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Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the
license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply
legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions
necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Augmented	Dickey	Fuller	test	(ADF	Test)	is	a	common	statistical	test	used	to	test	whether	a	given	Time	series	is	stationary	or	not.	It	is	one	of	the	most	commonly	used	statistical	test	when	it	comes	to	analyzing	the
stationary	of	a	series.	1.	Introduction	In	ARIMA	time	series	forecasting,	the	first	step	is	to	determine	the	number	of	differencing	required	to	make	the	series	stationary.	Since	testing	the	stationarity	of	a	time	series	is	a	frequently	performed	activity	in	autoregressive	models,	the	ADF	test	along	with	KPSS	test	is	something	that	you	need	to	be	fluent	in
when	performing	time	series	analysis.	Another	point	to	remember	is	the	ADF	test	is	fundamentally	a	statistical	significance	test.	That	means,	there	is	a	hypothesis	testing	involved	with	a	null	and	alternate	hypothesis	and	as	a	result	a	test	statistic	is	computed	and	p-values	get	reported.	It	is	from	the	test	statistic	and	the	p-value,	you	can	make	an
inference	as	to	whether	a	given	series	is	stationary	or	not.	So,	how	exactly	does	the	ADF	test	work?	let’s	see	the	mathematical	intuition	behind	the	test	with	clear	examples.	Let’s	begin.	2.	What	is	a	Unit	Root	Test?	The	ADF	test	belongs	to	a	category	of	tests	called	‘Unit	Root	Test’,	which	is	the	proper	method	for	testing	the	stationarity	of	a	time	series.
So	what	does	a	‘Unit	Root’	mean?	Unit	root	is	a	characteristic	of	a	time	series	that	makes	it	non-stationary.	Technically	speaking,	a	unit	root	is	said	to	exist	in	a	time	series	of	the	value	of	alpha	=	1	in	the	below	equation.	where,	Yt	is	the	value	of	the	time	series	at	time	‘t’	and	Xe	is	an	exogenous	variable	(a	separate	explanatory	variable,	which	is	also	a
time	series).	What	does	this	mean	to	us?	The	presence	of	a	unit	root	means	the	time	series	is	non-stationary.	Besides,	the	number	of	unit	roots	contained	in	the	series	corresponds	to	the	number	of	differencing	operations	required	to	make	the	series	stationary.	Alright,	let’s	come	back	to	topic.	3.	Dickey-Fuller	Test	Before	going	into	ADF	test,	let’s	first
understand	what	is	the	Dickey-Fuller	test.	A	Dickey-Fuller	test	is	a	unit	root	test	that	tests	the	null	hypothesis	that	α=1	in	the	following	model	equation.	alpha	is	the	coefficient	of	the	first	lag	on	Y.	Null	Hypothesis	(H0):	alpha=1	where,	y(t-1)	=	lag	1	of	time	series	delta	Y(t-1)	=	first	difference	of	the	series	at	time	(t-1)	Fundamentally,	it	has	a	similar
null	hypothesis	as	the	unit	root	test.	That	is,	the	coefficient	of	Y(t-1)	is	1,	implying	the	presence	of	a	unit	root.	If	not	rejected,	the	series	is	taken	to	be	non-stationary.	The	Augmented	Dickey-Fuller	test	evolved	based	on	the	above	equation	and	is	one	of	the	most	common	form	of	Unit	Root	test.	4.	How	does	Augmented	Dickey	Fuller	(ADF)	Test	work?	As
the	name	suggest,	the	ADF	test	is	an	‘augmented’	version	of	the	Dickey	Fuller	test.	The	ADF	test	expands	the	Dickey-Fuller	test	equation	to	include	high	order	regressive	process	in	the	model.	If	you	notice,	we	have	only	added	more	differencing	terms,	while	the	rest	of	the	equation	remains	the	same.	This	adds	more	thoroughness	to	the	test.	The	null
hypothesis	however	is	still	the	same	as	the	Dickey	Fuller	test.	A	key	point	to	remember	here	is:	Since	the	null	hypothesis	assumes	the	presence	of	unit	root,	that	is	α=1,	the	p-value	obtained	should	be	less	than	the	significance	level	(say	0.05)	in	order	to	reject	the	null	hypothesis.	Thereby,	inferring	that	the	series	is	stationary.	However,	this	is	a	very
common	mistake	analysts	commit	with	this	test.	That	is,	if	the	p-value	is	less	than	significance	level,	people	mistakenly	take	the	series	to	be	non-stationary.	5.	ADF	Test	in	Python	So,	how	to	perform	a	Augmented	Dickey-Fuller	test	in	Python?	The	statsmodel	package	provides	a	reliable	implementation	of	the	ADF	test	via	the	adfuller()	function	in
statsmodels.tsa.stattools.	It	returns	the	following	outputs:	The	p-value	The	value	of	the	test	statistic	Number	of	lags	considered	for	the	test	The	critical	value	cutoffs.	When	the	test	statistic	is	lower	than	the	critical	value	shown,	you	reject	the	null	hypothesis	and	infer	that	the	time	series	is	stationary.	Alright,	let’s	run	the	ADF	test	on	the	a10	dataset
from	the	fpp	package	from	R.	This	dataset	counts	the	total	monthly	scripts	for	pharmaceutical	products	falling	under	ATC	code	A10.	The	original	source	of	this	dataset	is	the	Australian	Health	Insurance	Commission.	As	see	earlier,	the	null	hypothesis	of	the	test	is	the	presence	of	unit	root,	that	is,	the	series	is	non-stationary.	#	Setup	and	Import	data
from	statsmodels.tsa.stattools	import	adfuller	import	pandas	as	pd	import	numpy	as	np	%matplotlib	inline	url	=	'	df	=	pd.read_csv(url,	parse_dates=['date'],	index_col='date')	series	=	df.loc[:,	'value'].values	df.plot(figsize=(14,8),	legend=None,	title='a10	-	Drug	Sales	Series');	The	packages	and	the	data	is	loaded,	we	have	everything	needed	to	perform
the	test	using	adfuller().	An	optional	argument	the	adfuller()	accepts	is	the	number	of	lags	you	want	to	consider	while	performing	the	OLS	regression.	By	default,	this	value	is	12*(nobs/100)^{1/4},	where	nobs	is	the	number	of	observations	in	the	series.	But,	optionally	you	can	specify	either	the	maximum	number	of	lags	with	maxlags	parameter	or	let
the	algorithm	compute	the	optimal	number	iteratively.	This	can	be	done	by	setting	the	autolag='AIC'.	By	doing	so,	the	adfuller	will	choose	a	the	number	of	lags	that	yields	the	lowest	AIC.	This	is	usually	a	good	option	to	follow.	#	ADF	Test	result	=	adfuller(series,	autolag='AIC')	print(f'ADF	Statistic:	{result[0]}')	print(f'n_lags:	{result[1]}')	print(f'p-
value:	{result[1]}')	for	key,	value	in	result[4].items():	print('Critial	Values:')	print(f'	{key},	{value}')	Result:	ADF	Statistic:	3.1451856893067296	n_lags:	1.0	p-value:	1.0	Critial	Values:	1%,	-3.465620397124192	Critial	Values:	5%,	-2.8770397560752436	Critial	Values:	10%,	-2.5750324547306476	The	p-value	is	obtained	is	greater	than	significance	level
of	0.05	and	the	ADF	statistic	is	higher	than	any	of	the	critical	values.	Clearly,	there	is	no	reason	to	reject	the	null	hypothesis.	So,	the	time	series	is	in	fact	non-stationary.	6.	ADF	Test	on	stationary	series	Now,	let’s	see	another	example	of	performing	the	test	on	a	series	of	random	numbers	which	is	usually	considered	as	stationary.	Let’s	use
np.random.randn()	to	generate	a	randomized	series.	#	ADF	test	on	random	numbers	series	=	np.random.randn(100)	result	=	adfuller(series,	autolag='AIC')	print(f'ADF	Statistic:	{result[0]}')	print(f'p-value:	{result[1]}')	for	key,	value	in	result[4].items():	print('Critial	Values:')	print(f'	{key},	{value}')	Result:	ADF	Statistic:	-7.4715740767231456	p-
value:	5.0386184272419386e-11	Critial	Values:	1%,	-3.4996365338407074	Critial	Values:	5%,	-2.8918307730370025	Critial	Values:	10%,	-2.5829283377617176	The	p-value	is	very	less	than	the	significance	level	of	0.05	and	hence	we	can	reject	the	null	hypothesis	and	take	that	the	series	is	stationary.	Let’s	visualise	the	series	as	well	to	confirm.
