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On	the		complex	numbers	polar	form		page,	we	see	examples	of	converting	from	complex	number	cartesian	form	to	complex	number	polar	form.	CARTESIAN	FORM:						z	=	a	+	bi	POLAR	FORM:												z	=	r(cosθ	+	isinθ)	Converting	the	other	way	from	polar	form	to	complex	number	cartesian	form	is	also	possible.	To	see	this	in	action,	we	can	look	at
examples	(1.1)	and	(1.2)	from	the	complex	numbers	polar	form	page.	(1.1)		Polar	Form:			2√2(cos(\bf{\frac{\pi}{4}})	+	isin(\bf{\frac{\pi}{4}}))	To	convert	to	Cartesian	Form.	We	can	multiply	out	as	it	sits,	using	the	exact	values	for	the	cos	and	sin.	z		=		(2√2	×	cos(\bf{\frac{\pi}{4}}))		+		i(2√2	×	sin(\bf{\frac{\pi}{4}}))	z		=		(2√2	×	\bf{\frac{1}
{\sqrt{2}}})		+		i(2√2	×	\bf{\frac{1}{\sqrt{2}}})	z		=		2	+	i2	(1.2)		Polar	Form:			√17(cos(1.816)	+	isin(1.816))	Now	as	the	radians	here	are	rounded	to	3	decimal	places,	the	initial	calculations	will	be	slightly	out.	But	the	numbers	obtained	will	be	close	enough	to	round	both	down	and	up	to	the	given	original	values	in	this	example	from	the	polar	form
page.	For	Cartesian	Form:	z		=		(√17	×	cos(1.816))		+		i(√17	×	sin(1.816))	z		=		–1.0009…		+		i3.9997…	Which	can	be	rounded	to.	z		=		–1	+	i4	It	should	also	be	mentioned	that	a	complex	number	can	also	be	expressed	in	“Exponential	Form”.	We	can	also	convert	from	and	to	this	exponential	form.	If	we	observe	Euler’s	Formula.	eiθ		=		cosθ	+	isinθ	A
complex	number	can	written	as			z	=	reiθ.	Where		r		is	once	again	the	modulus	of	the	complex	number.	With		θ		again	being	the	argument,	specifically	in	radians.	Examples					(2.1)		Write	in	exponential	form			z	=	1	+	i√3.	Solution				r		=		\bf{\sqrt{1^2	\space	+	\space	(\sqrt{3})^2}}		=		2	a	>	0	,	b	>	0			=>				θ	=	tan-1(\bf{\frac{\sqrt{3}}{1}})		=	
\bf{\frac{\pi}{3}}	In	exponential	form:				z	=	2ei\bf{\frac{\pi}{3}}	(2.2)		Write	in	exponential	form	z		=		2√2(cos(\bf{\frac{\pi}{4}})	+	isin(\bf{\frac{\pi}{4}})).	Solution				In	exponential	form:				z	=		2√2ei\bf{\frac{\pi}{4}}	(2.3)		Write	in	cartesian	form			z		=		4ei\bf{\frac{\pi}{6}}.	Solution				Put	the	complex	number	into	polar	form	first.	z		=	
4(cos(\bf{\frac{\pi}{6}})	+	isin(\bf{\frac{\pi}{6}}))	Then	carry	out	the	calculation.	z		=		(4	×	cos(\bf{\frac{\pi}{6}}))		+		i(4	×	sin(\bf{\frac{\pi}{6}}))	z		=		(4	x	\bf{\frac{\sqrt{3}}{2}})		+		i(4	×	\bf{\frac{1}{2}})	z		=		2√3	+	i2	Home		›	Algebra	2	›	Complex	Number	Converting	Return	to	TOP	of	page	Show	Mobile	Notice	Show	All	Notes	Hide	All
Notes	Mobile	Notice	You	appear	to	be	on	a	device	with	a	"narrow"	screen	width	(i.e.	you	are	probably	on	a	mobile	phone).	Due	to	the	nature	of	the	mathematics	on	this	site	it	is	best	viewed	in	landscape	mode.	If	your	device	is	not	in	landscape	mode	many	of	the	equations	will	run	off	the	side	of	your	device	(you	should	be	able	to	scroll/swipe	to	see
them)	and	some	of	the	menu	items	will	be	cut	off	due	to	the	narrow	screen	width.	Most	people	are	familiar	with	complex	numbers	in	the	form	\(z	=	a	+	bi\),	however	there	are	some	alternate	forms	that	are	useful	at	times.	In	this	section	we’ll	look	at	both	of	those	as	well	as	a	couple	of	nice	facts	that	arise	from	them.	Geometric	Interpretation	Before	we
get	into	the	alternate	forms	we	should	first	take	a	very	brief	look	at	a	natural	geometric	interpretation	of	complex	numbers	since	this	will	lead	us	into	our	first	alternate	form.	Consider	the	complex	number	\(z	=	a	+	bi\).	We	can	think	of	this	complex	number	as	either	the	point	\(\left(	{a,b}	\right)\)	in	the	standard	Cartesian	coordinate	system	or	as	the
vector	that	starts	at	the	origin	and	ends	at	the	point	\(\left(	{a,b}	\right)\).	An	example	of	this	is	shown	in	the	figure	below.	In	this	interpretation	we	call	the	\(x\)-axis	the	real	axis	and	the	\(y\)-axis	the	imaginary	axis.	We	often	call	the	\(xy\)-plane	in	this	interpretation	the	complex	plane.	Note	as	well	that	we	can	now	get	a	geometric	interpretation	of	the
modulus.	From	the	image	above,	we	can	see	that	\(\left|	z	\right|	=	\sqrt	{{a^2}	+	{b^2}}	\)	is	nothing	more	than	the	length	of	the	vector	that	we’re	using	to	represent	the	complex	number	\(z	=	a	+	bi\).	This	interpretation	also	tells	us	that	the	inequality	\(\left|	{{z_1}}	\right|	<	\left|	{{z_2}}	\right|\)	means	that	\({z_1}\)	is	closer	to	the	origin	(in	the
complex	plane)	than	\({z_2}\)	is.	Polar	Form	Let’s	now	take	a	look	at	the	first	alternate	form	for	a	complex	number.	If	we	think	of	the	non-zero	complex	number	\(z	=	a	+	bi\)	as	the	point	\(\left(	{a,b}	\right)\)	in	the	\(xy\)-plane	we	also	know	that	we	can	represent	this	point	by	the	polar	coordinates	\(\left(	{r,\theta	}	\right)\),	where	\(r\)	is	the	distance	of
