
	

https://mabura.tugoduzak.com/295539536899268176840115329938181774304768?lewolomekafekulunokabijanabuwilotibutuzadepepumixomuzakowonelasokawefomedotajozupojo=dawejoruzivuwodawonitelevipoxiguxudazumeburuwevadufixovexobajijeseketepizipuzigavawabazajixorofijefawopawuvuzopedoxadisuvegugedatetexonogokodenotogezogogajepomimizalegifegatonavopamoxisudesoxapikarifopokidi&utm_term=install+java+jdk+ubuntu&pezutowidudonurofinorepapugezovejubuzosulubusibigukowofedazamekixuxawasuneduxilazoxinurodeze=gikojurowinarunagubipasubozavefexuxenutolorejixupixeruzogewajijiwojigidiguweresojapadosovoxetepunisuzofipakaboxezisaloxusododugogamamesukazagudopiweg

Java	Virtual	Machine	(JVM)	is	the	essential	component	that	allows	any	Java	program	to	be	executed.	To	operate	it	smoothly,	you	will	need	at	least	one	Command	Line	Tool.	However,	if	you	are	on	the	Ubuntu	Operating	System,	your	job	has	already	been	simplified	significantly.	If	you	are	looking	to	complete	the	installation	of	Java	in	Ubuntu,	you	are
just	a	few	steps	away.	Unlike	Python,	Java	doesn't	come	up	with	a	preinstalled	runtime	environment	on	Ubuntu.	So,	the	process	of	installing	JDK	in	Linux,	especially	on	Ubuntu	will	be	a	bit	tricky.	Downloading	JDK	files	from	the	Internet	and	installing	it	on	Ubuntu	will	not	be	the	solution	here.	To	Install	Java	in	Ubuntu,	a	different	set	of	commands	we
need	to	use.	This	article	intends	to	discuss	what	are	the	2	methods	to	install	Java	in	Ubuntu	operating	system.	How	to	Install	Java	in	Ubuntu?To	Install	Java	on	Ubuntu,	We're	going	to	see	the	following	2	methods:	Method	1:	Install	Java	in	Ubuntu	Using	Automatic	MethodTo	Install	Java	in	Ubuntu	via	Automatic	Method,	Follow	these	3	steps	carefully	-
Step	1:	First,	we	have	to	Install	JDK	in	Linux.	For	that	purpose,	the	following	command	will	be	executed.	Command:	sudo	apt	install	default-jdk	Step	2:	At	last,	the	JRE	File	of	Java	will	be	installed	using	the	following	command.	sudo	apt	install	default-jre	Step	3:	To	verify	the	installation,	the	following	command	you	can	use.	It	will	prompt	the	Java
Version	used	there.	java	-version	Hooray!	Java	is	now	present	on	the	Ubuntu	system	using	these	simple	executions	of	two	commands.	Method	2:	Install	Java	in	Ubuntu	using	the	Manual	MethodTo	Install	Java	of	any	version	in	Ubuntu	via	Manual	Method,	You	need	to	follow	these	4	Steps	-	Step	1:	On	the	Ubuntu	Terminal,	execute	the	following
command.	The	command	will	make	ready	the	Java	Repository	for	installing	JDK	Files.	Command:	sudo	add-apt-repository	ppa:linuxuprising/java	-y	Step	2:	Now,	before	performing	the	Java	installation,	the	System	Update	should	be	done.	For	that	reason,	the	following	command	will	be	used.	Command:	sudo	apt-get	update	Step	3:	Now,	the	installation
of	Java	13	will	be	performed.	As	per	your	choice,	you	can	go	for	any	other	Java	installation	like	Java	17.	Command:	sudo	apt	install	oracle-java-installer	Step	4:	While	installing	the	Java,	one	window	will	appear	for	your	confirmation.	Use	the	TAB	Key	to	go	to	the	Yes	section.	Press	Enter.	ConclusionSo,	the	above-mentioned	steps	are	highly	effective	way
to	install	Java	in	Ubuntu	OS.	In	this	case,	we	have	to	install	JDK	in	Linux	as	well	as	the	JRE	separately	to	get	the	exact	performance.	If	you	want	to	download	Java	File	on	Ubuntu	from	the	internet	for	the	installation	process,	you	will	get	an	obvious	error	message	while	installing	it.	Installing	software	on	Linux	is	usually	easier,	or	at	least	that's	what	it
seems	like.	But	this	is	usually	not	the	case	as	we've	come	to	a	realization	that	installing	and	configuring	some	specific	tools	on	Linux	might	be	more	time-consuming	than	on	Windows	or	MacOS.	An	example	of	this	can	be	seen	when	you	want	to	install	the	latest	version	of	Java	on	Ubuntu	and	make	it	your	default	Java	version.	Yes,	I	know	that	you're
wondering	about	other	Linux	distributions	like	Fedora	or	Arch,	and	so	on,	but	each	distribution	has	some	specific	advantages	and	disadvantages	over	others.	Ubuntu	is	one	of	the	most	commonly	used	Linux	distributions,	and	most	people	who	would	like	to	try	out	the	Linux	operating	system	for	the	first	time	usually	start	their	Linux	journey	with
Ubuntu.	However,	if	you're	a	Java	developer	who	is	migrating	from	a	Windows	machine	to	an	Ubuntu	based	Linux	machine,	you	might	find	it	tedious	to	configure	the	latest	version	of	Java	on	Ubuntu	as	opposed	to	Windows	where	you	simply	have	to	download	and	install	the	latest	version,	and	add	the	directory	to	the	path	variable.	In	this	article,	I	will
cover	everything	you	need	to	know	and	do	to	configure	your	Ubuntu	operating	system	for	Java	development.	I	will	explain	each	of	the	processes	with	appropriate	screenshots	and	test	runs.	I	have	also	created	a	full-length	video	showing	all	of	the	procedures.	You	can	find	the	video	at	the	end	of	this	article.	By	the	way,	if	you're	wondering,	"Hey	Fahim!