import	matplotlib.pyplot	as	plt	%matplotlib	inline	fig,	axes	=	plt.subplots(figsize=(10,7))	plt.plot(series);	plt.title('Random');	7.	Conclusion	We	saw	how	the	Augmented	Dickey	Fuller	Test	works	and	how	to	perform	it	using	statsmodels.	Now	given	any	time	series,	you	should	be	in	a	position	to	perform	the	ADF	Test	and	make	a	fair	inference	on	whether
the	series	is	stationary	or	not.	In	the	next	one	we’ll	see	how	to	perform	the	KPSS	test.	This	book	is	in	Open	Review.	We	want	your	feedback	to	make	the	book	better	for	you	and	other	students.	You	may	annotate	some	text	by	selecting	it	with	the	cursor	and	then	click	"Annotate"	in	the	pop-up	menu.	You	can	also	see	the	annotations	of	others:	click	the
arrow	in	the	upper	right	hand	corner	of	the	page	If	a	series	is	nonstationary,	conventional	hypothesis	tests,	confidence	intervals	and	forecasts	can	be	strongly	misleading.	The	assumption	of	stationarity	is	violated	if	a	series	exhibits	trends	or	breaks	and	the	resulting	complications	in	an	econometric	analysis	depend	on	the	specific	type	of	the
nonstationarity.	This	section	focuses	on	time	series	that	exhibit	trends.	A	series	is	said	to	exhibit	a	trend	if	it	has	a	persistent	long-term	movement.	One	can	distinguishes	between	deterministic	and	stochastic	trends	as:	A	trend	is	deterministic	if	it	is	a	nonrandom	function	of	time.	A	trend	is	said	to	be	stochastic	if	it	is	a	random	function	of	time.	The
figures	we	have	produced	in	Chapter	14.2	reveal	that	many	economic	time	series	show	a	trending	behavior	that	is	probably	best	modeled	by	stochastic	trends.	This	is	why	the	book	focuses	on	the	treatment	of	stochastic	trends.	The	simplest	way	to	model	a	time	series	\(Y_t\)	that	has	stochastic	trend	is	the	random	walk	\[\begin{align}	Y_t	=	Y_{t-1}	+
u_t,	\tag{14.6}	\end{align}\]	where	the	\(u_t\)	are	i.i.d.	errors	with	\(E(u_t\vert	Y_{t-1},	Y_{t-2},	\dots)	=	0\).	Note	that	\[\begin{align*}	E(Y_t\vert	Y_{t-1},	Y_{t-2}\dots)	=&	\,	E(Y_{t-1}\vert	Y_{t-1},	Y_{t-2}\dots)	+	E(u_t\vert	Y_{t-1},	Y_{t-2}\dots)	\\	=&	\,	Y_{t-1}	\end{align*}\]	so	the	best	forecast	for	\(Y_t\)	is	yesterday’s	observation	\(Y_{t-1}\).
Hence	the	difference	between	\(Y_t\)	and	\(Y_{t-1}\)	is	unpredictable.	The	path	followed	by	\(Y_t\)	consists	of	random	steps	\(u_t\),	hence	it	is	called	a	random	walk.	Assume	that	\(Y_0\),	the	starting	value	of	the	random	walk	is	\(0\).	Another	way	to	write	(14.6)	is	\[\begin{align*}	Y_0	=&	\,	0	\\	Y_1	=&	\,	0	+	u_1	\\	Y_2	=&	\,	0	+	u_1	+	u_2	\\	\vdots	&	\,	\\
Y_t	=&	\,	\sum_{i=1}^t	u_i.	\end{align*}\]	Therefore	we	have	\[\begin{align*}	Var(Y_t)	=&	\,	Var(u_1	+	u_2	+	\dots	+	u_t)	\\	=&	\,	t	\sigma_u^2.	\end{align*}\]	Thus	the	variance	of	a	random	walk	depends	on	\(t\)	which	violates	the	assumption	presented	in	Key	Concept	14.5:	a	random	walk	is	nonstationary.	Obviously,	(14.6)	is	a	special	case	of	an
AR(\(1\))	model	where	\(\beta_1	=	1\).	One	can	show	that	a	time	series	that	follows	an	AR(\(1\))	model	is	stationary	if	\(\lvert\beta_1\rvert	<	1\).	In	a	general	AR(\(p\))	model,	stationarity	is	linked	to	the	roots	of	the	polynomial	\[1-\beta_1	z	-	\beta_2	z^2	-	\beta_3	z^3	-	\dots	-	\beta_p	z^p.\]	If	all	roots	are	greater	than	\(1\)	in	absolute	value,	the	AR(\(p\))
series	is	stationary.	If	at	least	one	root	equals	\(1\),	the	AR(\(p\))	is	said	to	have	a	unit	root	and	thus	has	a	stochastic	trend.	It	is	straightforward	to	simulate	random	walks	in	R	using	arima.sim().	The	function	matplot()	is	convenient	for	simple	plots	of	the	columns	of	a	matrix.	#	simulate	and	plot	random	walks	starting	at	0	set.seed(1)	RWs	|t|)	#>
(Intercept)	-3.459488	0.3635104	-9.516889	1.354156e-15	#>	L(RWs[,	3])	1.047195	0.1450874	7.217687	1.135828e-10	The	result	is	obviously	spurious:	the	coefficient	on	\(Green_{t-1}\)	is	estimated	to	be	about	\(1\)	and	the	\(p\)-value	of	\(1.14	\cdot	10^{-10}\)	of	the	corresponding	\(t\)-test	indicates	that	the	coefficient	is	highly	significant	while	its
true	value	is	in	fact	zero.	As	an	empirical	example,	consider	the	U.S.	unemployment	rate	and	the	Japanese	industrial	production.	Both	series	show	an	upward	trending	behavior	from	the	mid-1960s	through	the	early	1980s.	#	plot	U.S.	unemployment	rate	&	Japanese	industrial	production	plot(merge(as.zoo(USUnemp),	as.zoo(JPIndProd)),	plot.type	=
"single",	col	=	c("darkred",	"steelblue"),	lwd	=	2,	xlab	=	"Date",	ylab	=	"",	main	=	"Spurious	Regression:	Macroeconomic	Time	series")	#	add	a	legend	legend("topleft",	legend	=	c("USUnemp",	"JPIndProd"),	col	=	c("darkred",	"steelblue"),	lwd	=	c(2,	2))	#	estimate	regression	using	data	from	1962	to	1985	SR_Unemp1	#>	t	test	of	coefficients:	#>	#>
Estimate	Std.	Error	t	value	Pr(>|t|)	#>	(Intercept)	-2.37452	1.12041	-2.1193	0.0367	*	#>	ts(JPIndProd["1962::1985"])	2.22057	0.29233	7.5961	2.227e-11	***	#>	---	#>	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	A	simple	regression	of	the	U.S.	unemployment	rate	on	Japanese	industrial	production	using	data	from	1962	to	1985	yields	\
[\begin{align}	\widehat{U.S.	UR}_t	=	-\underset{(1.12)}{2.37}	+	\underset{(0.29)}{2.22}	\log(JapaneseIP_t).	\tag{14.8}	\end{align}\]	This	appears	to	be	a	significant	relationship:	the	\(t\)-statistic	of	the	coefficient	on	\(\log(JapaneseIP_t)\)	is	bigger	than	7.	#	Estimate	regression	using	data	from	1986	to	2012	SR_Unemp2	#>	t	test	of	coefficients:	#>
#>	Estimate	Std.	Error	t	value	Pr(>|t|)	#>	(Intercept)	41.7763	5.4066	7.7270	6.596e-12	***	#>	ts(JPIndProd["1986::2012"])	-7.7771	1.1714	-6.6391	1.386e-09	***	#>	---	#>	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	When	estimating	the	same	model,	this	time	with	data	from	1986	to	2012,	we	obtain	\[\begin{align}	\widehat{U.S.	UR}_t	=
\underset{(5.41)}{41.78}	-\underset{(1.17)}{7.78}	\log(JapaneseIP)_t	\tag{14.9}	\end{align}\]	which	surprisingly	is	quite	different.	(14.8)	indicates	a	moderate	positive	relationship,	in	contrast	to	the	large	negative	coefficient	in	(14.9).	This	phenomenon	can	be	attributed	to	stochastic	trends	in	the	series:	since	there	is	no	economic	reasoning	that
relates	both	trends,	both	regressions	may	be	spurious.	A	formal	test	for	a	stochastic	trend	has	been	proposed	by	Dickey	and	Fuller	(1979)	which	thus	is	termed	the	Dickey-Fuller	test.	As	discussed	above,	a	time	series	that	follows	an	AR(\(1\))	model	with	\(\beta_1	=	1\)	has	a	stochastic	trend.	Thus,	the	testing	problem	is	\[\begin{align*}	H_0:	\beta_1	=
1	\	\	\	\text{vs.}	\	\	\	H_1:	\lvert\beta_1\rvert	<	1.	\end{align*}\]	The	null	hypothesis	is	that	the	AR(\(1\))	model	has	a	unit	root	and	the	alternative	hypothesis	is	that	it	is	stationary.	One	often	rewrites	the	AR(\(1\))	model	by	subtracting	\(Y_{t-1}\)	on	both	sides:	\[\begin{align}	Y_t	=	\beta_0	+	\beta_1	Y_{t-1}	+	u_t	\	\	\Leftrightarrow	\	\	\Delta	Y_t	=
\beta_0	+	\delta	Y_{t-1}	+	u_t,	\tag{14.10}	\end{align}\]	where	\(\delta	=	\beta_1	-	1\).	The	testing	problem	then	becomes	\[\begin{align*}	H_0:	\delta	=	0	\	\	\	\text{vs.}	\	\	\	H_1:	\delta	<	0,	\end{align*}\]	which	is	convenient	since	the	corresponding	test	statistic	is	reported	by	many	relevant	R	functions.11	The	Dickey-Fuller	test	can	also	be	applied	in
an	AR(\(p\))	model.	The	Augmented	Dickey-Fuller	(ADF)	test	is	summarized	in	Key	Concept	14.8.	Consider	the	regression	\[\begin{align}	\Delta	Y_t	=	\beta_0	+	\delta	Y_{t-1}	+	\gamma_1	\Delta	Y_{t-1}	+	\gamma_2	\Delta	Y_{t-2}	+	\dots	+	\gamma_p	\Delta	Y_{t-p}	+	u_t.	\tag{14.11}	\end{align}\]	The	ADF	test	for	a	unit	autoregressive	root	tests	the
hypothesis	\(H_0:	\delta	=	0\)	(stochastic	trend)	against	the	one-sided	alternative	\(H_1:	\delta	<	0\)	(stationarity)	using	the	usual	OLS	\(t\)-statistic.	If	it	is	assumed	that	\(Y_t\)	is	stationary	around	a	deterministic	linear	time	trend,	the	model	is	augmented	by	the	regressor	\(t\):	\[\begin{align}	\Delta	Y_t	=	\beta_0	+	at	+	\delta	Y_{t-1}	+	\gamma_1	\Delta
Y_{t-1}	+	\gamma_2	\Delta	Y_{t-2}	+	\dots	+	\gamma_p	\Delta	Y_{t-p+1}	+	u_t,	\tag{14.12}	\end{align}\]	where	again	\(H_0:	\delta	=	0\)	is	tested	against	\(H_1:	\delta	<	0\).	The	optimal	lag	length	\(p\)	can	be	estimated	using	information	criteria.	In	(14.11),	\(p=0\)	(no	lags	of	\(\Delta	Y_t\)	are	used	as	regressors)	corresponds	to	a	simple	AR(\(1\)).