the	point	from	the	origin	and	\(\theta	\)	is	the	angle,	in	radians,	from	the	positive	\(x\)-axis	to	the	ray	connecting	the	origin	to	the	point.	When	working	with	complex	numbers	we	assume	that	\(r\)	is	positive	and	that	\(\theta	\)	can	be	any	of	the	possible	(both	positive	and	negative)	angles	that	end	at	the	ray.	Note	that	this	means	that	there	are	literally	an
infinite	number	of	choices	for	\(\theta	\).	We	excluded	\(z	=	0\)	since	\(\theta	\)	is	not	defined	for	the	point	(0,0).	We	will	therefore	only	consider	the	polar	form	of	non-zero	complex	numbers.	We	have	the	following	conversion	formulas	for	converting	the	polar	coordinates	\(\left(	{r,\theta	}	\right)\)	into	the	corresponding	Cartesian	coordinates	of	the
point,	\(\left(	{a,b}	\right)\).	\[a	=	r\cos	\theta	\hspace{0.75in}	b	=	r\sin	\theta	\]	If	we	substitute	these	into	\(z	=	a	+	bi\)	and	factor	an	\(r\)	out	we	arrive	at	the	polar	form	of	the	complex	number,	\begin{equation}z	=	r\left(	{\cos	\theta	+	i\sin	\theta	}	\right)	\label{eq:eq1}\end{equation}	Note	as	well	that	we	also	have	the	following	formula	from	polar
coordinates	relating	\(r\)	to	\(a\)	and	\(b\).	\[r	=	\sqrt	{{a^2}	+	{b^2}}	\]	but,	the	right	side	is	nothing	more	than	the	definition	of	the	modulus	and	we	see	that,	\begin{equation}r	=	\left|	z	\right|\label{eq:eq2}	\end{equation}	So,	sometimes	the	polar	form	will	be	written	as,	\begin{equation}z	=	\left|	z	\right|\left(	{\cos	\theta	+	i\sin	\theta	}
\right)\label{eq:eq3}\end{equation}	The	angle	\(\theta	\)	is	called	the	argument	of	\(z\)	and	is	denoted	by,	\[\theta	=	\arg	z\]	The	argument	of	\(z\)	can	be	any	of	the	infinite	possible	values	of	\(\theta	\)	each	of	which	can	be	found	by	solving	\begin{equation}\tan	\theta	=	\frac{b}{a}\label{eq:eq4}\end{equation}	and	making	sure	that	\(\theta	\)	is	in	the
correct	quadrant.	Note	as	well	that	any	two	values	of	the	argument	will	differ	from	each	other	by	an	integer	multiple	of	\(2\pi	\).	This	makes	sense	when	you	consider	the	following.	For	a	given	complex	number	\(z\)	pick	any	of	the	possible	values	of	the	argument,	say	\(\theta	\).	If	you	now	increase	the	value	of	\(\theta	\),	which	is	really	just	increasing
the	angle	that	the	point	makes	with	the	positive	\(x\)-axis,	you	are	rotating	the	point	about	the	origin	in	a	counter-clockwise	manner.	Since	it	takes	\(2\pi	\)	radians	to	make	one	complete	revolution	you	will	be	back	at	your	initial	starting	point	when	you	reach	\(\theta	+	2\pi	\)	and	so	have	a	new	value	of	the	argument.	See	the	figure	below.	If	you	keep
increasing	the	angle	you	will	again	be	back	at	the	starting	point	when	you	reach	\(\theta	+	4\pi	\),	which	is	again	a	new	value	of	the	argument.	Continuing	in	this	fashion	we	can	see	that	every	time	we	reach	a	new	value	of	the	argument	we	will	simply	be	adding	multiples	of	\(2\pi	\)	onto	the	original	value	of	the	argument.	Likewise,	if	you	start	at	\
(\theta	\)	and	decrease	the	angle	you	will	be	rotating	the	point	about	the	origin	in	a	clockwise	manner	and	will	return	to	your	original	starting	point	when	you	reach	\(\theta	-	2\pi	\).	Continuing	in	this	fashion	and	we	can	again	see	that	each	new	value	of	the	argument	will	be	found	by	subtracting	a	multiple	of	\(2\pi	\)	from	the	original	value	of	the
argument.	So,	we	can	see	that	if	\({\theta	_1}\)	and	\({\theta	_2}\)	are	two	values	of	\(\arg	z\)	then	for	some	integer	\(k\)	we	will	have,	\begin{equation}{\theta	_1}	-	{\theta	_2}	=	2\pi	k\label{eq:eq5}\end{equation}	Note	that	we’ve	also	shown	here	that	\(z	=	r\left(	{\cos	\theta	+	i\sin	\theta	}	\right)\)	is	a	parametric	representation	for	a	circle	of	radius
\(r\)	centered	at	the	origin	and	that	it	will	trace	out	a	complete	circle	in	a	counter-clockwise	direction	as	the	angle	increases	from	\(\theta	\)	to	\(\theta	+	2\pi	\).	The	principal	value	of	the	argument	(sometimes	called	the	principal	argument)	is	the	unique	value	of	the	argument	that	is	in	the	range	\(	-	\pi	<	\arg	z	\le	\pi	\)	and	is	denoted	by	\({\mathop{\rm
Arg}olimits}	z\).	Note	that	the	inequalities	at	either	end	of	the	range	tells	that	a	negative	real	number	will	have	a	principal	value	of	the	argument	of	\({\mathop{\rm	Arg}olimits}	z	=	\pi	\).	Recalling	that	we	noted	above	that	any	two	values	of	the	argument	will	differ	from	each	other	by	a	multiple	of	\(2\pi	\)	leads	us	to	the	following	fact.