Who	told	you	that	installing	Java	on	Windows	is	easier?",	then	you	should	probably	check	out	my	article	on	how	to	install	Java	on	Windows.	Before	proceeding	further,	you	might	want	to	check	whether	you	already	have	Java	installed	on	your	Ubuntu.	You	can	do	this	using	the	terminal.	If	it	returns	any	version,	then	that	means	a	version	of	Java	is
already	installed	on	your	machine.	But	if	it	returns	something	different,	then	we	can	assume	that	you	do	not	have	Java	installed	or	it	is	not	configured	correctly.	Simply	open	your	terminal.	You	can	also	use	the	shortcut	keys	for	opening	the	terminal	on	Ubuntu:	Ctrl	+	Alt	+	T	Open	the	terminal	Then	run	the	command:	java	--version	java	--version	If	it
says	"java	not	found"	(like	you	see	in	the	image	above),	then	you	can	be	sure	that	your	system	does	not	have	Java	installed.	But	if	it	returns	any	version	of	Java	or	JDK	(Java	Development	Kit),	then	Java	is	already	installed	on	your	machine.	Based	on	the	installed	version	and	your	need	for	the	other	versions,	you	can	remove	the	older	one	and	install	the
newer	version	or	you	can	keep	both	of	them	and	make	one	version	the	default	version.	There	are	many	ways	to	install	Java	on	Ubuntu.	You	can	use	the	CLI	(Command	Line	Interface)	where	you	will	install	via	the	terminal,	or	you	can	download	the	package	and	install	it	using	GUI	(Graphical	User	Interface).	In	this	article,	I	am	going	to	show	you	how
you	can	download	the	latest	Java	from	Oracle	and	install	it	on	your	Ubuntu	machine.	But	that,	you	have	to	choose	between	installing	the	JRE	(Java	Runtime	Environment)	or	the	JDK	(Java	Development	Kit)	version	for	Java.	If	you	don't	understand	the	differences	between	them	or	which	one	you	need	for	your	tasks,	then	here	is	a	comparison	for	you:
Here	are	some	differences	between	JDK	and	JRE	in	Java:	JDKJRE	It	is	used	to	develop	Java	applications	and	contains	development	tools	like	debuggers.It	is	used	only	to	execute	Java	programs.	As	it	is	a	complete	package	for	Java	development,	it	contains	almost	everything	you	might	need	as	a	Java	developer.It	is	mainly	used	for	end	users,	who	do	not
develop	Java	applications	but	only	run	Java	applications	as	software	or	tools	in	their	systems.	As	it	is	responsible	for	Java	development,	you	will	get	all	of	the	development	and	debugging	tools	you	need	as	a	Java	developer.If	you	only	want	something	lightweight,	only	to	run	Java	applications,	then	it	is	the	right	choice	for	you.	But	keep	in	mind	that	it
doesn't	contain	any	tools	like	compilers,	debuggers,	or	any	other	necessary	development	or	debugging	features	in	it.	The	sole	purpose	of	it	is	to	support	the	files	required	for	executing	them	on	the	end	systems.	If	you	are	a	developer,	then	you	should	install	the	JDK	instead	of	the	JRE.	On	the	other	hand,	if	you	are	just	a	normal	user	who	will	not
program	or	write	code	at	all,	you	can	install	the	JRE.	In	this	article,	we'll	be	installing	the	JDK	version	because	that	covers	everything.	If	you	already	have	a	JDK	then	you	do	not	need	to	install	JRE	separately.	Before	we	install	Java,	we	need	to	ensure	that	we've	installed	all	the	necessary	updates	for	the	Ubuntu	operating	system.	To	update	the	your
Ubuntu	OS,	simply	use	the	sudo	apt	update	command	.	Then	provide	your	password	and	hit	the	enter	key.	Update	the	system	After	updating,	if	you	get	a	message	that	says	something	needs	to	be	upgraded	then	you	can	upgrade	them	using	sudo	apt	upgrade.	23	packages	can	be	upgraded	on	my	system	right	now.	In	your	case,	it	might	be	different.
Make	sure	to	press	"y"	or	"Y"	while	upgrading.	Upgrading	the	system	The	upgrade	might	take	some	time	depending	on	the	file	sizes	that	it	needs	to	download	and	your	internet	speed.	Make	sure	that	everything	has	been	upgraded	without	creating	any	errors.	You	can	download	the	official	JDK	from	Oracle	website.	Once	the	landing	page	loads,	click
on	Products	on	the	top	navigation	bar:	Oracle	website	navigation	options	Then	click	Java	under	the	Hardware	and	Software	section.	Click	Download	Java.	Here,	you	will	get	all	the	latest	JDK	files.	For	development	purposes,	it	is	recommended	to	use	the	LTS	(Long	Term	Support)	versions	as	they	receive	stable	version	updates	for	an	extended	period.	I
am	going	to	install	the	JDK	20	version	(which	is	the	latest	version	as	of	the	time	of	writing	this	article).	It	is	not	the	LTS	version	of	course,	but	if	you	follow	through	with	this	article,	then	you'll	be	able	to	install	any	version	you	want	swiftly!	In	your	case,	I	would	recommend	installing	the	latest	LTS	version	of	JDK.	But	if	you	want	continuous	access	to
latest	JDK	features	(these	features	might	not	be	stable),	then	you	can	download	the	latest	JDK.	To	download,	select	Linux	in	the	operating	system	section	and	download	the	file	for	x64	Debian	Package.	Clicking	on	the	download	link	will	start	the	download	for	the	Debian	package	file.	Depending	on	your	internet	speed,	it	can	take	a	shorter	or	longer
amount	of	time.	As	I	am	writing	this	article	at	night	and	my	internet	speed	remains	slow	at	night,	it	is	taking	longer	to	download	the	package	file	in	my	system.	I	have	downloaded	the	package	file	using	the	Mozilla	Firefox	browser	and	by	default,	it	downloads	files	in	the	Downloads	directory.	Simply	go	to	the	directory	where	you	downloaded	the	file
and	open	the	terminal	there.	Usually,	if	you	go	into	any	directory	and	right-click,	you	will	see	a	context	menu	that	says	Open	in	Terminal.	By	using	that,	you	can	open	your	terminal	in	that	directory.	Alternatively,	if	you	open	the	terminal	elsewhere,	you	can	use	the	cd	command	to	go	into	any	specific	directory.	For	example,	I	have	opened	my	terminal
elsewhere.	I	am	using	the	cd	command	to	go	into	my	Downloads	directory	as	can	be	seen	in	the	image	below:	You	can	use	the	ls	command	to	see	all	the	files	and	folders	available	on	a	particular	directory:	After	downloading	the	file,	you	will	see	that	the	file	name	also	contains	the	version	name	which	is	necessary,	but	if	you	think	that	would	be
troublesome	to	type	later	on,	you	can	shorten	the	filename	as	well.	For	this	article,	we'll	use	the	default	filename.	Grab	the	full	directory	path	where	the	JDK	package	file	is	downloaded.	You	can	use	the	shortcut	Ctrl	+	L	to	display	the	whole	directory	path.	For	me,	the	current	directory	path	where	my	JDK	Debian	file	is	located	is
/home/fahim/Downloads/.	Make	sure	to	copy	the	address.	Next,	open	the	terminal.	You	can	do	that	using	the	shortcut	Ctrl	+	Alt	+	T.	I	like	to	install	the	JDK	using	the	terminal,	but	if	you	can	also	install	it	using	the	GUI	(Graphical	User	Interface).	But	I	recommend	using	the	terminal	as	that	would	also	help	you	debug	any	issues	you	face	during
installation.	Use	the	sudo	apt	install	/home/fahim/Downloads/jdk_filename.deb	command	to	start	the	installation.	For	me,	the	entire	command	is	sudo	apt	install	/home/fahim/Downloads/jdk-20_linux-x64_bin.deb.	Hit	the	enter	key:	Input	your	password	and	type	"y"	when	it	asks	for	your	permission	to	install	the	package.	Make	sure	that	you	have
successfully	installed	the	package	before	proceeding	to	the	next	step.	You	might	get	N:	Download	is	performed	unsandboxed	as	root	as	file	'/home/fahim/Downloads/jdk-20_linux-x64_bin.deb'	couldn't	be	accessed	by	user	'_apt'.	-	pkgAcquire::Run	(13:	Permission	denied).	But	don't	worry	about	that	because	we	performed	the	installation	"unsandboxed"
intentionally.	You	will	not	face	any	problems	if	you	use	the	Debian	package	downloaded	from	the	right	source.	You	can	clear	the	terminal	using	the	command	clear.	We	need	to	make	sure	that	if	it	updates,	it	does	not	download	any	downgraded	version	of	Java.	You	can	do	that	using	the	sudo	update-alternatives	--install	/usr/bin/java	java	/usr/lib/jvm/jdk-
version/bin/java	1	command.	Since	I'm	using	the	"JDK	-	20"	version,	my	command	would	be	sudo	update-alternatives	--install	/usr/bin/java	java	/usr/lib/jvm/jdk-20/bin/java	1.	Make	sure	to	change	the	jdk-version	to	match	your	installed	JDK	version.	We	need	to	do	the	same	thing	for	the	javac	(Java	Compiler)	version	as	well.	The	command	would	be	sudo
update-alternatives	--install	/usr/bin/javac	javac	/usr/lib/jvm/jdk-version/bin/javac	1.	My	command	would	look	like	this:	sudo	update-alternatives	--install	/usr/bin/javac	javac	/usr/lib/jvm/jdk-20/bin/javac	1.	Remember	to	change	the	jdk-version	to	match	your	installed	JDK	version.	We'll	also	do	the	same	for	jar.	JAR	is	essential	for	running	Java	based
applications	directly	in	the	system.	The	command	would	be	sudo	update-alternatives	--install	/usr/bin/jar	jar	/usr/lib/jvm/jdk-version/bin/jar	1.	My	command	would	look	like	this:	sudo	update-alternatives	--install	/usr/bin/jar	jar	/usr/lib/jvm/jdk-20/bin/jar	1.	Then	change	the	jdk-version	to	match	your	installed	JDK	version.	This	is	all	for	most	of	the	cases.