Under	the	null,	the	\(t\)-statistic	corresponding	to	\(H_0:	\delta	=	0\)	does	not	have	a	normal	distribution.	The	critical	values	can	only	be	obtained	from	simulation	and	differ	for	regressions	(14.11)	and	(14.12)	since	the	distribution	of	the	ADF	test	statistic	is	sensitive	to	the	deterministic	components	included	in	the	regression.	Key	Concept	14.8	states
that	the	critical	values	for	the	ADF	test	in	the	regressions	(14.11)	and	(14.12)	can	only	be	determined	using	simulation.	The	idea	of	the	simulation	study	is	to	simulate	a	large	number	of	ADF	test	statistics	and	use	them	to	estimate	quantiles	of	their	asymptotic	distribution.	This	section	shows	how	this	can	be	done	using	R.	First,	consider	the	following
AR(\(1\))	model	with	intercept	\[\begin{align*}	Y_t	=&	\,	\alpha	+	z_t,	\	\	z_t	=	\rho	z_{t-1}	+	u_t.	\end{align*}\]	This	can	be	written	as	\[\begin{align*}	Y_t	=&	\,	(1-\rho)	\alpha	+	\rho	y_{t-1}	+	u_t,	\end{align*}\]	i.e.,	\(Y_t\)	is	a	random	walk	without	drift	under	the	null	\(\rho	=	1\).	One	can	show	that	\(Y_t\)	is	a	stationary	process	with	mean	\(\alpha\)
for	\(\lvert\rho\rvert	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	The	estimation	yields	\[\begin{align*}	\Delta\log(GDP_t)	=&	\underset{(0.118)}{0.28}	+	\underset{(0.0001)}{0.0002}	t	-\underset{(0.014)}{0.033}	\log(GDP_{t-1})	\\	&	+	\underset{(0.113)}{0.083}	\Delta	\log(GDP_{t-1})	+	\underset{(0.071)}{0.188}	\Delta	\log(GDP_{t-2})
+	u_t,	\end{align*}\]	so	the	ADF	test	statistic	is	\(t=-0.033/0.014	=	-	2.35\).	The	corresponding	\(5\%\)	critical	value	from	Table	14.2	is	\(-3.41\)	so	we	cannot	reject	the	null	hypothesis	that	\(\log(GDP)\)	has	a	stochastic	trend	in	favor	of	the	alternative	that	it	is	stationary	around	a	deterministic	linear	time	trend.	The	ADF	test	can	be	done	conveniently
using	ur.df()	from	the	package	urca.	#	test	for	unit	root	in	GDP	using	'ur.df()'	from	the	package	'urca'	summary(ur.df(LogGDP,	type	=	"trend",	lags	=	2,	selectlags	=	"Fixed"))	#>	#>	###############################################	#>	#	Augmented	Dickey-Fuller	Test	Unit	Root	Test	#	#>
###############################################	#>	#>	Test	regression	trend	#>	#>	#>	Call:	#>	lm(formula	=	z.diff	~	z.lag.1	+	1	+	tt	+	z.diff.lag)	#>	#>	Residuals:	#>	Min	1Q	Median	3Q	Max	#>	-0.025580	-0.004109	0.000321	0.004869	0.032781	#>	#>	Coefficients:	#>	Estimate	Std.	Error	t	value	Pr(>|t|)	#>
(Intercept)	0.2790086	0.1180427	2.364	0.019076	*	#>	z.lag.1	-0.0333245	0.0144144	-2.312	0.021822	*	#>	tt	0.0002382	0.0001109	2.148	0.032970	*	#>	z.diff.lag1	0.2708136	0.0697696	3.882	0.000142	***	#>	z.diff.lag2	0.1876338	0.0705557	2.659	0.008476	**	#>	---	#>	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	#>	#>	Residual
standard	error:	0.007704	on	196	degrees	of	freedom	#>	Multiple	R-squared:	0.1783,	Adjusted	R-squared:	0.1616	#>	F-statistic:	10.63	on	4	and	196	DF,	p-value:	8.076e-08	#>	#>	#>	Value	of	test-statistic	is:	-2.3119	11.2558	4.267	#>	#>	Critical	values	for	test	statistics:	#>	1pct	5pct	10pct	#>	tau3	-3.99	-3.43	-3.13	#>	phi2	6.22	4.75	4.07	#>	phi3
8.43	6.49	5.47	The	first	test	statistic	at	the	bottom	of	the	output	is	the	one	we	are	interested	in.	The	number	of	test	statistics	reported	depends	on	the	test	regression.	For	type	=	“trend”,	the	second	statistics	corresponds	to	the	test	that	there	is	unit	root	and	no	time	trend	while	the	third	one	corresponds	to	a	test	of	the	hypothesis	that	there	is	a	unit
root,	no	time	trend	and	no	drift	term.	Dickey,	David	A.,	and	Wayne	A.	Fuller.	1979.	“Distribution	of	the	Estimators	for	Autoregressive	Time	Series	with	a	Unit	Root.”	Journal	of	the	American	Statistical	Association	74	(366):	pp.	427–431.	Page	2	This	book	is	in	Open	Review.	We	want	your	feedback	to	make	the	book	better	for	you	and	other	students.	You
may	annotate	some	text	by	selecting	it	with	the	cursor	and	then	click	"Annotate"	in	the	pop-up	menu.	You	can	also	see	the	annotations	of	others:	click	the	arrow	in	the	upper	right	hand	corner	of	the	page	When	there	are	discrete	(at	a	distinct	date)	or	gradual	(over	time)	changes	in	the	population	regression	coefficients,	the	series	is	nonstationary.
These	changes	are	called	breaks.	There	is	a	variety	of	reasons	why	breaks	can	occur	in	macroeconomic	time	series	but	most	often	they	are	related	to	changes	in	economic	policy	or	major	changes	in	the	structure	of	the	economy.	See	Chapter	14.7	of	the	book	for	some	examples.	If	breaks	are	not	accounted	for	in	the	regression	model,	OLS	estimates
will	reflect	the	average	relationship.	Since	these	estimates	might	be	strongly	misleading	and	result	in	poor	forecast	quality,	we	are	interested	in	testing	for	breaks.	One	distinguishes	between	testing	for	a	break	when	the	date	is	known	and	testing	for	a	break	with	an	unknown	break	date.	Let	\(\tau\)	denote	a	known	break	date	and	let	\(D_t(\tau)\)	be	a
binary	variable	indicating	time	periods	before	and	after	the	break.	Incorporating	the	break	in	an	ADL(\(1\),\(1\))	regression	model	yields	\[\begin{align*}	Y_t	=&	\beta_0	+	\beta_1	Y_{t-1}	+	\delta_1	X_{t-1}	+	\gamma_0	D_t(\tau)	+	\gamma_1\left[D_t(\tau)	\cdot	Y_{t-1}\right]	\\	&+	\,	\gamma_2\left[	D_t(\tau)	\cdot	X_{t-1}	\right]	+	u_t,	\end{align*}\]
where	we	allow	for	discrete	changes	in	\(\beta_0\),	\(\beta_1\)	and	\(\beta_2\)	at	the	break	date	\(\tau\).	The	null	hypothesis	of	no	break,	\[H_0:	\gamma_0=\gamma_1=\gamma_2=0,\]	can	be	tested	against	the	alternative	that	at	least	one	of	the	\(\gamma\)’s	is	not	zero	using	an	\(F\)-Test.	This	idea	is	called	a	Chow	test	after	Gregory	Chow	(1960).	When
the	break	date	is	unknown	the	Quandt	likelihood	ratio	(QLR)	test	(Quandt	1960)	may	be	used.	It	is	a	modified	version	of	the	Chow	test	which	uses	the	largest	of	all	\(F\)-statistics	obtained	when	applying	the	Chow	test	for	all	possible	break	dates	in	a	predetermined	range	\(\left[\tau_0,\tau_1\right]\).	The	QLR	test	is	summarized	in	Key	Concept	14.9.