\begin{equation}\arg	z	=	{\mathop{\rm	Arg}olimits}	z	+	2\pi	n	\hspace{0.25in}	n	=	0,	\pm	1,	\pm	2,	\ldots	\label{eq:eq:6}\end{equation}	We	should	probably	do	a	couple	of	quick	numerical	examples	at	this	point	before	we	move	on	to	look	the	second	alternate	form	of	a	complex	number.	Example	1	Write	down	the	polar	form	of	each	of	the	following
complex	numbers.	\(z	=	-	1	+	i\,\sqrt	3	\)	\(z	=	-	9	\)	\(z	=	12\,i\)	Show	All	Solutions	Hide	All	Solutions	a	\(z	=	-	1	+	i\,\sqrt	3	\)	Show	Solution	Let’s	first	get	\(r\).	\[r	=	\left|	z	\right|	=	\sqrt	{1	+	3}	=	2\]	Now	let’s	find	the	argument	of	\(z\).	This	can	be	any	angle	that	satisfies	\(\eqref{eq:eq4}\),	but	it’s	usually	easiest	to	find	the	principal	value	so	we’ll	find
that	one.	The	principal	value	of	the	argument	will	be	the	value	of	\(\theta	\)	that	is	in	the	range	\(	-	\pi	<	\theta	\le	\pi	\),	satisfies,	\[\tan	\theta	=	\frac{{\sqrt	3	}}{{	-	1}}	\hspace{0.25in}	\Rightarrow	\hspace{0.25in}	\theta	=	{\tan	^{	-	1}}\left(	{	-	\sqrt	3	}	\right)\]	and	is	in	the	second	quadrant	since	that	is	the	location	the	complex	number	in	the
complex	plane.	If	you’re	using	a	calculator	to	find	the	value	of	this	inverse	tangent	make	sure	that	you	understand	that	your	calculator	will	only	return	values	in	the	range	\(	-	\frac{\pi	}{2}	<	\theta	<	\frac{\pi	}{2}\)	and	so	you	may	get	the	incorrect	value.	Recall	that	if	your	calculator	returns	a	value	of	\({\theta	_1}\)	then	the	second	value	that	will
also	satisfy	the	equation	will	be	\({\theta	_2}	=	{\theta	_1}	+	\pi	\).	So,	if	you’re	using	a	calculator	be	careful.	You	will	need	to	compute	both	and	the	determine	which	falls	into	the	correct	quadrant	to	match	the	complex	number	we	have	because	only	one	of	them	will	be	in	the	correct	quadrant.	In	our	case	the	two	values	are,	\[{\theta	_1}	=	-	\frac{\pi	}
{3}	\hspace{0.25in}	{\theta	_2}	=	-	\frac{\pi	}{3}	+	\pi	=	\frac{{2\pi	}}{3}\]	The	first	one	is	in	quadrant	four	and	the	second	one	is	in	quadrant	two	and	so	is	the	one	that	we’re	after.	Therefore,	the	principal	value	of	the	argument	is,	\[{\mathop{\rm	Arg}olimits}	\,z	=	\frac{{2\pi	}}{3}\]	and	all	possible	values	of	the	argument	are	then	\[\arg	z	=
\frac{{2\pi	}}{3}	+	2\pi	n	\hspace{0.25in}	n	=	0,	\pm	1,	\pm	2,	\ldots	\]	Now,	let’s	actually	do	what	we	were	originally	asked	to	do.	Here	is	the	polar	form	of	\(z	=	-	1	+	i\,\sqrt	3	\).	\[z	=	2\left(	{\cos	\left(	{\frac{{2\pi	}}{3}}	\right)	+	i\sin	\left(	{\frac{{2\pi	}}{3}}	\right)}	\right)\]	Now,	for	the	sake	of	completeness	we	should	acknowledge	that	there
are	many	more	equally	valid	polar	forms	for	this	complex	number.	To	get	any	of	the	other	forms	we	just	need	to	compute	a	different	value	of	the	argument	by	picking	\(n\).	Here	are	a	couple	of	other	possible	polar	forms.	\begin{align*}z	&	=	2\left(	{\cos	\left(	{\frac{{8\pi	}}{3}}	\right)	+	i\sin	\left(	{\frac{{8\pi	}}{3}}	\right)}	\right)	&
\hspace{0.25in}	&	n	=	1\\	z	&	=	2\left(	{\cos	\left(	{	-	\frac{{16\pi	}}{3}}	\right)	+	i\sin	\left(	{	-	\frac{{16\pi	}}{3}}	\right)}	\right)	&	\hspace{0.25in}	&	n	=	-	3\end{align*}	b	\(z	=	-	9	\)	Show	Solution	In	this	case	we’ve	already	noted	that	the	principal	value	of	a	negative	real	number	is	\(\pi	\)	so	we	don’t	need	to	compute	that.	For	completeness	sake
here	are	all	possible	values	of	the	argument	of	any	negative	number.	\[\arg	z	=	\pi	+	2\pi	n	=	\pi	\left(	{1	+	2n}	\right)	\hspace{0.25in}	n	=	0,	\pm	1,	\pm	2,	\ldots	\]	Now,	\(r\)	is,	\[r	=	\left|	z	\right|	=	\sqrt	{81	+	0}	=	9\]	The	polar	form	(using	the	principal	value)	is,	\[z	=	9\left(	{\cos	\left(	\pi	\right)	+	i\sin	\left(	\pi	\right)}	\right)\]	Note	that	if	we’d	had
a	positive	real	number	the	principal	value	would	be	\({\mathop{\rm	Arg}olimits}\,	z	=	0\)	c	\(z	=	12\,i\)	Show	Solution	This	another	special	case	much	like	real	numbers.	If	we	were	to	use	\(\eqref{eq:eq4}\)	to	find	the	argument	we	would	run	into	problems	since	the	real	part	is	zero	and	this	would	give	division	by	zero.	However,	all	we	need	to	do	to	get
the	argument	is	think	about	where	this	complex	number	is	in	the	complex	plane.	In	the	complex	plane	purely	imaginary	numbers	are	either	on	the	positive	\(y\)-axis	or	the	negative	\(y\)-axis	depending	on	the	sign	of	the	imaginary	part.	For	our	case	the	imaginary	part	is	positive	and	so	this	complex	number	will	be	on	the	positive	\(y\)-axis.	Therefore,
the	principal	value	and	the	general	argument	for	this	complex	number	is,	\[{\mathop{\rm	Arg}olimits}	z	=	\frac{\pi	}{2}	\hspace{0.5in}	\arg	z	=	\frac{\pi	}{2}	+	2\pi	n	=	\pi	\left(	{\frac{1}{2}	+	2n}	\right)	\hspace{0.25in}	n	=	0,	\pm	1,	\pm	2,	\ldots	\]	Also,	in	this	case	\(r\)	=	12	and	so	the	polar	form	(again	using	the	principal	value)	is,	\[z	=	12\left(
{\cos	\left(	{\frac{\pi	}{2}}	\right)	+	i\sin	\left(	{\frac{\pi	}{2}}	\right)}	\right)\]	Exponential	Form	Now	that	we’ve	discussed	the	polar	form	of	a	complex	number	we	can	introduce	the	second	alternate	form	of	a	complex	number.	First,	we’ll	need	Euler’s	formula,	\begin{equation}{{\bf{e}}^{i\,\theta	}}	=	\cos	\theta	+	i\sin	\theta
\label{eq:eq7}\end{equation}	With	Euler’s	formula	we	can	rewrite	the	polar	form	of	a	complex	number	into	its	exponential	form	as	follows.	\[z	=	r{{\bf{e}}^{i\,\theta	}}\]	where	\(\theta	=	\arg	z\)	and	so	we	can	see	that,	much	like	the	polar	form,	there	are	an	infinite	number	of	possible	exponential	forms	for	a	given	complex	number.	Also,	because
any	two	arguments	for	a	give	complex	number	differ	by	an	integer	multiple	of	\(2\pi	\)	we	will	sometimes	write	the	exponential	form	as,	\[z	=	r{{\bf{e}}^{i\,\left(	{\theta	+	2\pi	n}	\right)}}	\hspace{0.25in}	n	=	0,	\pm	1,	\pm	2,	\ldots	\]	where	\(\theta	\)	is	any	value	of	the	argument	although	it	is	more	often	than	not	the	principal	value	of	the	argument.