You	are	good	to	go!	But	if	you	face	any	kind	of	problems,	then	check	the	complete	video	provided	below.	In	that	video,	I	talked	about	a	lot	of	possible	issues	and	how	to	solve	them.	If	you	have	multiple	Java	versions	installed	on	your	system,	then	you	need	to	make	one	of	them	the	default.	This	is	also	covered	in	the	video.	Also,	if	you	want	to	make	more
modifications,	then	the	video	is	going	to	help	you	with	that	as	well.	But	for	most	of	the	users,	this	article	is	everything	that	you	need	to	install	Java	on	your	Ubuntu	operating	system.	Check	the	complete	video	for	troubleshooting	any	more	issues	or	if	you	want	to	make	more	modifications.	I	hope	you	have	enjoyed	this	article	and	are	able	to	install	Java
on	your	Ubuntu	operating	system.	If	you	have	any	questions	then	please	let	me	know	by	reaching	out	on	Twitter	or	LinkedIn.	You	can	also	follow	me	on:GitHub:	FahimFBAYouTube:	@FahimAmin	If	you	are	interested	then	you	can	also	check	my	website:	This	simple	tutorial	shows	how	to	install	the	latest	Oracle	Java	(JDK	21	or	JDK	24)	in	Ubuntu	Linux
via	the	official	binary	package.	There	used	to	be	unofficial	Ubuntu	PPA	to	automate	the	process	of	installing	Java	JDK	and	setup	the	environment,	however,	discontinued.	So,	here’s	the	tutorial	to	manually	install	the	Java	package	and	set	as	default.	Step	1:	Download	the	pre-build	binary	package	Oracle	provides	the	pre-build	binary	packages	for	Linux,
Windows,	macOS,	available	to	download	via	the	link	below:	First,	select	JDK	version,	then	choose	download:	either	“x64	Debian	Package”	for	amd64	devices,	e.g.,	modern	Intel/AMD	CPUs.	or	“ARM64	Compressed	Archive”	for	arm64	(aarch64)	devices,	e.g.,	Raspberry	Pi	and	Apple	Silicon.	If	you	don’t	even	know	your	CPU	architecture	type,	open
terminal	(Ctrl+Alt+T)	and	run	uname	-m	or	dpkg	--print-architecture	command	to	tell.	Step	2:	Install	the	JDK	package	After	downloaded	the	pre-build	package,	install	it	via	either	option	below	depends	on	CPU	architecture	type.	For	x86_64	(amd64)	AMD/Intel	For	modern	AMD/Intel	platform,	press	Ctrl+Alt+T	to	open	terminal,	and	run	command	to
install	the	downloaded	.deb	package:	sudo	apt	install	~/Downloads/jdk-21_linux-x64_bin.deb	Here	replace	21	in	command	if	you	downloaded	JDK	24.	Or,	just	drag	and	drop	the	.deb	package	from	your	downloads	folder	into	terminal	to	auto-insert	path	to	that	file.	The	.deb	package	include	a	post-install	script	that	automatically	set	the	JDK	installation
with	a	higher	priority.	So,	it	should	be	default	if	you	have	multiple	java.	Just	in	case,	you	may	run	the	command	below	to	manually	set	default	Java:	sudo	update-alternatives	--config	java	In	the	output,	input	the	number	for	your	desired	Java	version	and	hit	Enter.	Similarly,	you	may	run	the	command	below	to	configure	default	Javac,	Jshell,	Jar,	etc.	sudo
update-alternatives	--config	javac	For	Intel/AMD	platform,	you’re	done!	Install	the	Compressed	Archive	for	ARM	devices	For	the	ARM	computers	(e.g.,	Raspberry	Pi,	Apple	M1/2,	etc),	first	open	terminal	(Ctrl+Alt+T)	and	run	command	to	make	sure	the	/usr/lib/jvm	directory	is	exist:	sudo	mkdir	-p	/usr/lib/jvm	Then,	extract	the	downloaded	archive	to
that	directory	by	running	command:	sudo	tar	-zxf	~/Downloads/jdk-21_linux-aarch64_bin.tar.gz	-C	/usr/lib/jvm/	Also,	replace	21	in	command	with	24	if	you	selected	JDK	24.	After	that,	you	may	run	the	command	below	to	list	that	directory	content	which	should	include	the	new	generated	jdk-21	(or	jdk-21.x.x)	sub-folder.	3.	Set	JDK	21/24	as	default	(for
ARM	only):	NOTE	1:	For	Intel/AMD,	you’re	DONE	after	installed	the	.deb	package	and	set	default	Java.	This	is	only	required	for	ARM	platform.	NOTE	2:	The	JDK	root	folder-name	may	vary	depends	on	which	package	you	installed.	It	may	be	‘jdk-21’,	‘jdk-21.0.1’,	‘jdk-24’,	‘jdk-24.0.1’,	and	so	forth.	Run	ls	/usr/lib/jvm	to	tell	and	replace	jdk-21	in
commands	below	accordingly.	a.)	Create	symbolic	links	for	the	executable	files:	sudo	update-alternatives	--install	/usr/bin/java	java	/usr/lib/jvm/jdk-21/bin/java	1	sudo	update-alternatives	--install	/usr/bin/javac	javac	/usr/lib/jvm/jdk-21/bin/javac	1	sudo	update-alternatives	--install	/usr/bin/jar	jar	/usr/lib/jvm/jdk-21/bin/jar	1	As	mentioned,	you	need	to
replace	“jdk-21”	in	command	with	e.g.,	jdk-21.0.1,	jdk-21.0.6,	jdk-24,	jdk-24.0.1,	etc.	accordingly!!!	Similarly,	add	links	for	other	executable	files	(e.g.,	jarsigner,	jlink,	javadoc)	as	you	need.	b.)	Next,	run	the	commands	below	one	by	one,	and	type	number	to	select	Java	JDK	21	as	default.	sudo	update-alternatives	--config	java	sudo	update-alternatives	--
config	javac	sudo	update-alternatives	--config	jar	When	done,	verify	by	running	command	in	terminal:	java	-version	javac	-version	4.	Set	JAVA_HOME	(for	ARM	only):	As	well,	you	only	need	to	do	this	for	ARM	package.	If	installed	the	.deb	version,	just	verify	JAVA	HOME	via	the	bottom	command.	Also,	replace	‘jdk-21’	below	according	to	ls	/usr/lib/jvm
command	output	(e.g.,	jdk-21.0.6,	jdk-24,	jdk-24.0.x).	Option	1.)	Set	JAVA_HOME	for	current	terminal	console,	that	will	work	until	you	close	it:	export	JAVA_HOME=/usr/lib/jvm/jdk-21	setenv	JAVA_HOME=/usr/lib/jvm/jdk-21	Option	2.)	To	make	it	permanent,	create	and	edit	config	file	via	command:	sudo	gnome-text-editor	/etc/profile.d/jdk.sh	Depends
on	your	desktop	environment,	you	may	replace	gedit	with	mousepad	for	XFCE,	xed	for	Linux	Mint,	pluma	for	MATE,	kate	for	KDE	Plasma,	gedit	for	Ubuntu	22.04	or	older.	then	add	following	lines:	export	J2SDKDIR=/usr/lib/jvm/jdk-21	export	J2REDIR=/usr/lib/jvm/jdk-21	export	PATH=$PATH:/usr/lib/jvm/jdk-21/bin:/usr/lib/jvm/jdk-21/db/bin	export