The	QLR	test	can	be	used	to	test	for	a	break	in	the	population	regression	function	if	the	date	of	the	break	is	unknown.	The	QLR	test	statistic	is	the	largest	(Chow)	\(F(\tau)\)	statistic	computed	over	a	range	of	eligible	break	dates	\(\tau_0	\leq	\tau	\leq	\tau_1\):	\[\begin{align}	QLR	=	\max\left[F(\tau_0),F(\tau_0	+1),\dots,F(\tau_1)\right].	\tag{14.14}
\end{align}\]	The	most	important	properties	are:	The	QLR	test	can	be	applied	to	test	whether	a	subset	of	the	coefficients	in	the	population	regression	function	breaks	but	the	test	also	rejects	if	there	is	a	slow	evolution	of	the	regression	function.	When	there	is	a	single	discrete	break	in	the	population	regression	function	that	lying	at	a	date	within	the
range	tested,	the	\(QLR\)	test	statistic	is	\(F(\widehat{\tau})\)	and	\(\widehat{\tau}/T\)	is	a	consistent	estimator	of	the	fraction	of	the	sample	at	which	the	break	is.	The	large-sample	distribution	of	\(QLR\)	depends	on	\(q\),	the	number	of	restrictions	being	tested	and	both	ratios	of	end	points	to	the	sample	size,	\(\tau_0/T,	\tau_1/T\).	Similar	to	the	ADF
test,	the	large-sample	distribution	of	\(QLR\)	is	nonstandard.	Critical	values	are	presented	in	Table	14.5	of	the	book.	Using	the	QLR	statistic	we	may	test	whether	there	is	a	break	in	the	coefficients	on	the	lags	of	the	term	spread	in	(14.5),	the	ADL(\(2\),\(2\))	regression	model	of	GDP	growth.	Following	Key	Concept	14.9	we	modify	the	specification	of
(14.5)	by	adding	a	break	dummy	\(D(\tau)\)	and	its	interactions	with	both	lags	of	term	spread	and	choose	the	range	of	break	points	to	be	tested	as	1970:Q1	-	2005:Q2	(these	periods	are	the	center	70%	of	the	sample	data	from	1962:Q2	-	2012:Q4).	Thus,	the	model	becomes	\[\begin{align*}	GDPGR_t	=&\,	\beta_0	+	\beta_1	GDPGR_{t-1}	+	\beta_2
GDPGR_{t-2}	\\	&+\,	\beta_3	TSpread_{t-1}	+	\beta_4	TSpread_{t-2}	\\	&+\,	\gamma_1	D(\tau)	+	\gamma_2	(D(\tau)	\cdot	TSpread_{t-1})	\\	&+\,	\gamma_3	(D(\tau)	\cdot	TSpread_{t-2})	\\	&+\,	u_t.	\end{align*}\]	Next,	we	estimate	the	model	for	each	break	point	and	compute	the	\(F\)-statistic	corresponding	to	the	null	hypothesis	\(H_0:
\gamma_1=\gamma_2=\gamma_3=0\).	The	\(QLR\)-statistic	is	the	largest	of	the	\(F\)-statistics	obtained	in	this	manner.	#	set	up	a	range	of	possible	break	dates	tau	-0.6547438	The	hypothesis	cannot	be	rejected	at	the	\(10\%\)	significance	level.	Altogether	the	analysis	suggests	that	the	ADL(\(2\),\(2\))	model	coefficients	have	been	stable	since	the
presumed	break	in	the	early	1980s.	Chow,	Gregory	C.	1960.	“Tests	of	Equality	Between	Sets	of	Coefficients	in	Two	Linear	Regressions.”	Econometrica	28	(3):	591–605.	Quandt,	Richard	E.	1960.	“Tests	of	the	Hypothesis	That	a	Linear	Regression	System	Obeys	Two	Separate	Regimes.”	Journal	of	the	American	Statistical	Association	55	(290):	324–30.	.
Page	3	This	book	is	in	Open	Review.	We	want	your	feedback	to	make	the	book	better	for	you	and	other	students.	You	may	annotate	some	text	by	selecting	it	with	the	cursor	and	then	click	"Annotate"	in	the	pop-up	menu.	You	can	also	see	the	annotations	of	others:	click	the	arrow	in	the	upper	right	hand	corner	of	the	page	The	dividend	yield	(the	ratio	of
current	dividends	to	the	stock	price)	can	be	considered	as	an	indicator	of	future	excess	returns:	if	a	stock	has	a	high	current	dividend	yield,	it	can	be	considered	undervalued	and	it	can	be	presumed	that	the	price	of	the	stock	goes	up	in	the	future,	meaning	that	future	excess	returns	go	up.	This	presumption	can	be	examined	using	ADL	models	of
excess	returns,	where	lags	of	the	logarithm	of	the	stock’s	dividend	yield	serve	as	additional	regressors.	Unfortunately,	a	graphical	inspection	of	the	time	series	of	the	logarithm	of	the	dividend	yield	casts	doubt	on	the	assumption	that	the	series	is	stationary	which,	as	has	been	discussed	in	Chapter	14.7,	is	necessary	to	conduct	standard	inference	in	a
regression	analysis.	#	plot	logarithm	of	dividend	yield	series	plot(StockReturns[,	2],	col	=	"steelblue",	lwd	=	2,	ylab	=	"Logarithm",	main	=	"Dividend	Yield	for	CRSP	Index")	The	Dickey-Fuller	test	statistic	for	an	autoregressive	unit	root	in	an	AR(\(1\))	model	with	drift	provides	further	evidence	that	the	series	might	be	nonstationary.	#	test	for	unit	root
in	GDP	using	'ur.df()'	from	the	package	'urca'	summary(ur.df(window(StockReturns[,	2],	c(1960,1),	c(2002,	12)),	type	=	"drift",	lags	=	0))	#>	#>	###############################################	#>	#	Augmented	Dickey-Fuller	Test	Unit	Root	Test	#	#>
###############################################	#>	#>	Test	regression	drift	#>	#>	#>	Call:	#>	lm(formula	=	z.diff	~	z.lag.1	+	1)	#>	#>	Residuals:	#>	Min	1Q	Median	3Q	Max	#>	-14.3540	-2.9118	-0.2953	2.6375	25.5169	#>	#>	Coefficients:	#>	Estimate	Std.	Error	t	value	Pr(>|t|)	#>	(Intercept)	-2.740964	2.080038
-1.318	0.188	#>	z.lag.1	-0.007652	0.005989	-1.278	0.202	#>	#>	Residual	standard	error:	4.45	on	513	degrees	of	freedom	#>	Multiple	R-squared:	0.003172,	Adjusted	R-squared:	0.001229	#>	F-statistic:	1.633	on	1	and	513	DF,	p-value:	0.2019	#>	#>	#>	Value	of	test-statistic	is:	-1.2777	0.9339	#>	#>	Critical	values	for	test	statistics:	#>	1pct	5pct
10pct	#>	tau2	-3.43	-2.86	-2.57	#>	phi1	6.43	4.59	3.78	We	use	window()	to	get	observations	from	January	1960	to	December	2002	only.	Since	the	\(t\)-value	for	the	coefficient	on	the	lagged	logarithm	of	the	dividend	yield	is	\(-1.27\),	the	hypothesis	that	the	true	coefficient	is	zero	cannot	be	rejected,	even	at	the	\(10\%\)	significance	level.	However,	it	is
possible	to	examine	whether	the	dividend	yield	has	predictive	power	for	excess	returns	by	using	its	differences	in	an	ADL(\(1\),\(1\))	and	an	ADL(\(2\),\(2\))	model	(remember	that	differencing	a	series	with	a	unit	root	yields	a	stationary	series),	although	these	model	specifications	do	not	correspond	to	the	economic	reasoning	mentioned	above.	Thus,	we
also	estimate	an	ADL(\(1\),\(1\))	regression	using	the	level	of	the	logarithm	of	the	dividend	yield.	That	is	we	estimate	three	different	specifications:	\[\begin{align*}	(I)	\	excess	\,	returns_t	=&	\,	\beta_0	+	\beta_1	excess	\,	returns_{t-1}	+	\beta_3	\Delta	\log(dividend	yield_{t-1})	+	u_t	\\	\\	(II)	\	excess	\,	returns_t	=&	\,	\beta_0	+	\beta_1	excess	\,
returns_{t-1}	+	\beta_2	excess	\,	returns_{t-2}	\\	&+	\,	\beta_3	\Delta	\log(dividend	yield_{t-1})	+	\beta_4	\Delta	\log(dividend	yield_{t-2})	+	u_t	\\	\\	(III)	\	excess	\,	returns_t	=&	\,	\beta_0	+	\beta_1	excess	\,	returns_{t-1}	+	\beta_5	\log(dividend	yield_{t-1})	+	u_t	\\	\end{align*}\]	#	ADL(1,1)	(1st	difference	of	log	dividend	yield)	CRSP_ADL_1	FDD
0.471433	0.135195	3.4871	0.0005242	***	#>	L(FDD,	1:6)1	0.145021	0.081557	1.7782	0.0758853	.	#>	L(FDD,	1:6)2	0.058364	0.058911	0.9907	0.3222318	#>	L(FDD,	1:6)3	0.074166	0.047143	1.5732	0.1162007	#>	L(FDD,	1:6)4	0.036304	0.029335	1.2376	0.2163670	#>	L(FDD,	1:6)5	0.048756	0.031370	1.5543	0.1206535	#>	L(FDD,	1:6)6	0.050246
0.045129	1.1134	0.2659919	#>	---	#>	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	As	the	result	we	obtain	\[\begin{align}	\begin{split}	\widehat{\%ChgOJC_t}	=&	-\underset{(0.21)}{0.69}	+	\underset{(0.14)}{0.47}	FDD_t	+	\underset{(0.08)}{0.15}	FDD_{t-1}	+	\underset{(0.06)}{0.06}	FDD_{t-2}	+	\underset{(0.05)}{0.07}	FDD_{t-3}	\\