To	get	the	value	of	\(r\)	we	can	either	use	\(\eqref{eq:eq3}\)	to	write	the	exponential	form	or	we	can	take	a	more	direct	approach.	Let’s	take	the	direct	approach.	Take	the	modulus	of	both	sides	and	then	do	a	little	simplification	as	follows,	\[\left|	z	\right|	=	\left|	{r{{\bf{e}}^{i\,\theta	}}}	\right|	=	\left|	r	\right|\,\left|	{{{\bf{e}}^{i\,\theta	}}}	\right|
=	\left|	r	\right|\,\left|	{\cos	\theta	+	i\sin	\theta	}	\right|	=	\sqrt	{{r^2}	+	0}	\,\,\sqrt	{{{\cos	}^2}\theta	+	{{\sin	}^2}\theta	}	=	r\]	and	we	see	that	\(r	=	\left|	z	\right|\).	Note	as	well	that	because	we	can	consider	\(z	=	r\left(	{\cos	\theta	+	i\sin	\theta	}	\right)\)	as	a	parametric	representation	of	a	circle	of	radius	\(r\)	and	the	exponential	form	of	a
complex	number	is	really	another	way	of	writing	the	polar	form	we	can	also	consider	\(z	=	r{{\bf{e}}^{i\,\theta	}}\)	a	parametric	representation	of	a	circle	of	radius	\(r\).	Now	that	we’ve	got	the	exponential	form	of	a	complex	number	out	of	the	way	we	can	use	this	along	with	basic	exponent	properties	to	derive	some	nice	facts	about	complex	numbers
and	their	arguments.	First,	let’s	start	with	the	non-zero	complex	number	\(z	=	r{{\bf{e}}^{i\,\theta	}}\).	In	the	arithmetic	section	we	gave	a	fairly	complex	formula	for	the	multiplicative	inverse,	however,	with	the	exponential	form	of	the	complex	number	we	can	get	a	much	nicer	formula	for	the	multiplicative	inverse.	\[{z^{	-	1}}	=	{\left(
{r{{\bf{e}}^{i\,\theta	}}}	\right)^{	-	1}}	=	{r^{	-	1}}{\left(	{{{\bf{e}}^{i\,\theta	}}}	\right)^{	-	1}}	=	{r^{	-	1}}{{\bf{e}}^{	-	i\,\theta	}}	=	\frac{1}{r}{{\bf{e}}^{i\,\left(	{	-	\theta	}	\right)}}\]	Note	that	since	\(r\)	is	a	non-zero	real	number	we	know	that	\({r^{	-	1}}	=	\frac{1}{r}\).	So,	putting	this	together	the	exponential	form	of	the
multiplicative	inverse	is,	\begin{equation}{z^{	-	1}}	=	\frac{1}{r}{{\bf{e}}^{i\,\left(	{	-	\theta	}	\right)}}\label{eq:eq8}\end{equation}	and	the	polar	form	of	the	multiplicative	inverse	is,	\begin{equation}{z^{	-	1}}	=	\frac{1}{r}\left(	{\cos	\left(	{	-	\theta	}	\right)	+	i\sin	\left(	{	-	\theta	}	\right)}	\right)\label{eq:eq9}\end{equation}	We	can	also
get	some	nice	formulas	for	the	product	or	quotient	of	complex	numbers.	Given	two	complex	numbers	\({z_1}	=	{r_1}\,{{\bf{e}}^{i\,{\theta	_{\,1}}}}\)	and	\({z_2}	=	{r_2}\,{{\bf{e}}^{i\,{\theta	_{\,2}}}}\),	where	\({\theta	_1}\)	is	any	value	of	\(\arg	{z_1}\)	and	\({\theta	_2}\)	is	any	value	of	\(\arg	{z_2}\),	we	have	\begin{align}{z_1}{z_2}	&=	\left(
{{r_1}\,{{\bf{e}}^{i\,{\theta	_{\,1}}}}}	\right)\left(	{{r_2}\,{{\bf{e}}^{i\,{\theta	_{\,2}}}}}	\right)	=	{r_1}\,{r_2}{{\bf{e}}^{i\,\left(	{{\theta	_{\,1}}	+	{\theta	_{\,2}}}	\right)}}\label{eq:eq10}\\	&	onumber	\\	\frac{{{z_1}}}{{{z_2}}}	&=	\frac{{{r_1}\,{{\bf{e}}^{i\,{\theta	_{\,1}}}}}}{{{r_2}\,{{\bf{e}}^{i\,{\theta	_{\,2}}}}}}	=
\frac{{{r_1}}}{{{r_2}}}{{\bf{e}}^{i\,\left(	{{\theta	_{\,1}}\,	-	\,\,{\theta	_{\,2}}}	\right)}}\label{eq:eq11}\end{align}	The	polar	forms	for	both	of	these	are,	\begin{align}{z_1}{z_2}	&	=	{r_1}\,{r_2}\left(	{\cos	\left(	{{\theta	_{\,1}}	+	{\theta	_{\,2}}}	\right)	+	i\sin	\left(	{{\theta	_{\,1}}	+	{\theta	_{\,2}}}	\right)}	\right)\label{eq:eq12}	\\	&
onumber	\\	\frac{{{z_1}}}{{{z_2}}}	&	=	\frac{{{r_1}}}{{{r_2}}}\left(	{\cos	\left(	{{\theta	_{\,1}}\,	-	\,\,{\theta	_{\,2}}}	\right)	+	i\sin	\left(	{{\theta	_{\,1}}\,	-	\,\,{\theta	_{\,2}}}	\right)}	\right)\label{eq:eq13}\end{align}	We	can	also	use	\(\eqref{eq:eq10}\)	and	\(\eqref{eq:eq11}\)	to	get	some	nice	facts	about	the	arguments	of	a	product	and	a
quotient	of	complex	numbers.	Since	\({\theta	_1}\)	is	any	value	of	\(\arg	{z_1}\)	and	\({\theta	_2}\)	is	any	value	of	\(\arg	{z_2}\)	we	can	see	that,	\begin{align}\arg	\left(	{{z_1}\,{z_2}}	\right)	&	=	\arg	{z_1}	+	\arg	{z_2}\label{eq:eq14}	\\	&	onumber	\\	\arg	\left(	{\frac{{{z_1}}}{{{z_2}}}}	\right)	&	=	\arg	{z_1}	-	\arg	{z_2}\label{eq:eq15}
\end{align}	Note	that	\(\eqref{eq:eq14}\)	and	\(\eqref{eq:eq15}\)	may	or	may	not	work	if	you	use	the	principal	value	of	the	argument,	\({\rm{Arg	}}\,z\).	For	example,	consider	\({z_1}	=	i\)	and	\({z_2}	=	-	1\).	In	this	case	we	have	\({z_1}{z_2}	=	-	i\)	and	the	principal	value	of	the	argument	for	each	is,	\[{\mathop{\rm	Arg}olimits}	\left(	i	\right)	=