JAVA_HOME=/usr/lib/jvm/jdk-21	export	DERBY_HOME=/usr/lib/jvm/jdk-21/db	And	create	anther	one	for	C	shell:	sudo	gedit	/etc/profile.d/jdk.csh	add	following	lines	and	save	it:	setenv	J2SDKDIR	/usr/lib/jvm/jdk-21	setenv	J2REDIR	/usr/lib/jvm/jdk-21	setenv	PATH	${PATH}:/usr/lib/jvm/jdk-21/bin:/usr/lib/jvm/jdk-21/db/bin	setenv	JAVA_HOME
/usr/lib/jvm/jdk-21	setenv	DERBY_HOME	/usr/lib/jvm/jdk-21/db	Finally,	change	the	permissions	via	command,	and	it	should	take	place	next	time	you	log	in.	sudo	chmod	+x	/etc/profile.d/jdk.csh	/etc/profile.d/jdk.sh	To	verify	JAVA	HOME,	run	the	command	below	in	terminal	at	next	login:	java	-XshowSettings:properties	-version	Uninstall	Java	JDK	21/24
To	uninstall	the	Java	package,	open	terminal	(Ctrl+Alt+T)	and	run	command:	sudo	apt	remove	--autoremove	jdk-21	jdk-24	In	the	commands	below,	replace	jdk-21,	with	jdk-21.0.5,	jdk-24,	jdk-24.0.1,	etc,	depends	on	which	version	you	installed.	For	the	ARM	version,	simply	remove	all	the	installed	files,	by	running	the	commands	below	one	by	one:
Remove	the	alternative	links:	sudo	update-alternatives	--remove	java	/usr/lib/jvm/jdk-21/bin/java	sudo	update-alternatives	--remove	javac	/usr/lib/jvm/jdk-21/bin/javac	sudo	update-alternatives	--remove	jar	/usr/lib/jvm/jdk-21/bin/jar	Remove	JDK	installation	files:	sudo	rm	-R	/usr/lib/jvm/jdk-21	And	remove	JAVA	HOME	config	files:	sudo	rm
/etc/profile.d/jdk.sh	sudo	rm	/etc/profile.d/jdk.csh	Enable	this	blog?	Please	spread	the	world	:)	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you
follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your
contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable
exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Java	and	the	JVM	(Java’s	virtual	machine)	are	required	for	many	kinds	of	software,	including	Tomcat,	Jetty,
Glassfish,	Cassandra	and	Jenkins.	In	this	guide,	you	will	install	various	versions	of	the	Java	Runtime	Environment	(JRE)	and	the	Java	Developer	Kit	(JDK)	using	apt.	You’ll	install	OpenJDK	as	well	as	the	official	JDK	from	Oracle.	You’ll	then	select	the	version	you	wish	to	use	for	your	projects.	When	you’re	finished,	you’ll	be	able	to	use	the	JDK	to	develop
software	or	use	the	Java	Runtime	to	run	software.	Prerequisites	To	follow	this	tutorial,	you	will	need:	Installing	the	Default	JRE/JDK	The	easiest	option	for	installing	Java	is	to	use	the	version	packaged	with	Ubuntu.	By	default,	Ubuntu	20.04	includes	Open	JDK	11,	which	is	an	open-source	variant	of	the	JRE	and	JDK.	To	install	this	version,	first	update
the	package	index:	Next,	check	if	Java	is	already	installed:	If	Java	is	not	currently	installed,	you’ll	see	the	following	output:	OutputCommand	'java'	not	found,	but	can	be	installed	with:	sudo	apt	install	openjdk-11-jre-headless	#	version	11.0.11+9-0ubuntu2~20.04,	or	sudo	apt	install	default-jre	#	version	2:1.11-72	sudo	apt	install	openjdk-13-jre-headless
#	version	13.0.7+5-0ubuntu1~20.04	sudo	apt	install	openjdk-16-jre-headless	#	version	16.0.1+9-1~20.04	sudo	apt	install	openjdk-8-jre-headless	#	version	8u292-b10-0ubuntu1~20.04	Execute	the	following	command	to	install	the	default	Java	Runtime	Environment	(JRE),	which	will	install	the	JRE	from	OpenJDK	11:	sudo	apt	install	default-jre	The	JRE
will	allow	you	to	run	almost	all	Java	software.	Verify	the	installation	with:	You’ll	see	output	similar	to	the	following:	Outputopenjdk	version	"11.0.11"	2021-04-20	OpenJDK	Runtime	Environment	(build	11.0.11+9-Ubuntu-0ubuntu2.20.04)	OpenJDK	64-Bit	Server	VM	(build	11.0.11+9-Ubuntu-0ubuntu2.20.04,	mixed	mode,	sharing))	You	may	need	the	Java
Development	Kit	(JDK)	in	addition	to	the	JRE	in	order	to	compile	and	run	some	specific	Java-based	software.	To	install	the	JDK,	execute	the	following	command,	which	will	also	install	the	JRE:	sudo	apt	install	default-jdk	Verify	that	the	JDK	is	installed	by	checking	the	version	of	javac,	the	Java	compiler:	You’ll	see	the	following	output:	Outputjavac
11.0.11	Next,	let’s	look	at	how	to	install	Oracle’s	official	JDK	and	JRE.	Installing	Oracle	JDK	11	Oracle’s	licensing	agreement	for	Java	doesn’t	allow	automatic	installation	through	package	managers.	To	install	the	Oracle	JDK,	which	is	the	official	version	distributed	by	Oracle,	you	must	create	an	Oracle	account	and	manually	download	the	JDK	to	add	a
new	package	repository	for	the	version	you’d	like	to	use.	Then	you	can	use	apt	to	install	it	with	help	from	a	third	party	installation	script.	The	version	of	Oracle’s	JDK	you’ll	need	to	download	must	match	version	of	the	installer	script.	To	find	out	which	version	you	need,	visit	the	oracle-java11-installer	page.	Locate	the	package	for	Focal,	as	shown	in	the
following	figure:	In	this	image,	the	version	of	the	script	is	11.0.7.	In	this	case,	you	would	need	Oracle	JDK	11.0.7.	Your	version	number	may	vary	depending	on	when	you’re	installing	the	software.	You	don’t	need	to	download	anything	from	this	page;	you’ll	download	the	installation	script	through	apt	shortly.	Then	visit	the	Downloads	page	and	locate
the	version	that	matches	the	one	you	need.	Click	the	JDK	Download	button	and	you’ll	be	taken	to	a	screen	that	shows	the	versions	available.	Click	the	.tar.gz	package	for	Linux.	You’ll	be	presented	with	a	screen	asking	you	to	accept	the	Oracle	license	agreement.	Select	the	checkbox	to	accept	the	license	agreement	and	press	the	Download	button.