&+	\underset{(0.03)}{0.04}	FDD_{t-4}	+	\underset{(0.03)}{0.05}	FDD_{t-5}	+	\underset{(0.05)}{0.05}	FDD_{t-6},	\end{split}	\tag{15.1}	\end{align}\]	where	the	coefficient	on	\(FDD_{t-1}\)	estimates	the	price	increase	in	period	\(t\)	caused	by	an	additional	freezing	degree	day	in	the	preceding	month,	the	coefficient	on	\(FDD_{t-2}\)	estimates
the	effect	of	an	additional	freezing	degree	day	two	month	ago	and	so	on.	Consequently,	the	coefficients	in	(15.1)	can	be	interpreted	as	price	changes	in	current	and	future	periods	due	to	an	unit	increase	in	the	current	month’s	freezing	degree	days.	Page	6	This	book	is	in	Open	Review.	We	want	your	feedback	to	make	the	book	better	for	you	and	other
students.	You	may	annotate	some	text	by	selecting	it	with	the	cursor	and	then	click	"Annotate"	in	the	pop-up	menu.	You	can	also	see	the	annotations	of	others:	click	the	arrow	in	the	upper	right	hand	corner	of	the	page	This	section	of	the	book	describes	the	general	idea	of	a	dynamic	causal	effect	and	how	the	concept	of	a	randomized	controlled
experiment	can	be	translated	to	time	series	applications,	using	several	examples.	In	general,	for	empirical	attempts	to	measure	a	dynamic	causal	effect,	the	assumptions	of	stationarity	(see	Key	Concept	14.5)	and	exogeneity	must	hold.	In	time	series	applications	up	until	here	we	have	assumed	that	the	model	error	term	has	conditional	mean	zero	given
current	and	past	values	of	the	regressors.	For	estimation	of	a	dynamic	causal	effect	using	a	distributed	lag	model,	assuming	a	stronger	form	termed	strict	exogeneity	may	be	useful.	Strict	exogeneity	states	that	the	error	term	has	mean	zero	conditional	on	past,	present	and	future	values	of	the	independent	variables.	The	two	concepts	of	exogeneity	and
the	distributed	lag	model	are	summarized	in	Key	Concept	15.1.	The	general	distributed	lag	model	is	\[\begin{align}	Y_t	=	\beta_0	+	\beta_1	X_t	+	\beta_2	X_{t-1}	+	\beta_3	X_{t-2}	+	\dots	+	\beta_{r+1}	X_{t-r}	+	u_t,	\tag{15.2}	\end{align}\]	where	it	is	assumed	that	\(X\)	is	an	exogenous	variable,	\[E(u_t\vert	X_t,	X_{t-1},	X_{t-2},\dots)	=	0.\]	a	\
(X_t,Y_t\)	have	a	stationary	distribution.	b	\((Y_t,X_t)\)	and	\((Y_{t-j},X_{t-j})\)	become	independently	distributed	as	\(j\)	gets	large.	Large	outliers	are	unlikely.	In	particular,	we	need	that	all	the	variables	have	more	than	eight	nonzero	and	finite	moments	—	a	stronger	assumption	than	before	(four	finite	nonzero	moments)	that	is	required	for
computation	of	the	HAC	covariance	matrix	estimator.	There	is	no	perfect	multicollinearity.	The	distributed	lag	model	may	be	extended	to	include	contemporaneous	and	past	values	of	additional	regressors.	On	the	assumption	of	exogeneity	There	is	another	form	of	exogeneity	termed	strict	exogeneity	which	assumes	\[E(u_t\vert	\dots,
X_{t+2},X_{t+1},X_t,X_{t-1},X_{t-2},\dots)=0,\]	that	is	the	error	term	has	mean	zero	conditional	on	past,	present	and	future	values	of	\(X\).	Strict	exogeneity	implies	exogeneity	(as	defined	in	1.	above)	but	not	the	other	way	around.	From	this	point	on	we	will	therefore	distinguish	between	exogeneity	and	strict	exogeneity.	Exogeneity	as	in	1.	suffices
for	the	OLS	estimators	of	the	coefficient	in	distributed	lag	models	to	be	consistent.	However,	if	the	the	assumption	of	strict	exogeneity	is	valid,	more	efficient	estimators	can	be	applied.	Page	7	This	book	is	in	Open	Review.	We	want	your	feedback	to	make	the	book	better	for	you	and	other	students.	You	may	annotate	some	text	by	selecting	it	with	the
cursor	and	then	click	"Annotate"	in	the	pop-up	menu.	You	can	also	see	the	annotations	of	others:	click	the	arrow	in	the	upper	right	hand	corner	of	the	page	The	following	terminology	regarding	the	coefficients	in	the	distributed	lag	model	(15.2)	is	useful	for	upcoming	applications:	The	dynamic	causal	effect	is	also	called	the	dynamic	multiplier.	\
(\beta_{h+1}\)	in	(15.2)	is	the	\(h\)-period	dynamic	multiplier.	The	contemporaneous	effect	of	\(X\)	on	\(Y\),	\(\beta_1\),	is	termed	the	impact	effect.	The	\(h\)-period	cumulative	dynamic	multiplier	of	a	unit	change	in	\(X\)	and	\(Y\)	is	defined	as	the	cumulative	sum	of	the	dynamic	multipliers.	In	particular,	\(\beta_1\)	is	the	zero-period	cumulative	dynamic
multiplier,	\(\beta_1	+	\beta_2\)	is	the	one-period	cumulative	dynamic	multiplier	and	so	forth.	The	cumulative	dynamic	multipliers	of	the	distributed	lag	model	(15.2)	are	the	coefficients	\(\delta_1,\delta_2,\dots,\delta_r,\delta_{r+1}\)	in	the	modified	regression	\[\begin{align}	Y_t	=&	\,	\delta_0	+	\delta_1	\Delta	X_t	+	\delta_2	\Delta	X_{t-1}	+	\dots	+
\delta_r	\Delta	X_{t-r+1}	+	\delta_{r+1}	X_{t-r}	+	u_t,	\tag{15.3}	\end{align}\]	and	thus	can	be	directly	estimated	using	OLS	which	makes	it	convenient	to	compute	their	HAC	standard	errors.	\(\delta_{r+1}\)	is	called	the	long-run	cumulative	dynamic	multiplier.	It	is	straightforward	to	compute	the	cumulative	dynamic	multipliers	for	(15.1),	the
estimated	distributed	lag	regression	of	changes	in	orange	juice	concentrate	prices	on	freezing	degree	days,	using	the	corresponding	model	object	orange_DLM	and	the	function	cumsum().	#	compute	cumulative	multipliers	cum_mult	0.4714329	0.6164542	0.6748177	0.7489835	0.7852874	0.8340436	#>	6-period	CDM	#>	0.8842895	Translating	the
distributed	lag	model	with	six	lags	of	\(FDD\)	to	(15.3),	we	see	that	the	OLS	coefficient	estimates	in	this	model	coincide	with	the	multipliers	stored	in	cum_mult.	#	estimate	cumulative	dynamic	multipliers	using	the	modified	regression	cum_mult_reg	d(FDD)	d(L(FDD,	1:5))1	d(L(FDD,	1:5))2	d(L(FDD,	1:5))3	d(L(FDD,	1:5))4	#>	0.4714329	0.6164542
0.6748177	0.7489835	0.7852874	#>	d(L(FDD,	1:5))5	L(FDD,	6)	#>	0.8340436	0.8842895	As	noted	above,	using	a	model	specification	as	in	(15.3)	allows	to	easily	obtain	standard	errors	for	the	estimated	dynamic	cumulative	multipliers.	#	obtain	coefficient	summary	that	reports	HAC	standard	errors	coeftest(cum_mult_reg,	vcov.	=	vcovHAC)	#>	#>	t
test	of	coefficients:	#>	#>	Estimate	Std.	Error	t	value	Pr(>|t|)	#>	(Intercept)	-0.69296	0.23668	-2.9278	0.0035431	**	#>	d(FDD)	0.47143	0.13583	3.4709	0.0005562	***	#>	d(L(FDD,	1:5))1	0.61645	0.13145	4.6896	3.395e-06	***	#>	d(L(FDD,	1:5))2	0.67482	0.16009	4.2151	2.882e-05	***	#>	d(L(FDD,	1:5))3	0.74898	0.17263	4.3387	1.682e-05	***	#>
d(L(FDD,	1:5))4	0.78529	0.17351	4.5260	7.255e-06	***	#>	d(L(FDD,	1:5))5	0.83404	0.18236	4.5737	5.827e-06	***	#>	L(FDD,	6)	0.88429	0.19303	4.5810	5.634e-06	***	#>	---	#>	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	Page	8	This	book	is	in	Open	Review.	We	want	your	feedback	to	make	the	book	better	for	you	and	other	students.	You
may	annotate	some	text	by	selecting	it	with	the	cursor	and	then	click	"Annotate"	in	the	pop-up	menu.	You	can	also	see	the	annotations	of	others:	click	the	arrow	in	the	upper	right	hand	corner	of	the	page	The	error	term	\(u_t\)	in	the	distributed	lag	model	(15.2)	may	be	serially	correlated	due	to	serially	correlated	determinants	of	\(Y_t\)	that	are	not