\frac{\pi	}{2}	\hspace{0.5in}	{\mathop{\rm	Arg}olimits}	\left(	{	-	1}	\right)	=	\pi	\hspace{0.5in}	{\mathop{\rm	Arg}olimits}	\left(	{	-	i}	\right)	=	-	\frac{\pi	}{2}\]	However,	\[{\mathop{\rm	Arg}olimits}	\left(	i	\right)	+	{\mathop{\rm	Arg}olimits}	\left(	{	-	1}	\right)	=	\frac{{3\pi	}}{2}	e	-	\frac{\pi	}{2}\]	and	so	\(\eqref{eq:eq14}\)	doesn’t	hold	if	we
use	the	principal	value	of	the	argument.	Note	however,	if	we	use,	\[\arg	\left(	i	\right)	=	\frac{\pi	}{2}	\hspace{0.5in}\arg	\left(	{	-	1}	\right)	=	\pi	\]	then,	\[\arg	\left(	i	\right)	+	\arg	\left(	{	-	1}	\right)	=	\frac{{3\pi	}}{2}\]	is	valid	since	\(\frac{{3\pi	}}{2}\)	is	a	possible	argument	for	–\(i\),	it	just	isn’t	the	principal	value	of	the	argument.	As	an
interesting	side	note,	\(\eqref{eq:eq15}\)	actually	does	work	for	this	example	if	we	use	the	principal	arguments.	That	won’t	always	happen,	but	it	does	in	this	case	so	be	careful!	We	will	close	this	section	with	a	nice	fact	about	the	equality	of	two	complex	numbers	that	we	will	make	heavy	use	of	in	the	next	section.	Suppose	that	we	have	two	complex
numbers	given	by	their	exponential	forms,	\({z_1}	=	{r_1}\,{{\bf{e}}^{i\,{\theta	_{\,1}}}}\)	and	\({z_2}	=	{r_2}\,{{\bf{e}}^{i\,{\theta	_{\,2}}}}\).	Also	suppose	that	we	know	that	\({z_1}	=	{z_2}\).	In	this	case	we	have,	\[{r_1}\,{{\bf{e}}^{i\,{\theta	_{\,1}}}}	=	{r_2}\,{{\bf{e}}^{i\,{\theta	_{\,2}}}}\]	Then	we	will	have	\({z_1}	=	{z_2}\)	if	and
only	if,	\begin{equation}{r_1}	=	{r_2}	\hspace{0.25in}	{\rm{and}}	\hspace{0.25in}	{\theta	_2}	=	{\theta	_1}	+	2\pi	k\,\,\,{\mbox{for	some	integer	}}k{\rm{	}}\left(	{i.e.\,\,k	=	0,	\pm	1,	\pm	2,	\ldots	}	\right)\label{eq:eq16}\end{equation}	Note	that	the	phrase	“if	and	only	if”	is	a	fancy	mathematical	phrase	that	means	that	if	\({z_1}	=	{z_2}\)	is	true
then	so	is	\(\eqref{eq:eq16}\)	and	likewise,	if	\(\eqref{eq:eq16}\)	is	true	then	we’ll	have	\({z_1}	=	{z_2}\).	This	may	seem	like	a	silly	fact,	but	we	are	going	to	use	this	in	the	next	section	to	help	us	find	the	powers	and	roots	of	complex	numbers.	The	complex	number		is	said	to	be	in	Cartesian	form.	There	are,	however,	other	ways	to	write	a	complex
number,	such	as	in	modulus-argument	(polar)	form.How	do	I	write	a	complex	number	in	modulus-argument	(polar)	form?The	Cartesian	form	of	a	complex	number,	,	is	written	in	terms	of	its	real	part,	,	and	its	imaginary	part,	If	we	let	and	,	then	it	is	possible	to	write	a	complex	number	in	terms	of	its	modulus,	,	and	its	argument,	,	called	the	modulus-
argument	(polar)	form,	given	by...It	is	usual	to	give	arguments	in	the	range	Negative	arguments	should	be	shown	clearly,	e.g.	without	simplifying			to	either		or	Occasionally	you	could	be	asked	to	give	arguments	in	the	range	If	a	complex	number	is	given	in	the	form	,	then	it	is	not	currently	in	modulus-argument	(polar)	form	due	to	the	minus	sign,	but
can	be	converted	as	follows…By	considering	transformations	of	trigonometric	functions,	we	see	that		and	Therefore		can	be	written	as	,	now	in	the	correct	form	and	indicating	an	argument	of	To	convert	from	modulus-argument	(polar)	form	back	to	Cartesian	form,	evaluate	the	real	and	imaginary	partsE.g.		becomes	Write		in	the	form		where		and		are
exact.When	two	complex	numbers,		and	,	are	multiplied	to	give	,	their	moduli	are	also	multipliedWhen	two	complex	numbers,	and	,	are	divided	to	give	,	their	moduli	are	also	dividedWhen	two	complex	numbers,	and	,	are	multiplied	to	give	,	their	arguments	are	addedWhen	two	complex	numbers,	and	,	are	divided	to	give	,	their	arguments	are
subtractedThe	main	benefit	of	writing	complex	numbers	in	modulus-argument	(polar)	form	is	that	they	multiply	and	divide	very	easily	(often	quicker	than	when	in	Cartesian	form)To	multiply	two	complex	numbers,		and	,	in	modulus-argument	(polar)	form	we	use	the	rules	from	above	to	multiply	their	moduli	and	add	their	argumentsSo	if	and		then	the
rules	above	give…Sometimes	the	new	argument,	,	does	not	lie	in	the	range	(or			if	this	is	being	used)An	out-of-range	argument	can	be	adjusted	by	either	adding	or	subtracting	E.g.	If	and			then			This	is	currently	not	in	the	range	,	but	by	subtracting		from		to	give	,	a	new	argument	is	formed	that	lies	in	the	correct	range	and	represents	the	same	angle
on	an	Argand	diagramThe	rules	of	multiplying	the	moduli	and	adding	the	arguments	can	also	be	applied	when……multiplying	three	complex	numbers	together,	,	or	more…finding	powers	of	a	complex	number	(e.g.		can	be	written	as	)Whilst	not	examinable,	the	rules	for	multiplication	can	be	proved	algebraically	by	multiplying	by	,	expanding	the