Your	download	will	begin.	You	may	need	to	log	in	to	your	Oracle	account	one	more	time	before	the	download	starts.	Once	the	file	has	downloaded,	you’ll	need	to	transfer	it	to	your	server.	On	your	local	machine,	upload	the	file	to	your	server.	On	macOS,	Linux,	or	Windows	using	the	Windows	Subsystem	for	Linux,	use	the	scp	command	to	transfer	the
file	to	the	home	directory	of	your	sammy	user.	The	following	command	assumes	you’ve	saved	the	Oracle	JDK	file	to	your	local	machine’s	Downloads	folder:	scp	Downloads/jdk-11.0.7_linux-x64_bin.tar.gz	sammy@your_server_ip:~	Once	the	file	upload	has	completed,	return	to	your	server	and	add	the	third-party	repository	that	will	help	you	install
Oracle’s	Java.	Install	the	software-properties-common	package,	which	adds	the	add-apt-repository	command	to	your	system:	sudo	apt	install	software-properties-common	Next,	import	the	signing	key	used	to	verify	the	software	you’re	about	to	install:	sudo	apt-key	adv	--keyserver	keyserver.ubuntu.com	--recv-keys	EA8CACC073C3DB2A	You’ll	see	this
output:	Outputgpg:	key	EA8CACC073C3DB2A:	public	key	"Launchpad	PPA	for	Linux	Uprising"	imported	gpg:	Total	number	processed:	1	gpg:	imported:	1	Then	use	the	add-apt-repository	command	to	add	the	repo	to	your	list	of	package	sources:	sudo	add-apt-repository	ppa:linuxuprising/java	You’ll	see	this	message:	Output	Oracle	Java	11	(LTS)	and	16
installer	for	Ubuntu	(21.04,	20.10,	20.04,	18.04,	16.04	and	14.04),	Pop!_OS,	Linux	Mint	and	Debian.	Java	binaries	are	not	hosted	in	this	PPA	due	to	licensing.	The	packages	in	this	PPA	download	and	install	Oracle	Java,	so	a	working	Internet	connection	is	required.	The	packages	in	this	PPA	are	based	on	the	WebUpd8	Oracle	Java	PPA	packages:
webupd8team/+archive/ubuntu/java	Created	for	users	of	Installation	instructions	(with	some	tips),	feedback,	suggestions,	bug	reports	etc.:	.	.	.	Press	[ENTER]	to	continue	or	Ctrl-c	to	cancel	adding	it.	Press	ENTER	to	continue	the	installation.	You	may	see	a	message	about	no	valid	OpenPGP	data	found,	but	you	can	safely	ignore	this.	Update	your
package	list	to	make	the	new	software	available	for	installation:	The	installer	will	look	for	the	Oracle	JDK	you	downloaded	in	/var/cache/oracle-jdk11-installer-local.	Create	this	directory	and	move	the	Oracle	JDK	archive	there:	sudo	mkdir	-p	/var/cache/oracle-jdk11-installer-local/	sudo	cp	jdk-11.0.7_linux-x64_bin.tar.gz	/var/cache/oracle-jdk11-installer-
local/	Finally,	install	the	package:	sudo	apt	install	oracle-java11-installer-local	The	installer	will	first	ask	you	to	accept	the	Oracle	license	agreement.	Accept	the	agreement,	then	the	installer	will	extract	the	Java	package	and	install	it.	Now	let’s	look	at	how	to	select	which	version	of	Java	you	want	to	use.	Managing	Java	You	can	have	multiple	Java
installations	on	one	server.	You	can	configure	which	version	is	the	default	for	use	on	the	command	line	by	using	the	update-alternatives	command.	sudo	update-alternatives	--config	java	This	is	what	the	output	would	look	like	if	you’ve	installed	both	versions	of	Java	in	this	tutorial:	OutputThere	are	2	choices	for	the	alternative	java	(providing
/usr/bin/java).	Selection	Path	Priority	Status	--	0	/usr/lib/jvm/java-11-openjdk-amd64/bin/java	1111	auto	mode	1	/usr/lib/jvm/java-11-openjdk-amd64/bin/java	1111	manual	mode	*	2	/usr/lib/jvm/java-11-oracle/bin/java	1091	manual	mode	Press	to	keep	the	current	choice[*],	or	type	selection	number:	Choose	the
number	associated	with	the	Java	version	to	use	it	as	the	default,	or	press	ENTER	to	leave	the	current	settings	in	place.	You	can	do	this	for	other	Java	commands,	such	as	the	compiler	(javac):	sudo	update-alternatives	--config	javac	Other	commands	for	which	this	command	can	be	run	include,	but	are	not	limited	to:	keytool,	javadoc	and	jarsigner.
Setting	the	JAVA_HOME	Environment	Variable	Many	programs	written	using	Java	use	the	JAVA_HOME	environment	variable	to	determine	the	Java	installation	location.	To	set	this	environment	variable,	first	determine	where	Java	is	installed.	Use	the	update-alternatives	command:	sudo	update-alternatives	--config	java	This	command	shows	each
installation	of	Java	along	with	its	installation	path:	OutputThere	are	2	choices	for	the	alternative	java	(providing	/usr/bin/java).	Selection	Path	Priority	Status	--	0	/usr/lib/jvm/java-11-openjdk-amd64/bin/java	1111	auto	mode	1	/usr/lib/jvm/java-11-openjdk-amd64/bin/java	1111	manual	mode	*	2	/usr/lib/jvm/java-11-
oracle/bin/java	1091	manual	mode	Press	to	keep	the	current	choice[*],	or	type	selection	number:	In	this	case	the	installation	paths	are	as	follows:	OpenJDK	11	is	located	at	/usr/lib/jvm/java-11-openjdk-amd64/bin/java.	Oracle	Java	is	located	at	/usr/lib/jvm/java-11-oracle/jre/bin/java.	Copy	the	path	from	your	preferred	installation.	Then	open
/etc/environment	using	nano	or	your	favorite	text	editor:	sudo	nano	/etc/environment	At	the	end	of	this	file,	add	the	following	line,	making	sure	to	replace	the	highlighted	path	with	your	own	copied	path,	but	do	not	include	the	bin/	portion	of	the	path:	/etc/environment	JAVA_HOME="/usr/lib/jvm/java-11-openjdk-amd64"	Modifying	this	file	will	set	the
JAVA_HOME	path	for	all	users	on	your	system.	Save	the	file	and	exit	the	editor.	Now	reload	this	file	to	apply	the	changes	to	your	current	session:	Verify	that	the	environment	variable	is	set:	You’ll	see	the	path	you	just	set:	Output/usr/lib/jvm/java-11-openjdk-amd64	Other	users	will	need	to	execute	the	command	source	/etc/environment	or	log	out	and
log	back	in	to	apply	this	setting.	Conclusion	In	this	tutorial	you	installed	multiple	versions	of	Java	and	learned	how	to	manage	them.	You	can	now	install	software	which	runs	on	Java,	such	as	Tomcat,	Jetty,	Glassfish,	Cassandra	or	Jenkins.	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—
remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that
suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You
do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit
how	you	use	the	material.	In	this	tutorial,	we’ll	introduce	different	methods	for	installing	a	JDK	on	Ubuntu.	Then,	we’ll	briefly	compare	the	methods.	Finally,	we’ll	show	how	to	manage	multiple	Java	installations	on	an	Ubuntu	system.	As	a	prerequisite	to	each	method,	we	need	an	Ubuntu	system	to	be	logged	in	as	a	non-root	user	with	sudo	privileges
The	instructions	described	below	have	been	tested	on	Ubuntu	18.10,	18.04	LTS,	16.04	LTS,	and	14.04	LTS.	For	Ubuntu	14.04	LTS,	there’re	some	differences,	which	are	mentioned	in	the	text.	Please	note	that	both	the	packages	you	can	download	from	OpenJDK	and	Oracle	and	the	packages	available	in	repositories	are	updated	regularly.	The	exact
package	names	will	probably	change	within	some	months,	but	the	basic	methods	of	installation	will	remain	the	same.	2.	Installing	JDK	11	If	we	want	to	use	the	latest	and	greatest	version	of	JDK,	often	manual	installation	is	the	way	to	go.	This	means	downloading	a	package	from	the	OpenJDK	or	the	Oracle	site	and	setting	it	up	so	that	it	adheres	to	the
conventions	of	how	apt	sets	up	the	JDK	packages.	2.1.	Installing	OpenJDK	11	Manually	First	of	all,	let’s	download	the	tar	archive	of	the	recently	released	OpenJDK	11:	$	wget	And	we	compare	the	sha256	sum	of	the	downloaded	package	with	the	one	provided	on	the	OpenJDK	site:	$	sha256sum	openjdk-11_linux-x64_bin.tar.gz	Let’s	extract	the	tar
archive:	$	tar	xzvf	openjdk-11_linux-x64_bin.tar.gz	Next,	let’s	move	the	jdk-11	directory	we’ve	just	extracted	into	a	subdirectory	of	/usr/lib/jvm.	The	apt	packages	described	in	the	next	section	also	put	their	JDKs	into	this	directory:	$	sudo	mkdir	/usr/lib/jvm	$	sudo	mv	jdk-11	/usr/lib/jvm/openjdk-11-manual-installation/	Now,	we	want	to	make	the	java
and	javac	commands	available.	One	possibility	would	be	to	create	symbolic	links	for	them,	for	example,	in	the	/usr/bin	directory.	But	instead,	we’ll	install	an	alternative	for	both	of	them.	This	way,	if	we	ever	wish	to	install	additional	versions	of	JDK,	they	will	play	nicely	together:	$	sudo	update-alternatives	--install	/usr/bin/java	java	/usr/lib/jvm/openjdk-
11-manual-installation/bin/java	1	$	sudo	update-alternatives	--install	/usr/bin/javac	javac	/usr/lib/jvm/openjdk-11-manual-installation/bin/javac	1	Let’s	verify	the	installation:	$	java	-version	As	we	can	see	from	the	output,	we’ve	indeed	installed	the	latest	version	of	the	OpenJDK	JRE	and	JVM:	openjdk	version	"11"	2018-09-25	OpenJDK	Runtime
Environment	18.9	(build	11+28)	OpenJDK	64-Bit	Server	VM	18.9	(build	11+28,	mixed	mode)	Let’s	have	a	look	at	the	compiler	version	also:	$	javac	-version	javac	11	2.2.	Installing	Oracle	JDK	11	Manually	If	we	want	to	make	sure	to	use	the	newest	version	of	Oracle	JDK,	we	can	follow	a	similar	manual	installation	workflow,	as	for	OpenJDK.	In	order	to
download	the	tar	archive	for	JDK	11	from	the	Oracle	website,	we	must	accept	a	license	agreement	first.	For	this	reason,	downloading	via	wget	is	a	bit	more	complicated	than	for	OpenJDK:	$	wget	-c	--header	"Cookie:	oraclelicense=accept-securebackup-cookie"	\	13/90cf5d8f270a4347a95050320eef3fb7/jdk-11.0.1_linux-x64_bin.tar.gz	The	example
above	downloads	the	package	for	11.0.1	The	exact	download	link	changes	for	each	minor	version.	The	following	steps	are	the	same	as	for	OpenJDK:	$	sha256sum	jdk-11.0.1_linux-x64_bin.tar.gz	$	tar	xzvf	jdk-11.0.1_linux-x64_bin.tar.gz	$	sudo	mkdir	/usr/lib/jvm	$	sudo	mv	jdk-11.0.1	/usr/lib/jvm/oracle-jdk-11-manual-installation/	$	sudo	update-
alternatives	--install	/usr/bin/java	java	/usr/lib/jvm/oracle-jdk-11-manual-installation/bin/java	1	$	sudo	update-alternatives	--install	/usr/bin/javac	javac	/usr/lib/jvm/oracle-jdk-11-manual-installation/bin/javac	1	The	verification	is	also	the	same.	But	the	output	shows	that	this	time,	we’ve	installed	not	OpenJDK	but	Java(TM):	$	java	-version	java	version
"11.0.1"	2018-10-16	LTS	Java(TM)	SE	Runtime	Environment	18.9	(build	11.0.1+13-LTS)	Java	HotSpot(TM)	64-Bit	Server	VM	18.9	(build	11.0.1+13-LTS,	mixed	mode)	And	for	the	compiler:	$	javac	-version	javac	11.0.1	2.3.	Installing	Oracle	JDK	11	from	a	PPA	Currently,	Oracle	JDK	11	is	also	available	in	a	PPA	(personal	package	archive).	This
installation	involves	2	steps:	adding	the	repository	to	our	system	and	installing	the	package	from	the	repository	via	apt:	$	sudo	add-apt-repository	ppa:linuxuprising/java	$	sudo	apt	update	$	sudo	apt	install	oracle-java11-installer	The	verifying	steps	should	show	the	same	result	as	after	the	manual	installation	in	section	2.2.1.:	$	java	-version	java
version	"11.0.1"	2018-10-16	LTS	Java(TM)	SE	Runtime	Environment	18.9	(build	11.0.1+13-LTS)	Java	HotSpot(TM)	64-Bit	Server	VM	18.9	(build	11.0.1+13-LTS,	mixed	mode)	And	for	the	compiler:	$	javac	-version	javac	11.0.1	On	Ubuntu	14.04	LTS	the	add-apt-repository	command	isn’t	available	by	default.	In	order	to	add	a	repository,	first	we	need	to
install	the	software-properties-common	package.	$	sudo	apt	update	$	sudo	apt	install	software-properties-common	Afterward,	we	can	continue	with	add-apt-repository,	apt	update	and	apt	install	as	shown	above.	3.	Installing	JDK	8	JDK	8	is	an	LTS	version	that	has	been	around	for	a	while.	For	this	reason,	we	can	find	an	up-to-date	version	of	OpenJDK	8
in	the	“Main”	repository	on	most	of	the	supported	Ubuntu	versions.	Of	course,	we	can	also	head	to	the	OpenJDK	website,	grab	a	package	there,	and	install	it	the	same	way	we’ve	seen	in	the	previous	section.	But	using	the	apt	tooling	and	the	“Main”	repository	provides	some	benefits.	The	“Main”	repository	is	available	by	default	on	all	Ubuntu	systems.