included	as	regressors.	When	these	factors	are	not	correlated	with	the	regressors	included	in	the	model,	serially	correlated	errors	do	not	violate	the	assumption	of	exogeneity	such	that	the	OLS	estimator	remains	unbiased	and	consistent.	However,	autocorrelated	standard	errors	render	the	usual	homoskedasticity-only	and	heteroskedasticity-robust
standard	errors	invalid	and	may	cause	misleading	inference.	HAC	errors	are	a	remedy.	Problem:	If	the	error	term	\(u_t\)	in	the	distributed	lag	model	(15.2)	is	serially	correlated,	statistical	inference	that	rests	on	usual	(heteroskedasticity-robust)	standard	errors	can	be	strongly	misleading.	Solution:	Heteroskedasticity-	and	autocorrelation-consistent
(HAC)	estimators	of	the	variance-covariance	matrix	circumvent	this	issue.	There	are	R	functions	like	vcovHAC()	from	the	package	sandwich	which	are	convenient	for	computation	of	such	estimators.	The	package	sandwich	also	contains	the	function	NeweyWest(),	an	implementation	of	the	HAC	variance-covariance	estimator	proposed	by	Newey	and
West	(1987).	Consider	the	distributed	lag	regression	model	with	no	lags	and	a	single	regressor	\(X_t\)	\[\begin{align*}	Y_t	=	\beta_0	+	\beta_1	X_t	+	u_t,	\end{align*}\]	with	autocorrelated	errors.	A	brief	derivation	of	\[\begin{align}	\overset{\sim}{\sigma}^2_{\widehat{\beta}_1}	=	\widehat{\sigma}^2_{\widehat{\beta}_1}	\widehat{f}_t,	\tag{15.4}
\end{align}\]	the	so-called	Newey-West	variance	estimator	for	the	variance	of	the	OLS	estimator	of	\(\beta_1\)	is	presented	in	Chapter	15.4	of	the	book.	\(\widehat{\sigma}^2_{\widehat{\beta}_1}\)	in	(15.4)	is	the	heteroskedasticity-robust	variance	estimate	of	\(\widehat{\beta}_1\)	and	\[\begin{align}	\widehat{f}_t	=	1	+	2	\sum_{j=1}^{m-1}
\left(\frac{m-j}{m}\right)	\overset{\sim}{\rho}_j	\tag{15.5}	\end{align}\]	is	a	correction	factor	that	adjusts	for	serially	correlated	errors	and	involves	estimates	of	\(m-1\)	autocorrelation	coefficients	\(\overset{\sim}{\rho}_j\).	As	it	turns	out,	using	the	sample	autocorrelation	as	implemented	in	acf()	to	estimate	the	autocorrelation	coefficients	renders
(15.4)	inconsistent,	see	pp.	650-651	of	the	book	for	a	detailed	argument.	Therefore,	we	use	a	somewhat	different	estimator.	For	a	time	series	\(X\)	we	have	\[	\	\overset{\sim}{\rho}_j	=	\frac{\sum_{t=j+1}^T	\hat	v_t	\hat	v_{t-j}}{\sum_{t=1}^T	\hat	v_t^2},	\	\text{with}	\	\hat	v=	(X_t-\overline{X})	\hat	u_t.	\]	We	implement	this	estimator	in	the
function	acf_c()	below.	\(m\)	in	(15.5)	is	a	truncation	parameter	to	be	chosen.	A	rule	of	thumb	for	choosing	\(m\)	is	\[\begin{align}	m	=	\left	\lceil{0.75	\cdot	T^{1/3}}\right\rceil.	\tag{15.6}	\end{align}\]	We	simulate	a	time	series	that,	as	stated	above,	follows	a	distributed	lag	model	with	autocorrelated	errors	and	then	show	how	to	compute	the
Newey-West	HAC	estimate	of	\(SE(\widehat{\beta}_1)\)	using	R.	This	is	done	via	two	separate	but,	as	we	will	see,	identical	approaches:	at	first	we	follow	the	derivation	presented	in	the	book	step-by-step	and	compute	the	estimate	“manually”.	We	then	show	that	the	result	is	exactly	the	estimate	obtained	when	using	the	function	NeweyWest().	#
function	that	computes	rho	tilde	acf_c	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	Newey,	Whitney	K.,	and	Kenneth	D.	West.	1987.	“A	Simple,	Positive	Semi-Definite,	Heteroskedasticity	and	Autocorrelation	Consistent	Covariance	Matrix.”	Econometrica	55:	703–8.	Page	9	This	book	is	in	Open	Review.	We	want	your	feedback	to	make	the	book
better	for	you	and	other	students.	You	may	annotate	some	text	by	selecting	it	with	the	cursor	and	then	click	"Annotate"	in	the	pop-up	menu.	You	can	also	see	the	annotations	of	others:	click	the	arrow	in	the	upper	right	hand	corner	of	the	page	In	general,	the	errors	in	a	distributed	lag	model	are	correlated	which	necessitates	usage	of	HAC	standard
errors	for	valid	inference.	If,	however,	the	assumption	of	exogeneity	(the	first	assumption	stated	in	Key	Concept	15.1)	is	replaced	by	strict	exogeneity,	that	is,	\[E(u_t\vert	\dots,	X_{t+1},	X_{t},	X_{t-1},	\dots)	=	0,\]	more	efficient	approaches	than	OLS	estimation	of	the	coefficients	become	available.	For	a	general	distributed	lag	model	with	\(r\)	lags
and	AR(\(p\))	errors,	these	approaches	are	summarized	in	Key	Concept	15.4.	Consider	the	general	distributed	lag	model	with	\(r\)	lags	and	errors	following	an	AR(\(p\))	process,	\[\begin{align}	Y_t	=&	\,	\beta_0	+	\beta_1	X_t	+	\beta_2	X_{t-1}	+	\dots	+	\beta_{r+1}	X_{t-r}	+	u_t	\tag{15.7}	\\	u_t	=&	\,	\phi_1	u_{t-1}	+	\phi	u_{t-2}	+	\dots	+	\phi_p
u_{t-p}	+	\overset{\sim}{u}_t.	\tag{15.8}	\end{align}\]	Under	strict	exogeneity	of	\(X_t\),	one	may	rewrite	the	above	model	in	the	ADL	specification	\[\begin{align*}	Y_t	=&	\,	\alpha_0	+	\phi_1	Y_{t-1}	+	\phi_2	Y_{t-2}	+	\dots	+	\phi_p	Y_{t-p}	\\	&+	\,	\delta_0	X_t	+	\delta_1	X_{t-1}	+	\dots	+	\delta_q	X_{t-q}	+	\overset{\sim}{u}_t	\end{align*}\]
where	\(q=r+p\)	and	compute	estimates	of	the	dynamic	multipliers	\(\beta_1,	\beta_2,	\dots,	\beta_{r+1}\)	using	OLS	estimates	of	\(\phi_1,	\phi_2,	\dots,	\phi_p,	\delta_0,	\delta_1,	\dots,	\delta_q\).	An	alternative	is	to	estimate	the	dynamic	multipliers	using	feasible	GLS,	that	is	to	apply	the	OLS	estimator	to	a	quasi-difference	specification	of	(15.7).	Under
strict	exogeneity,	the	feasible	GLS	approach	is	the	BLUE	estimator	for	the	dynamic	multipliers	in	large	samples.	On	the	one	hand,	as	demonstrated	in	Chapter	15.5	of	the	book,	OLS	estimation	of	the	ADL	representation	can	be	beneficial	for	estimation	of	the	dynamic	multipliers	in	large	distributed	lag	models	because	it	allows	for	a	more	parsimonious
model	that	may	be	a	good	approximation	to	the	large	model.	On	the	other	hand,	the	GLS	approach	is	more	efficient	than	the	ADL	estimator	if	the	sample	size	is	large.	We	shortly	review	how	the	different	representations	of	a	small	distributed	lag	model	can	be	obtained	and	show	how	this	specification	can	be	estimated	by	OLS	and	GLS	using	R.	The
model	is	\[\begin{align}	Y_t	=	\beta_0	+	\beta_1	X_t	+	\beta_2	X_{t-1}	+	u_t,	\tag{15.9}	\end{align}\]	so	a	change	in	\(X\)	is	modeled	to	effect	\(Y\)	contemporaneously	(\(\beta_1\))	and	in	the	next	period	(\(\beta_2\)).	The	error	term	\(u_t\)	is	assumed	to	follow	an	AR(\(1\))	process,\[u_t	=	\phi_1	u_{t-1}	+	\overset{\sim}{u_t},\]	where	\(\overset{\sim}
{u_t}\)	is	serially	uncorrelated.	One	can	show	that	the	ADL	representation	of	this	model	is	\[\begin{align}	Y_t	=	\alpha_0	+	\phi_1	Y_{t-1}	+	\delta_0	X_t	+	\delta_1	X_{t-1}	+	\delta_2	X_{t-2}	+	\overset{\sim}{u}_t,	\tag{15.10}	\end{align}\]	with	the	restrictions	\[\begin{align*}	\beta_1	=&	\,	\delta_0,	\\	\beta_2	=&	\,	\delta_1	+	\phi_1	\delta_0,
\end{align*}\]	see	p.	657	of	the	book.	Another	way	of	writing	the	ADL(\(1\),\(2\))	representation	(15.10)	is	the	quasi-difference	model	\[\begin{align}	\overset{\sim}{Y}_t	=	\alpha_0	+	\beta_1	\overset{\sim}{X}_t	+	\beta_2	\overset{\sim}{X}_{t-1}	+	\overset{\sim}{u}_t,	\tag{15.11}	\end{align}\]	where	\(\overset{\sim}{Y}_t	=	Y_t	-	\phi_1	Y_{t-1}\)