brackets	and	using	compound	angle	formulaeTo	divide	two	complex	numbers,		and	in	modulus-argument	(polar)	form,	we	use	the	rules	from	above	to	divide	their	moduli	and	subtract	their	argumentsSo	if		and		then	the	rules	above	give…As	with	multiplication,	sometimes	the	new	argument,	,	can	lie	out	of	the	range		(or	the	range		if	this	is	being
used)You	can	add	or	subtract		to	bring	out-of-range	arguments	back	in	rangeWhilst	not	examinable,	the	rules	for	division	can	be	proved	algebraically	by	dividing	by	,	using	complex	division	and	compound	angle	formulaeLet		and	a)Find	,	giving	your	answer	in	the	form		where	b)	Find	,	giving	your	answer	in	the	form		where	Did	this	page	help	you?
Summary	Complex	numbers	can	be	represented	in	cartesian	form	(a	+	bi)	or	in	polar	form	(r*e^(i	*	theta)	).		The	magnitude	of	a	complex	number	is	found	by	multiplying	by	its	complex	conjugate	(a-bi)	and	then	taking	the	square	root	of	the	product.		In	polar	form,	r	is	the	magnitude.	Imaginary	Numbers:	What	are	they?	Easy	answer:		The	square	root
of	-1	is	represented	by	the	number	"i".		"i"	looks	like	a	variable	but	it	is	not;	it	is	the	number	such	that	its	sqaure	equals	negative	one.		The	square	roots	of	other	negative	numbers	can	be	represented	in	terms	of	i.		For	example,	the	square	root	of	-9	is	3i.	Tricky	stuff:		How	a	negative	number	can	even	have	a	square	boggles	the	mind.		That's	why	"i"	is
imaginary,	I	suppose,	but	the	fact	that	we	defined	and	use	it	is	funky.		Another	point:			don't	all	numbers	have	two	square	roots?		The	square	root	of	9	is	3	and	-3.		What	about	-1?		It	should	have	two	roots	as	well	(since	we	said	that	it	is	allowed	to	have	roots).		Maybe	-i	will	work	as	well	(just	like	-3	works	for	9).		Well,	if	we	square	-i	we	get	(-i)	*	(-i)		=
(-1)i	*	(-1)i		=	i	*	i	=	-1.	Another	point:	imaginary	numbers	have	real	squares.	Why?	When	you	square	a	number	b*i			(like	3i,	or	-6i),	you	get:	(bi)*(bi)	=(b	*	b)(i	*	i)	=	-(b^2).			So	no	matter	what	number	b	you	choose,	you	get	a	real	result.		Fourth	powers	are	another	matter,	but	sticking	to	squares	we	are	safe.	Whoa.		So	+i	and	-i	have	the	same	square.		
Why	do	we	choose	one	over	the	other?		I	shall	return	to	this	shortly,	but	for	now	I	will	let	the	excitement	build.	Complex	Numbers	We	now	have	two	types	of	numbers:	real,	which	are	all	the	regular	numbers	you	know	and	love,	and	imaginary	numbers,	the	numbers	that	are	square	roots	of	negative	numbers.		It	is	easy	to	tell	them	apart:	imaginary
numbers	have	an	"i".		Real	numbers	don't.		Now,	complex	numbers	are	numbers	which	have	two	parts:	a	real	part	and	an	imaginary	part.		One	way	to	write	them	is	like	this:		a	+	bi.			"a"	is	the	real	part	(no	i)	and	"bi"	is	the	imaginary	part	(has	an	i).		An	example	of	some	complex	numbers	are:	3	+	4i						a=3,		b=4	3												a=3,		b=0	-6i										a=0,		b=-6
As	you	can	see,	every	number	can	be	written	as	a	complex	number.		Some	numbers,	like	5	or	-9	don't	have	imaginary	parts,	and	other	numbers,	like	3i,	don't	have	real	parts.	Complex	numbers	are	commonly	written	in	the	form	z	=	a	+bi				(z	is	complex,	a	and	b	are	real).	Notice	that	z	is	a	single	number.		It	has	two	components,	but	it	is	still	one
number.		Think	of	it	in	terms	of	fractions:	a	fraction	is	a	single	number	that	has	two	parts:	a	numerator	and	a	denominator.	In	general,	each	component	of	the	fraction	is	different	from	the	fraction	itself.			The	same	goes	for	complex	numbers:	z	has	two	components	(1	real	and	1	imaginary),	and	each	component	alone	is	(generally)	different	from	z.	The
components	combine	to	create	the	complex	number	z.	Graphing	Complex	Numbers	Using	a	+	bi	notation,	we	can	even	draw	complex	numbers	on	the	complex	plane.	We	are	used	to	x	and	y	axis:	we	plotted	points	as	(x,y)	pairs.		Now,	instead	of	having	x	and	y	coordinates,	we	have	real	and	imaginary	coordinates.		Notice	how	the	complex	numbers	can
be	broken	down	into	(a,b)	pairs.		3+4i	becomes	(3,4)	on	the	complex	plane.		We	draw	a	vector	from	the	origin	(0,0)	to	the	point	(a,	b)	that	represents	the	complex	number.		3	+3i		looks	like	this,	with	imaginary	numbers	on	the	vertical	and	real	numbers	on	the	horizontal:	This	is	just	like	a	normal	graph,	except	we	have	changed	the	labels	on	the	axes...
