	x	2	,	x	3	)	=	x	{\displaystyle	\pi	_{1}(x_{1},x_{2},x_{3})=x}	.	This	then	allows	the	definition	of	the	standard	basis	B	Standard	=	{	E	1	,	E	2	,	E	3	}	{\displaystyle	{\mathcal	{B}}_{\text{Standard}}=\
{E_{1},E_{2},E_{3}\}}	defined	by	π	i	(	E	j	)	=	δ	i	j	{\displaystyle	\pi	_{i}(E_{j})=\delta	_{ij}}	where	δ	i	j	{\displaystyle	\delta	_{ij}}	is	the	Kronecker	delta.	Written	out	in	full,	the	standard	basis	is	E	1	=	(	1	0	0	)	,	E	2	=	(	0	1	0	)	,	E	3	=	(	0	0	1	)	.	{\displaystyle	E_{1}={\begin{pmatrix}1\\0\\0\end{pmatrix}},E_{2}=
{\begin{pmatrix}0\\1\\0\end{pmatrix}},E_{3}={\begin{pmatrix}0\\0\\1\end{pmatrix}}.}	Therefore	R	3	{\displaystyle	\mathbb	{R}	^{3}}	can	be	viewed	as	the	abstract	vector	space,	together	with	the	additional	structure	of	a	choice	of	basis.	Conversely,	V	{\displaystyle	V}	can	be	obtained	by	starting	with	R	3	{\displaystyle	\mathbb	{R}	^{3}}	and
'forgetting'	the	Cartesian	product	structure,	or	equivalently	the	standard	choice	of	basis.	As	opposed	to	a	general	vector	space	V	{\displaystyle	V}	,	the	space	R	3	{\displaystyle	\mathbb	{R}	^{3}}	is	sometimes	referred	to	as	a	coordinate	space.[11]	Physically,	it	is	conceptually	desirable	to	use	the	abstract	formalism	in	order	to	assume	as	little
structure	as	possible	if	it	is	not	given	by	the	parameters	of	a	particular	problem.	For	example,	in	a	problem	with	rotational	symmetry,	working	with	the	more	concrete	description	of	three-dimensional	space	R	3	{\displaystyle	\mathbb	{R}	^{3}}	assumes	a	choice	of	basis,	corresponding	to	a	set	of	axes.	But	in	rotational	symmetry,	there	is	no	reason
why	one	set	of	axes	is	preferred	to	say,	the	same	set	of	axes	which	has	been	rotated	arbitrarily.	Stated	another	way,	a	preferred	choice	of	axes	breaks	the	rotational	symmetry	of	physical	space.	Computationally,	it	is	necessary	to	work	with	the	more	concrete	description	R	3	{\displaystyle	\mathbb	{R}	^{3}}	in	order	to	do	concrete	computations.	See
also:	affine	space	and	Euclidean	space	A	more	abstract	description	still	is	to	model	physical	space	as	a	three-dimensional	affine	space	E	(	3	)	{\displaystyle	E(3)}	over	the	real	numbers.	This	is	unique	up	to	affine	isomorphism.	It	is	sometimes	referred	to	as	three-dimensional	Euclidean	space.	Just	as	the	vector	space	description	came	from	'forgetting
the	preferred	basis'	of	R	3	{\displaystyle	\mathbb	{R}	^{3}}	,	the	affine	space	description	comes	from	'forgetting	the	origin'	of	the	vector	space.	Euclidean	spaces	are	sometimes	called	Euclidean	affine	spaces	for	distinguishing	them	from	Euclidean	vector	spaces.[12]	This	is	physically	appealing	as	it	makes	the	translation	invariance	of	physical	space
manifest.	A	preferred	origin	breaks	the	translational	invariance.	See	also:	inner	product	space	The	above	discussion	does	not	involve	the	dot	product.	The	dot	product	is	an	example	of	an	inner	product.	Physical	space	can	be	modelled	as	a	vector	space	which	additionally	has	the	structure	of	an	inner	product.	The	inner	product	defines	notions	of	length