and	\(\overset{\sim}{X}_t	=	X_t	-	\phi_1	X_{t-1}\).	Notice	that	the	error	term	\(\overset{\sim}{u}_t\)	is	uncorrelated	in	both	models	and,	as	shown	in	Chapter	15.5	of	the	book,	\[E(u_t\vert	X_{t+1},	X_t,	X_{t-1},	\dots)	=	0,\]	which	is	implied	by	the	assumption	of	strict	exogeneity.	We	continue	by	simulating	a	time	series	of	\(500\)	observations	using	the
model	(15.9)	with	\(\beta_1	=	0.1\),	\(\beta_2	=	0.25\),	\(\phi	=	0.5\)	and	\(\overset{\sim}{u}_t	\sim	\mathcal{N}(0,1)\)	and	estimate	the	different	representations,	starting	with	the	distributed	lag	model	(15.9).	#	set	seed	for	reproducibility	set.seed(1)	#	simulate	a	time	series	with	serially	correlated	errors	obs	(Intercept)	0.038340	0.073411	0.5223
0.601717	#>	X	0.123661	0.046710	2.6474	0.008368	**	#>	L(X)	0.247406	0.046377	5.3347	1.458e-07	***	#>	---	#>	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	Next,	we	estimate	the	ADL(\(1\),\(2\))	model	(15.10)	using	OLS.	The	errors	are	uncorrelated	in	this	representation	of	the	model.	This	statement	is	supported	by	a	plot	of	the	sample
autocorrelation	function	of	the	residual	series.	#	estimate	the	ADL(2,1)	representation	of	the	distributed	lag	model	adl21_dynamic	0.1176425	0.2478484	Strict	exogeneity	allows	for	OLS	estimation	of	the	quasi-difference	model	(15.11).	The	idea	of	applying	the	OLS	estimator	to	a	model	where	the	variables	are	linearly	transformed,	such	that	the	model
errors	are	uncorrelated	and	homoskedastic,	is	called	generalized	least	squares	(GLS).	The	OLS	estimator	in	(15.11)	is	called	the	infeasible	GLS	estimator	because	\(\overset{\sim}{Y}\)	and	\(\overset{\sim}{X}\)	cannot	be	computed	without	knowing	\(\phi_1\),	the	autoregressive	coefficient	in	the	error	AR(\(1\))	model,	which	is	generally	unknown	in
practice.	Assume	we	knew	that	\(\phi	=	0.5\).	We	then	may	obtain	the	infeasible	GLS	estimates	of	the	dynamic	multipliers	in	(15.9)	by	applying	OLS	to	the	transformed	data.	#	GLS:	estimate	quasi-differenced	specification	by	OLS	iGLS_dynamic	#>	Time	series	regression	with	"ts"	data:	#>	Start	=	3,	End	=	500	#>	#>	Call:	#>	dynlm(formula	=	I(Y	-
0.5	*	L(Y))	~	I(X	-	0.5	*	L(X))	+	I(L(X)	-	#>	0.5	*	L(X,	2)))	#>	#>	Residuals:	#>	Min	1Q	Median	3Q	Max	#>	-3.0325	-0.6375	-0.0499	0.6658	3.7724	#>	#>	Coefficients:	#>	Estimate	Std.	Error	t	value	Pr(>|t|)	#>	(Intercept)	0.01620	0.04564	0.355	0.72273	#>	I(X	-	0.5	*	L(X))	0.12000	0.04237	2.832	0.00481	**	#>	I(L(X)	-	0.5	*	L(X,	2))	0.25266
0.04237	5.963	4.72e-09	***	#>	---	#>	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	#>	#>	Residual	standard	error:	1.017	on	495	degrees	of	freedom	#>	Multiple	R-squared:	0.07035,	Adjusted	R-squared:	0.0666	#>	F-statistic:	18.73	on	2	and	495	DF,	p-value:	1.442e-08	The	feasible	GLS	estimator	uses	preliminary	estimation	of	the
coefficients	in	the	presumed	error	term	model,	computes	the	quasi-differenced	data	and	then	estimates	the	model	using	OLS.	This	idea	was	introduced	by	Cochrane	and	Orcutt	(1949)	and	can	be	extended	by	continuing	this	process	iteratively.	Such	a	procedure	is	implemented	in	the	function	cochrane.orcutt()	from	the	package	orcutt.	X_t	#>	Estimate
Std.	Error	t	value	Pr(>|t|)	#>	(Intercept)	0.032885	0.085163	0.386	0.69956	#>	X_t	0.120128	0.042534	2.824	0.00493	**	#>	X_l1	0.252406	0.042538	5.934	5.572e-09	***	#>	---	#>	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	#>	#>	Residual	standard	error:	1.0165	on	495	degrees	of	freedom	#>	Multiple	R-squared:	0.0704	,	Adjusted	R-
squared:	0.0666	#>	F-statistic:	18.7	on	2	and	495	DF,	p-value:	<	1.429e-08	#>	#>	Durbin-Watson	statistic	#>	(original):	1.06907	,	p-value:	1.05e-25	#>	(transformed):	1.98192	,	p-value:	4.246e-01	Some	more	sophisticated	methods	for	GLS	estimation	are	provided	with	the	package	nlme.	The	function	gls()	can	be	used	to	fit	linear	models	by
maximum	likelihood	estimation	algorithms	and	allows	to	specify	a	correlation	structure	for	the	error	term.	#	feasible	GLS	maximum	likelihood	estimation	procedure	summary(gls(Y_t	~	X_t	+	X_l1,	correlation	=	corAR1()))	#>	Generalized	least	squares	fit	by	REML	#>	Model:	Y_t	~	X_t	+	X_l1	#>	Data:	NULL	#>	AIC	BIC	logLik	#>	1451.847	1472.88
-720.9235	#>	#>	Correlation	Structure:	AR(1)	#>	Formula:	~1	#>	Parameter	estimate(s):	#>	Phi	#>	0.4668343	#>	#>	Coefficients:	#>	Value	Std.Error	t-value	p-value	#>	(Intercept)	0.03929124	0.08530544	0.460595	0.6453	#>	X_t	0.11986994	0.04252270	2.818963	0.0050	#>	X_l1	0.25287471	0.04252497	5.946500	0.0000	#>	#>	Correlation:
#>	(Intr)	X_t	#>	X_t	0.039	#>	X_l1	0.037	0.230	#>	#>	Standardized	residuals:	#>	Min	Q1	Med	Q3	Max	#>	-3.00075518	-0.64255522	-0.05400347	0.69101814	3.28555793	#>	#>	Residual	standard	error:	1.14952	#>	Degrees	of	freedom:	499	total;	496	residual	Notice	that	in	this	example,	the	coefficient	estimates	produced	by	GLS	are	somewhat
closer	to	their	true	values	and	that	the	standard	errors	are	the	smallest	for	the	GLS	estimator.	Cochrane,	D.,	and	G.	H	Orcutt.	1949.	“Application	of	Least	Squares	Regression	to	Relationships	Containing	Auto-Correlated	Error	Terms.”	Journal	of	the	American	Statistical	Association	44	(245):	32–61.	.	Page	10	This	book	is	in	Open	Review.	We	want	your
feedback	to	make	the	book	better	for	you	and	other	students.	You	may	annotate	some	text	by	selecting	it	with	the	cursor	and	then	click	"Annotate"	in	the	pop-up	menu.	You	can	also	see	the	annotations	of	others:	click	the	arrow	in	the	upper	right	hand	corner	of	the	page	This	section	investigates	the	following	two	questions	using	the	time	series
regression	methods	discussed	here:	How	persistent	is	the	effect	of	a	single	freeze	on	orange	juice	concentrate	prices?	Has	the	effect	been	stable	over	the	whole	time	span?	We	start	by	estimating	dynamic	causal	effects	with	a	distributed	lag	model	where	\(\%ChgOJC_t\)	is	regressed	on	\(FDD_t\)	and	18	lags.	A	second	model	specification	considers	a
transformation	of	the	the	distributed	lag	model	which	allows	to	estimate	the	19	cumulative	dynamic	multipliers	using	OLS.	The	third	model,	adds	11	binary	variables	(one	for	each	of	the	months	from	February	to	December)	to	adjust	for	a	possible	omitted	variable	bias	arising	from	correlation	of	\(FDD_t\)	and	seasons	by	adding	season(FDD)	to	the
right	hand	side	of	the	formula	of	the	second	model.	#	estimate	distributed	lag	models	of	frozen	orange	juice	price	changes	FOJC_mod_DM	Model	1:	FOJC_pctc	~	L(d(FDD),	0:17)	+	L(FDD,	18)	+	season(FDD)	#>	Model	2:	FOJC_pctc	~	L(d(FDD),	0:17)	+	L(FDD,	18)	#>	Res.Df	Df	F	Pr(>F)	#>	1	563	#>	2	574	-11	0.9683	0.4743	The	\(p\)-value	is	\(0.47\)
so	we	cannot	reject	the	hypothesis	that	the	coefficients	on	the	monthly	dummies	are	zero,	even	at	the	\(10\%\)	level.	We	conclude	that	the	seasonal	fluctuations	in	demand	for	orange	juice	do	not	pose	a	serious	threat	to	internal	validity	of	the	model.	It	is	convenient	to	use	plots	of	dynamic	multipliers	and	cumulative	dynamic	multipliers.	The	following
two	code	chunks	reproduce	Figures	15.2	(a)	and	15.2	(b)	of	the	book	which	display	point	estimates	of	dynamic	and	cumulative	multipliers	along	with	upper	and	lower	bounds	of	their	\(95\%\)	confidence	intervals	computed	using	the	above	HAC	standard	errors.	#	95%	CI	bounds	point_estimates	---	#>	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'