You	probably	know	that	a	point	can	be	represented	in	cartesian	or	polar	coordiantes.	Cartesian	coordiantes	are	in	the	form	(x,y)	and	give	the	two	(or	more)	components	of	a	point.	Polar	coordinates	use	a	direction	and	magnitude,	and	have	points	in	the	form	(r,	theta).		For	example,	the	point	(1,1)	in	cartesian	is	(2^.5,	45)	in	polar.		45	represents	the
direction	(45	degrees	above	the	horizontal)	and	2^.5	represents	the	amount	of	distance	to	go	(thank	you	Pythagoras).		The	angles	start	at	zero	and	go	counter-clockwise.	To	go	1	unit	downward:		cartesian:	(0,-1)	polar:		(1,	270).	To	convert	between	the	two:	Cartesian:		(	a,	b)												Polar:		r	=	sqrt(a^2		+		b^2)		[Pythagoran	thm],	theta	=	arctan(b/a)
Polar:	(	r,	theta	)	Cartesian:	a		=	r*cos(theta)	b	=	r*sin(theta)	You	don't	have	to	memorize	these	by	any	means.	Draw	a	triangle	and	you	can	figure	it	out	(link).	It's	better	to	learn	the	intuition	behind	a	concept	and	derive	it	when	you	need	it.	Intuition	is	hard	to	forget;	formulas	are	easy.	[An	aside:	To	express	a	point	in	two	dimensions	you	need	two
peices	of	data.	We	are	used	to	the	data	coming	in	an	(x,y)	pair.		Now	we	see	it	can	also	be	represented	as	an	(r,	theta)	pair.		Are	there	any	more	ways	to	represent	a	point	on	a	plane?	To	represent	a	point	in	three	dimensions,	we	need	three	pieces	of	data.	There	are	a	few	ways	to	do	this	(link).]	You	will	probably	seen	theta	written	in	terms	of	radians.
Polar	coordinates	may	seem	like	a	hassle:	we	have	to	take	our	complex	number	and	figure	out	the	magnitude	and	direction.	With	cartesian	coordinates,	it	is	simply	(a,	b).	The	next	section	will	justify	why	we	use	polar.	Incredible	Math	Relation	Ok,	I'll	admit	that	very	few	things	in	math	can	be	called	"exciting".		Intersting,	maybe	(don't	roll	your	eyes)
but	exciting?		This,	my	friends,	is	one	of	those	rare	moments.		I	was	in	hysterics	when	I	first	learned	of	it.		The	relation	is:	This	formula	is	just...	amazing.		It	relates	e,	which	is	an	irrational	(infinite	decimal	places)	and	funky	number	to	begin	with,	to	i,	an	imaginary	numbers,	and	also	to	sine	and	cosine,	which	are	just	regular	functions	that	have	rational
values	.		Whoa.		To	see	why	it	is	true,	click	here.		For	example,	e^(i*pi)	=	-1.		That	equation	has	two	irrantional	numbers,	and	somehow	the	exponential	e	pops	out	a	negative	number.		Ok,	that's	enough	blathering	about	the	beauty	of	that	equation,	let's	see	what	it	can	do.	Suppose	we	multiply	both	sides	by	some	number	r.		Then	we	get:	Let's	look	at
this	for	a	bit.		It	is	strikingly	similar	to	some	of	the	equations	for	converting	between	cartesian	and	polar	coordinates.		Indeed,		(rcos(theta),	rsin(theta))	is	the	(x,y)	pair	for	a	point	originally	expressed	in	(r,	theta)	form.			But	the	sin	has	an	i	term,	so	the	number	is	complex.		Now	we	have	an	(a,b)	term,	with	a	=	rcos(theta)	and	b	=	rsin(theta).	We	have
found	the	polar	form	for	complex	numbers.		Instead	of	being	an	(r,	theta)	pair	we	can	write	any	complex	number	z	as:	z	=	a	+bi		or			z	=	re^(i*theta)	The	rules	for	converting	between	the	two	are	the	same.		r	=	sqrt(a^2	+	b^2)	and	theta	=	arctan(b/a)	If	we	choose	the	right	numbers	for	r	and	theta,	then	z	=	a	+bi	=	re^(i	*	theta).			This	is	all	thanks	to
the	beauty	of	the	above	formula.	Complex	Conjugates	and	Magnitudes	Remember	how	you	were	at	the	edge	of	your	seat	wondering	why	we	choose	+i	instead	of	-i	as	the	square	root	of	-1?		Now	we	can	see	where	it	comes	in.	The	normal	method	of	finding	a	magnitude	is	to	square	a	number	and	then	take	its	square	root.		For	positive	real	numbers	this
just	gives	us	the	original	number,	and	for	negative	real	numbers	(like	-9)	it	will	give	the	absolute	value	(its	magnitude).			Thus,	both	9	and	-9	have	the	same	magnitude	of	9.		They	are	the	same	distance	from	the	origin,	just	in	different	directions.	Complex	numbers	aren't	quite	so	simple.		Taking	1	+	i	as	an	example,	if	we	try	and	square	this	and	take	the
square	root	we	get:		magnitude(?)	=		sqrt((1+i)^2)			=	sqrt(1	+2i	-1)	=	sqrt(2i).		But	we	showed	earlier	that	imaginary	numbers	can't	have	square	roots.	(LINK	WHY).		Uh	oh.	Complex	conjugates	save	the	day.		Because	our	decision	to	define	i	as	positive	was	arbitrary,	we	can't	exclude	the	possibility	of	a	negative	i.		We	define	the	complex	conjugate	of
(a	+	bi)	as	(a	-	bi).		If	z	is	a	complex	number,	its	complex	conjugate	is	usually	written	as	z	with	a	bar	over	it.		Now,	instead	of	squaring	a	complex	number	then	taking	its	square	root,	we	multiply	it	by	its	complex	conjugate	then	take	the	square	root.		For	any	number	(a	+	bi)	we	get	Magnitude	=	sqrt(	(a+bi)	*	(a	-bi)	)	=	sqrt(a^2			+abi		-abi		+	b^2)		=