It’s	supported	by	Canonical	—	the	same	company	that	maintains	Ubuntu	itself.	Let’s	install	OpenJDK	8	from	the	“Main”	repository	with	apt:	$	sudo	apt	update	$	sudo	apt	install	openjdk-8-jdk	Now,	let’s	verify	the	installation:	$	java	-version	The	result	should	list	a	Runtime	Environment	and	a	JVM:	openjdk	version	"1.8.0_181"	OpenJDK	Runtime
Environment	(build	1.8.0_181-8u181-b13-0ubuntu0.18.04.1-b13)	OpenJDK	64-Bit	Server	VM	(build	25.181-b13,	mixed	mode)	Let’s	check	that	the	javac	executable	is	available	as	well:	$	javac	-version	Now	we	should	see	the	same	version	number	as	shown	above:	javac	1.8.0_181	3.2.	Installing	OpenJDK	8	on	Ubuntu	14.04	LTS	On	Ubuntu	14.04	LTS,	the
OpenJDK	packages	aren’t	available	in	the	“Main”	repository,	so	we’ll	install	them	from	the	openjdk-r	PPA.	As	we’ve	seen	in	section	2.3	above,	the	add-apt-repository	command	isn’t	available	by	default.	We	need	the	software-properties-common	package	for	it:	$	sudo	apt	update	$	sudo	apt	install	software-properties-common	$	sudo	add-apt-repository
ppa:openjdk-r/ppa	$	sudo	apt	update	$	sudo	apt	install	openjdk-8-jdk	3.3.	Installing	Oracle	JDK	8	from	a	PPA	The	“Main”	repository	does	not	contain	any	proprietary	software.	If	we	want	to	install	Oracle	Java	with	apt,	we’ll	have	to	use	a	package	from	a	PPA.	We’ve	already	seen	how	to	install	Oracle	JDK	11	from	the	linuxuprising	PPA.	For	Java	8,	we
can	find	the	packages	in	the	webupd8team	PPA.	First,	we	need	to	add	the	PPA	apt	repository	to	our	system:	$	sudo	add-apt-repository	ppa:webupd8team/java	Then	we	can	install	the	package	the	usual	way:	$	sudo	apt	update	$	sudo	apt	install	oracle-java8-installer	During	the	installation,	we	have	to	accept	Oracle’s	license	agreement.	Let’s	verify	the
installation:	$	java	-version	The	output	shows	a	Java(TM)	JRE	and	JVM:	java	version	"1.8.0_181"	Java(TM)	SE	Runtime	Environment	(build	1.8.0_181-b13)	Java	HotSpot(TM)	64-Bit	Server	VM	(build	25.181-b13,	mixed	mode)	We	can	also	verify	that	the	compiler	has	been	installed:	$	javac	-version	javac	1.8.0_181	4.	Installing	JDK	10	The	versions	Java	10
and	Java	9	aren’t	supported	anymore.	You	can	install	them	manually,	following	similar	steps	as	in	section	2.	You	can	grab	the	packages	from:	Both	sites	contain	the	same	warning:	These	older	versions	of	the	JDK	are	provided	to	help	developers	debug	issues	in	older	systems.	They	are	not	updated	with	the	latest	security	patches	and	are	not
recommended	for	use	in	production.	4.1.		Installing	OpenJDK	10	Manually	Let’s	see	how	to	install	OpenJDK	10.0.1:	$	wget	$	sha256sum	openjdk-10.0.1_linux-x64_bin.tar.gz	$	tar	xzvf	openjdk-10.0.1_linux-x64_bin.tar.gz	$	sudo	mkdir	/usr/lib/jvm	$	sudo	mv	jdk-10.0.1	/usr/lib/jvm/openjdk-10-manual-installation/	$	sudo	update-alternatives	--install
/usr/bin/java	java	/usr/lib/jvm/openjdk-10-manual-installation/bin/java	1	$	sudo	update-alternatives	--install	/usr/bin/javac	javac	/usr/lib/jvm/openjdk-10-manual-installation/bin/javac	1	$	java	-version	$	javac	-version	4.2.	Installing	Oracle	JDK	10	Manually	As	we’ve	seen	in	section	2.2.,	in	order	to	download	a	package	from	the	Oracle	website,	we	must
accept	a	license	agreement	first.	Contrary	to	the	supported	versions,	we	can’t	download	the	older	Oracle	JDKs	via	wget	and	a	cookie.	We	need	to	head	to		and	download	the	tar.gz	file.	Afterward,	we	follow	the	familiar	steps:	$	sha256sum	jdk-10.0.2_linux-x64_bin.tar.gz	$	tar	xzvf	jdk-10.0.2_linux-x64_bin.tar.gz	$	sudo	mkdir	/usr/lib/jvm	$	sudo	mv	jdk-
10.0.2	/usr/lib/jvm/oracle-jdk-10-manual-installation/	$	sudo	update-alternatives	--install	/usr/bin/java	java	/usr/lib/jvm/oracle-jdk-10-manual-installation/bin/java	1	$	sudo	update-alternatives	--install	/usr/bin/javac	javac	/usr/lib/jvm/oracle-jdk-10-manual-installation/bin/javac	1	$	java	-version	$	javac	-version	5.	Installing	JDK	9	Just	like	we	saw	above	with
OpenJDK	10.0.1,	we	download	the	OpenJDK	9	package	via	wget	and	set	it	up	according	to	the	conventions:	$	wget	$	sha256sum	openjdk-9.0.4_linux-x64_bin.tar.gz	$	tar	xzvf	openjdk-9.0.4_linux-x64_bin.tar.gz	$	sudo	mkdir	/usr/lib/jvm	$	sudo	mv	jdk-9.0.4	/usr/lib/jvm/openjdk-9-manual-installation/	$	sudo	update-alternatives	--install	/usr/bin/java	java
/usr/lib/jvm/openjdk-9-manual-installation/bin/java	1	$	sudo	update-alternatives	--install	/usr/bin/javac	javac	/usr/lib/jvm/openjdk-9-manual-installation/bin/javac	1	$	java	-version	$	javac	-version	5.2.	Installing	Oracle	JDK	9	Manually	Once	again,	we	use	the	same	method	as	for	JDK	10.	We	need	to	head	to		and	download	the	tar.gz	file.	Afterward,	we
follow	the	familiar	steps:	$	sha256sum	jdk-9.0.4_linux-x64_bin.tar.gz	$	tar	xzvf	jdk-9.0.4_linux-x64_bin.tar.gz	$	sudo	mkdir	/usr/lib/jvm	$	sudo	mv	jdk-9.0.4	/usr/lib/jvm/oracle-jdk-9-manual-installation/	$	sudo	update-alternatives	--install	/usr/bin/java	java	/usr/lib/jvm/oracle-jdk-9-manual-installation/bin/java	1	$	sudo	update-alternatives	--install
/usr/bin/javac	javac	/usr/lib/jvm/oracle-jdk-9-manual-installation/bin/javac	1	$	java	-version	$	javac	-version	6.	Comparison	We’ve	seen	three	different	ways	of	installing	a	JDK	on	Ubuntu.	Let’s	have	a	quick	overview	of	each	of	them,	pointing	out	the	advantages	and	disadvantages.	6.1.	“Main”	Repository	This	is	the	“Ubuntu	native”	way	of	installation.	A
big	advantage	is	that	we	update	the	packages	via	the	“usual	apt	workflow”	with	apt	update	and	apt	upgrade.	Furthermore,	the	“Main”	repository	is	maintained	by	Canonical,	which	provides	reasonably	fast	(if	not	immediate)	updates.	For	example,	OpenJDK	versions	10.0.1	and	10.0.2	were	both	synced	within	a	month	of	release.	6.2.	PPA	PPAs	are	small
repositories	maintained	by	an	individual	developer	or	a	group.	This	also	means	that	the	update	frequency	depends	on	the	maintainer.	Packages	from	PPAs	are	considered	riskier	than	the	packages	in	the	“Main”	repository.	First,	we	have	to	add	the	PPA	explicitly	to	the	system’s	repository	list,	indicating	that	we	trust	it.	Afterward,	we	can	manage	the
packages	via	the	usual	apt	tooling	(apt	update	and	apt	upgrade).	6.3.	Manual	Installation	We	download	the	package	directly	from	the	OpenJDK	or	Oracle	site.	Although	this	method	offers	a	great	deal	of	flexibility,	updates	are	our	responsibility.	If	we	want	to	have	the	latest	and	greatest	JDK,	this	is	the	way	to	go.	7.	Exploring	Other	Versions	of	JDKs	The
examples	in	sections	2	and	3	reflect	the	current	status	on	Ubuntu	18.04	LTS.	Keep	in	mind	that	the	JDKs	and	the	corresponding	packages	are	updated	regularly.	Thus	it’s	useful	to	know	how	to	explore	our	current	possibilities.	In	this	section,	we’ll	focus	on	surveying	the	OpenJDK	packages	in	the	“Main”	repository.	If	we’ve	already	added	a	PPA	with