and	angle	(and	therefore	in	particular	the	notion	of	orthogonality).	For	any	inner	product,	there	exist	bases	under	which	the	inner	product	agrees	with	the	dot	product,	but	again,	there	are	many	different	possible	bases,	none	of	which	are	preferred.	They	differ	from	one	another	by	a	rotation,	an	element	of	the	group	of	rotations	SO(3).	Main	article:
vector	calculus	In	a	rectangular	coordinate	system,	the	gradient	of	a	(differentiable)	function	f	:	R	3	→	R	{\displaystyle	f:\mathbb	{R}	^{3}\rightarrow	\mathbb	{R}	}	is	given	by	∇	f	=	∂	f	∂	x	i	+	∂	f	∂	y	j	+	∂	f	∂	z	k	{\displaystyle	abla	f={\frac	{\partial	f}{\partial	x}}\mathbf	{i}	+{\frac	{\partial	f}{\partial	y}}\mathbf	{j}	+{\frac	{\partial	f}{\partial
z}}\mathbf	{k}	}	and	in	index	notation	is	written	(	∇	f	)	i	=	∂	i	f	.	{\displaystyle	(abla	f)_{i}=\partial	_{i}f.}	The	divergence	of	a	(differentiable)	vector	field	F	=	U	i	+	V	j	+	W	k,	that	is,	a	function	F	:	R	3	→	R	3	{\displaystyle	\mathbf	{F}	:\mathbb	{R}	^{3}\rightarrow	\mathbb	{R}	^{3}}	,	is	equal	to	the	scalar-valued	function:	div	F	=	∇	⋅	F	=	∂	U	∂	x	+	∂
V	∂	y	+	∂	W	∂	z	.	{\displaystyle	\operatorname	{div}	\,\mathbf	{F}	=abla	\cdot	\mathbf	{F}	={\frac	{\partial	U}{\partial	x}}+{\frac	{\partial	V}{\partial	y}}+{\frac	{\partial	W}{\partial	z}}.}	In	index	notation,	with	Einstein	summation	convention	this	is	∇	⋅	F	=	∂	i	F	i	.	{\displaystyle	abla	\cdot	\mathbf	{F}	=\partial	_{i}F_{i}.}	Expanded	in	Cartesian
coordinates	(see	Del	in	cylindrical	and	spherical	coordinates	for	spherical	and	cylindrical	coordinate	representations),	the	curl	∇	×	F	is,	for	F	composed	of	[Fx,	Fy,	Fz]:	|	i	j	k	∂	∂	x	∂	∂	y	∂	∂	z	F	x	F	y	F	z	|	{\displaystyle	{\begin{vmatrix}\mathbf	{i}	&\mathbf	{j}	&\mathbf	{k}	\\\\{\frac	{\partial	}{\partial	x}}&{\frac	{\partial	}{\partial	y}}&{\frac
{\partial	}{\partial	z}}\\\\F_{x}&F_{y}&F_{z}\end{vmatrix}}}	where	i,	j,	and	k	are	the	unit	vectors	for	the	x-,	y-,	and	z-axes,	respectively.	This	expands	as	follows:[13]	(	∂	F	z	∂	y	−	∂	F	y	∂	z	)	i	+	(	∂	F	x	∂	z	−	∂	F	z	∂	x	)	j	+	(	∂	F	y	∂	x	−	∂	F	x	∂	y	)	k	.	{\displaystyle	\left({\frac	{\partial	F_{z}}{\partial	y}}-{\frac	{\partial	F_{y}}{\partial	z}}\right)\mathbf
{i}	+\left({\frac	{\partial	F_{x}}{\partial	z}}-{\frac	{\partial	F_{z}}{\partial	x}}\right)\mathbf	{j}	+\left({\frac	{\partial	F_{y}}{\partial	x}}-{\frac	{\partial	F_{x}}{\partial	y}}\right)\mathbf	{k}	.}	In	index	notation,	with	Einstein	summation	convention	this	is	(	∇	×	F	)	i	=	ϵ	i	j	k	∂	j	F	k	,	{\displaystyle	(abla	\times	\mathbf	{F}	)_{i}=\epsilon
_{ijk}\partial	_{j}F_{k},}	where	ϵ	i	j	k	{\displaystyle	\epsilon	_{ijk}}	is	the	totally	antisymmetric	symbol,	the	Levi-Civita	symbol.	For	some	scalar	field	f	:	U	⊆	Rn	→	R,	the	line	integral	along	a	piecewise	smooth	curve	C	⊂	U	is	defined	as	∫	C	f	d	s	=	∫	a	b	f	(	r	(	t	)	)	|	r	′	(	t	)	|	d	t	.	{\displaystyle	\int	\limits	_{C}f\,ds=\int	_{a}^{b}f(\mathbf	{r}	(t))|\mathbf
{r}	'(t)|\,dt.}	where	r:	[a,	b]	→	C	is	an	arbitrary	bijective	parametrization	of	the	curve	C	such	that	r(a)	and	r(b)	give	the	endpoints	of	C	and	a	<	b	{\displaystyle	a