sqrt(a^2		+		b^2).	It	looks	just	like	the	formula	for	regular	cartesian	coordinates!		(Pythagorean	theorem	to	find	lengths).		Thus,	the	magnitude	of	(3	+	4i)	is	sqrt(9	+	16)	=	5.		On	a	last	note,	if	you	want	to	find	the	complex	conjugate	of	any	complex	number,	just	switch	all	the	i's	to	"-i".		It	doesn't	matter	if	they	are	in	exponentials	or	denominators	or
inside	square	roots:		just	switch	them	all.		For	complex	numbers	in	polar	form	(re^(i*theta)),	the	magnitude	is	just	r.	The	polar	form	of	imaginary	numbers	is	useful	because	multiplication	becomes	addition	when	you	are	dealing	with	exponentials.		This	is	much,	much	easier	than	expanding	out	loads	of	cosine	and	sine	terms.		Also,	you	don't	have	to
remember	the	sine	and	cosine	angle	addition	formulas;	the	exponentitals	can	do	it	for	you.		This	is	very	useful	when	you	are	analyzing	circuits.	←	Back	to	Library	A	complex	number	is	written	in	Cartesian	form	as	z	=	x	+	iy,	where	x	is	the	real	part,	y	is	the	imaginary	part,	and	i	denotes	the	square	root	of	-1.	This	representation,	also	known	as	the
rectangular	form,	allows	for	intuitive	operations,	formulating	real	and	imaginary	components	separately.	Using	real	and	imaginary	components,	Cartesian	form	straightforwardly	handles	addition	and	subtraction	of	complex	numbers.	The	polar	form	of	a	complex	number	uses	the	magnitude	(r)	and	the	angle	(θ)	of	the	complex	number	in	the	complex
plane:	z	=	r(cos	θ	+	i	sin	θ).	To	convert	from	the	Cartesian	form	to	polar	form,	use	the	equations:	r	=	sqrt(x^2	+	y^2)	and	θ	=	tan^-1(y/x).	The	polar	form	offers	a	practical	approach	while	multiplying	or	dividing	complex	numbers	as	it	turns	into	simple	multiplication	or	division	of	magnitude	and	addition	or	subtraction	of	angles.	Note	that	computer
programming	languages	tend	to	use	the	function	atan2(y,	x)	rather	than	atan(y/x)	because	atan2	correctly	deals	with	x	being	zero	and	gives	answers	in	the	correct	quadrant.	Euler’s	form	is	a	concise	representation	of	the	polar	form:	z	=	re^(iθ).	To	convert	from	Cartesian	form	to	Euler’s	form,	utilise	the	same	conversions	as	for	polar	form:	r	=
sqrt(x^2	+	y^2)	and	θ	=	tan^-1(y/x).	Euler’s	form	is	particularly	useful	in	solving	problems	involving	powers	and	roots	of	complex	numbers,	as	exponentiation	and	root	extraction	become	more	straightforward	operations.	The	complex	conjugate	of	a	complex	number	in	Cartesian	form	gives	significant	insights.	The	complex	conjugate	of	z	=	x	+	iy	is	z̅
=	x	-	iy.	Multiplying	a	complex	number	by	its	complex	conjugate	simplifies	the	calculation	and	results	in	a	real	number	equal	to	the	square	of	its	magnitude:	z*z̅	=	x^2	+	y^2	=	r^2.	A	complex	number	in	Cartesian	form	can	be	represented	as	a	2x2	real	matrix,	which	can	be	helpful	in	visualising	certain	types	of	transformations.	The	complex	number	z
=	x	+	iy	has	the	matrix	form	[x	-y;	y	x].	←	Back	to	Library	A	complex	number	is	written	in	Cartesian	form	as	z	=	x	+	iy,	where	x	is	the	real	part,	y	is	the	imaginary	part,	and	i	denotes	the	square	root	of	-1.	This	representation,	also	known	as	the	rectangular	form,	allows	for	intuitive	operations,	formulating	real	and	imaginary	components	separately.
Using	real	and	imaginary	components,	Cartesian	form	straightforwardly	handles	addition	and	subtraction	of	complex	numbers.	The	polar	form	of	a	complex	number	uses	the	magnitude	(r)	and	the	angle	(θ)	of	the	complex	number	in	the	complex	plane:	z	=	r(cos	θ	+	i	sin	θ).	To	convert	from	the	Cartesian	form	to	polar	form,	use	the	equations:	r	=
sqrt(x^2	+	y^2)	and	θ	=	tan^-1(y/x).	The	polar	form	offers	a	practical	approach	while	multiplying	or	dividing	complex	numbers	as	it	turns	into	simple	multiplication	or	division	of	magnitude	and	addition	or	subtraction	of	angles.	Note	that	computer	programming	languages	tend	to	use	the	function	atan2(y,	x)	rather	than	atan(y/x)	because	atan2
correctly	deals	with	x	being	zero	and	gives	answers	in	the	correct	quadrant.	Euler’s	form	is	a	concise	representation	of	the	polar	form:	z	=	re^(iθ).	To	convert	from	Cartesian	form	to	Euler’s	form,	utilise	the	same	conversions	as	for	polar	form:	r	=	sqrt(x^2	+	y^2)	and	θ	=	tan^-1(y/x).	Euler’s	form	is	particularly	useful	in	solving	problems	involving
powers	and	roots	of	complex	numbers,	as	exponentiation	and	root	extraction	become	more	straightforward	operations.	The	complex	conjugate	of	a	complex	number	in	Cartesian	form	gives	significant	insights.	The	complex	conjugate	of	z	=	x	+	iy	is	z̅	=	x	-	iy.	Multiplying	a	complex	number	by	its	complex	conjugate	simplifies	the	calculation	and	results
in	a	real	number	equal	to	the	square	of	its	magnitude:	z*z̅	=	x^2	+	y^2	=	r^2.	A	complex	number	in	Cartesian	form	can	be	represented	as	a	2x2	real	matrix,	which	can	be	helpful	in	visualising	certain	types	of	transformations.	The	complex	number	z	=	x	+	iy	has	the	matrix	form	[x	-y;	y	x].
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