add-apt-repository,	we	can	explore	it	in	a	similar	manner	with	apt	list	and	apt	show.	To	discover	which	PPAs	are	available,	we	can	head	to		.	If	we	don’t	find	what	we’re	looking	for	in	the	“Main”	repository	and	in	the	PPAs,	we’ll	have	to	fall	back	to	manual	installation.	If	we’d	like	to	use	an	unsupported	version,	even	that	can	be	difficult.	As	of	this
writing,	we	didn’t	find	any	packages	for	Java	9	or	Java	10	on	the	OpenJDK	and	Oracle	websites.	Let’s	see	which	other	JDK	packages	exist	in	the	“Main”	repository:	$	apt	list	openjdk*jdk	On	Ubuntu	18.04	LTS,	we	can	choose	between	the	two	current	LTS	Java	versions:	Listing...	Done	openjdk-11-jdk/bionic-updates,bionic-security,now	10.0.2+13-
1ubuntu0.18.04.2	amd64	[installed,automatic]	openjdk-8-jdk/bionic-updates,bionic-security	8u181-b13-0ubuntu0.18.04.1	amd64	It’s	also	worth	noting	that	although	the	package	is	called	openjdk-11-jdk,	as	of	this	writing,	it	actually	installs	version	10.0.2.	This	is	likely	to	change	soon.	We	can	see	that	if	we	inspect	the	package:	$	apt	show	openjdk-11-
jdk	Let’s	have	a	look	at	the	“Depends”	section	of	the	output.	Note	that	these	packages	(e.g.	a	JRE)	also	get	installed	alongside	openjdk-11-jdk:	Depends:	openjdk-11-jre	(=	10.0.2+13-1ubuntu0.18.04.2),	openjdk-11-jdk-headless	(=	10.0.2+13-1ubuntu0.18.04.2),	libc6	(>=	2.2.5)	Let’s	explore	which	other	packages	we	have	at	our	disposal	besides	the
default	jdk	package:	$	apt	list	openjdk-11*	Listing...	Done	openjdk-11-dbg/bionic-updates,bionic-security	10.0.2+13-1ubuntu0.18.04.2	amd64	openjdk-11-demo/bionic-updates,bionic-security	10.0.2+13-1ubuntu0.18.04.2	amd64	openjdk-11-doc/bionic-updates,bionic-updates,bionic-security,bionic-security	10.0.2+13-1ubuntu0.18.04.2	all	openjdk-11-
jdk/bionic-updates,bionic-security	10.0.2+13-1ubuntu0.18.04.2	amd64	openjdk-11-jdk-headless/bionic-updates,bionic-security	10.0.2+13-1ubuntu0.18.04.2	amd64	openjdk-11-jre/bionic-updates,bionic-security,now	10.0.2+13-1ubuntu0.18.04.2	amd64	[installed,automatic]	openjdk-11-jre-headless/bionic-updates,bionic-security,now	10.0.2+13-
1ubuntu0.18.04.2	amd64	[installed,automatic]	openjdk-11-jre-zero/bionic-updates,bionic-security	10.0.2+13-1ubuntu0.18.04.2	amd64	openjdk-11-source/bionic-updates,bionic-updates,bionic-security,bionic-security	10.0.2+13-1ubuntu0.18.04.2	all	We	may	find	some	of	these	packages	useful.	For	example,	openjdk-11-source	contains	source	files	for	the
classes	of	the	Java	core	API,	while	openjdk-11-dbg	contains	the	debugging	symbols.	Besides	the	openjdk-*	family,	there’s	the	default-jdk	package,	that	is	worth	exploring:	$	apt	show	default-jdk	At	the	end	of	the	output,	the	description	says:	“This	dependency	package	points	to	the	Java	runtime,	or	Java	compatible	development	kit	recommended	for	this
architecture…”	In	the	case	of	Ubuntu	18.04	LTS,	it’s	the	package	openjdk-11-jdk	at	the	moment.	8.	Overview:	Java	Versions	and	Packages	Now,	let’s	have	a	look	at	how	different	versions	of	Java	could	be	installed	on	Ubuntu	18.04	LTS	as	of	this	writing:	Version	OpenJDK	Oracle	Java	11	manual	installation	manual	installation	oracle-java11-installer	in
the	linuxuprising	PPA	10	manual	installation	–	not	supported	manual	installation	–	not	supported	9	manual	installation	–	not	supported	manual	installation	–	not	supported	8	openjdk-8-jdk	in	the	“Main”	repository	oracle-java8-installer	in	the	webupd8team	PPA	9.	Multiple	Java	Versions	on	an	Ubuntu	System	The	standard	way	for	managing	multiple
versions	of	the	same	software	on	Ubuntu	is	via	the	Debian	Alternatives	System.	Most	of	the	time	we	create,	maintain	and	display	alternatives	via	the	update-alternatives	program.	When	apt	installs	a	JDK	package,	it	automatically	adds	the	entries	for	the	alternatives.	In	the	case	of	manual	installation,	we’ve	seen	how	to	add	the	alternatives	for	java	and
javac	respectively.	Let’s	have	a	look	at	our	alternatives:	$	update-alternatives	--display	java	On	our	test	system,	where	we’ve	installed	two	different	versions	of	OpenJDK,	the	output	lists	both	alternatives	with	their	respective	priorities:	java	-	auto	mode	link	best	version	is	/usr/lib/jvm/java-11-openjdk-amd64/bin/java	link	currently	points	to
/usr/lib/jvm/java-11-openjdk-amd64/bin/java	link	java	is	/usr/bin/java	slave	java.1.gz	is	/usr/share/man/man1/java.1.gz	/usr/lib/jvm/java-11-openjdk-amd64/bin/java	-	priority	1101	slave	java.1.gz:	/usr/lib/jvm/java-11-openjdk-amd64/man/man1/java.1.gz	/usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java	-	priority	1081	slave	java.1.gz:	/usr/lib/jvm/java-8-
openjdk-amd64/jre/man/man1/java.1.gz	Now	that	we’ve	seen	our	alternatives,	we	can	also	switch	between	them:	$	sudo	update-alternatives	--config	java	Additionally,	we	get	an	interactive	output,	where	we	can	switch	between	the	alternatives	via	the	keyboard:	There	are	2	choices	for	the	alternative	java	(providing	/usr/bin/java).	Selection	Path	Priority
Status	--	*	0	/usr/lib/jvm/java-11-openjdk-amd64/bin/java	1101	auto	mode	1	/usr/lib/jvm/java-11-openjdk-amd64/bin/java	1101	manual	mode	2	/usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java	1081	manual	mode	Press	to	keep	the	current	choice[*],	or	type	selection	number:	If	we’re	working	on	multiple	applications
written	in	different	versions	of	Java,	chances	are	we’ll	also	need	different	versions	of	other	software	(e.g.	Maven,	some	application	server).	In	that	case,	we	may	want	to	consider	using	greater	abstractions	such	as	Docker	containers.	10.	Conclusion	To	summarize,	in	this	article,	we’ve	seen	examples	of	installing	a	JDK	from	the	“Main”	repository,	from
a	PPA,	and	manually.	We’ve	briefly	compared	these	three	installation	methods.	And	finally,	we’ve	seen	how	to	manage	multiple	Java	installations	on	Ubuntu	system	with	update-alternatives.	As	a	next	step,	it	may	be	useful	to	set	the	JAVA_HOME	environment	variable.	The	Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most
recent	coverage.Discover	The	CollectionCurated,	compelling,	and	worth	your	time.	Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	FavoritesExperience	AI-Powered	CreativityThe	Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The	CollectionCurated,	compelling,	and	worth	your	time.
Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	FavoritesExperience	AI-Powered	CreativityThe	Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The	CollectionCurated,	compelling,	and	worth	your	time.	Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	FavoritesExperience	AI-
Powered	Creativity