1	We	end	up	with	the	following	results:	\[\begin{align*}	GDPGR_t	=&	\,	\underset{(0.46)}{0.52}	+	\underset{(0.11)}{0.29}	GDPGR_{t-1}	+	\underset{(0.09)}{0.22}	GDPGR_{t-2}	-\underset{(0.36)}{0.90}	TSpread_{t-1}	+	\underset{(0.39)}{1.33}	TSpread_{t-2},	\\	TSpread_t	=&	\,	\underset{(0.12)}{0.46}	+	\underset{(0.02)}{0.01}	GDPGR_{t-1}
-\underset{(0.03)}{0.06}	GDPGR_{t-2}	+	\underset{(0.10)}{1.06}	TSpread_{t-1}	-\underset{(0.11)}{0.22}	TSpread_{t-2}.	\end{align*}\]	The	function	VAR()	can	be	used	to	obtain	the	same	coefficient	estimates	as	presented	above	since	it	applies	OLS	per	equation,	too.	#	set	up	data	for	estimation	using	`VAR()`	VAR_data	VAR	Estimation	Results:
#>	=======================	#>	#>	Estimated	coefficients	for	equation	GDPGrowth:	#>	==============================================	#>	Call:	#>	GDPGrowth	=	GDPGrowth.l1	+	TSpread.l1	+	GDPGrowth.l2	+	TSpread.l2	+	const	#>	#>	GDPGrowth.l1	TSpread.l1	GDPGrowth.l2	TSpread.l2	const	#>
0.2895533	-0.9025493	0.2163919	1.3298305	0.5163440	#>	#>	#>	Estimated	coefficients	for	equation	TSpread:	#>	============================================	#>	Call:	#>	TSpread	=	GDPGrowth.l1	+	TSpread.l1	+	GDPGrowth.l2	+	TSpread.l2	+	const	#>	#>	GDPGrowth.l1	TSpread.l1	GDPGrowth.l2	TSpread.l2	const
#>	0.009978489	1.058227945	-0.057245123	-0.219190243	0.455773969	VAR()	returns	a	list	of	lm	objects	which	can	be	passed	to	the	usual	functions,	for	example	summary()	and	so	it	is	straightforward	to	obtain	model	statistics	for	the	individual	equations.	#	obtain	the	adj.	R^2	from	the	output	of	'VAR()'
summary(VAR_est$varresult$GDPGrowth)$adj.r.squared	#>	[1]	0.2887223	summary(VAR_est$varresult$TSpread)$adj.r.squared	#>	[1]	0.8254311	We	may	use	the	individual	model	objects	to	conduct	Granger	causality	tests.	#	Granger	causality	tests:	#	test	if	term	spread	has	no	power	in	explaining	GDP	growth	linearHypothesis(VAR_EQ1,
hypothesis.matrix	=	c("TSpread_t-1",	"TSpread_t-2"),	vcov.	=	sandwich)	#>	Linear	hypothesis	test	#>	#>	Hypothesis:	#>	TSpread_t-1	#>	TSpread_t-2	#>	#>	Model	1:	restricted	model	#>	Model	2:	GDPGrowth	~	L(GDPGrowth,	1:2)	+	L(TSpread,	1:2)	#>	#>	Note:	Coefficient	covariance	matrix	supplied.	#>	#>	Res.Df	Df	F	Pr(>F)	#>	1	125	#>	2
123	2	5.9094	0.003544	**	#>	---	#>	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	#	test	if	GDP	growth	has	no	power	in	explaining	term	spread	linearHypothesis(VAR_EQ2,	hypothesis.matrix	=	c("Growth_t-1",	"Growth_t-2"),	vcov.	=	sandwich)	#>	Linear	hypothesis	test	#>	#>	Hypothesis:	#>	Growth_t-1	#>	Growth_t-2	#>	#>	Model	1:
restricted	model	#>	Model	2:	TSpread	~	L(GDPGrowth,	1:2)	+	L(TSpread,	1:2)	#>	#>	Note:	Coefficient	covariance	matrix	supplied.	#>	#>	Res.Df	Df	F	Pr(>F)	#>	1	125	#>	2	123	2	3.4777	0.03395	*	#>	---	#>	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	Both	Granger	causality	tests	reject	at	the	level	of	\(5\%\).	This	is	evidence	in	favor	of
the	conjecture	that	the	term	spread	has	power	in	explaining	GDP	growth	and	vice	versa.	The	idea	of	an	iterated	forecast	for	period	\(T+2\)	based	on	observations	up	to	period	\(T\)	is	to	use	the	one-period-ahead	forecast	as	an	intermediate	step.	That	is,	the	forecast	for	period	\(T+1\)	is	used	as	an	observation	when	predicting	the	level	of	a	series	for
period	\(T+2\).	This	can	be	generalized	to	a	\(h\)-period-ahead	forecast	where	all	intervening	periods	between	\(T\)	and	\(T+h\)	must	be	forecasted	as	they	are	used	as	observations	in	the	process	(see	Chapter	16.2	of	the	book	for	a	more	detailed	argument	on	this	concept).	Iterated	multiperiod	forecasts	are	summarized	in	Key	Concept	16.2.	The	steps
for	an	iterated	multiperiod	AR	forecast	are:	Estimate	the	AR(\(p\))	model	using	OLS	and	compute	the	one-period-ahead	forecast.	Use	the	one-period-ahead	forecast	to	obtain	the	two-period-ahead	forecast.	Continue	by	iterating	to	obtain	forecasts	farther	into	the	future.	An	iterated	multiperiod	VAR	forecast	is	done	as	follows:	Estimate	the	VAR(\(p\))
model	using	OLS	per	equation	and	compute	the	one-period-ahead	forecast	for	all	variables	in	the	VAR.	Use	the	one-period-ahead	forecasts	to	obtain	the	two-period-ahead	forecasts.	Continue	by	iterating	to	obtain	forecasts	of	all	variables	in	the	VAR	farther	into	the	future.	Since	a	VAR	models	all	variables	using	lags	of	the	respective	other	variables,	we
need	to	compute	forecasts	for	all	variables.	It	can	be	cumbersome	to	do	so	when	the	VAR	is	large	but	fortunately	there	are	R	functions	that	facilitate	this.	For	example,	the	function	predict()	can	be	used	to	obtain	iterated	multivariate	forecasts	for	VAR	models	estimated	by	the	function	VAR().	The	following	code	chunk	shows	how	to	compute	iterated
forecasts	for	GDP	growth	and	the	term	spread	up	to	period	2015:Q1,	that	is	\(h=10\),	using	the	model	object	VAR_est.	#	compute	iterated	forecasts	for	GDP	growth	and	term	spread	for	the	next	10	quarters	forecasts	$GDPGrowth	#>	fcst	lower	upper	CI	#>	[1,]	1.738653	-3.006124	6.483430	4.744777	#>	[2,]	1.692193	-3.312731	6.697118	5.004925
#>	[3,]	1.911852	-3.282880	7.106583	5.194731	#>	[4,]	2.137070	-3.164247	7.438386	5.301317	#>	[5,]	2.329667	-3.041435	7.700769	5.371102	#>	[6,]	2.496815	-2.931819	7.925449	5.428634	#>	[7,]	2.631849	-2.846390	8.110088	5.478239	#>	[8,]	2.734819	-2.785426	8.255064	5.520245	#>	[9,]	2.808291	-2.745597	8.362180	5.553889	#>	[10,]
2.856169	-2.722905	8.435243	5.579074	#>	#>	$TSpread	#>	fcst	lower	upper	CI	#>	[1,]	1.676746	0.708471226	2.645021	0.9682751	#>	[2,]	1.884098	0.471880228	3.296316	1.4122179	#>	[3,]	1.999409	0.336348101	3.662470	1.6630609	#>	[4,]	2.080836	0.242407507	3.919265	1.8384285	#>	[5,]	2.131402	0.175797245	4.087008	1.9556052	#>
[6,]	2.156094	0.125220562	4.186968	2.0308738	#>	[7,]	2.161783	0.085037834	4.238528	2.0767452	#>	[8,]	2.154170	0.051061544	4.257278	2.1031082	#>	[9,]	2.138164	0.020749780	4.255578	2.1174139	#>	[10,]	2.117733	-0.007139213	4.242605	2.1248722	This	reveals	that	the	two-quarter-ahead	forecast	of	GDP	growth	in	2013:Q2	using	data
through	2012:Q4	is	\(1.69\).	For	the	same	period,	the	iterated	VAR	forecast	for	the	term	spread	is	\(1.88\).	The	matrices	returned	by	predict(VAR_est)	also	include	\(95\%\)	prediction	intervals	(however,	the	function	does	not	adjust	for	autocorrelation	or	heteroskedasticity	of	the	errors!).	We	may	also	plot	the	iterated	forecasts	for	both	variables	by
calling	plot()	on	the	output	of	predict(VAR_est).	#	visualize	the	iterated	forecasts	plot(forecasts)	A	direct	multiperiod	forecast	uses	a	model	where	the	predictors	are	lagged	appropriately	such	that	the	available	observations	can	be	used	directly	to	do	the	forecast.	The	idea	of	direct	multiperiod	forecasting	is	summarized	in	Key	Concept	16.3.	A	direct
multiperiod	forecast	that	forecasts	\(h\)	periods	into	the	future	using	a	model	of	\(Y_t\)	and	an	additional	predictor	\(X_t\)	with	\(p\)	lags	is	done	by	first	estimating	\[\begin{align*}	Y_t	=&	\,	\delta_0	+	\delta_1	Y_{t-h}	+	\dots	+	\delta_{p}	Y_{t-p-h+1}	+	\delta_{p+1}	X_{t-h}	\\	+&	\dots	+	\delta_{2p}	Y_{t-p-h+1}	+	u_t,	\end{align*}\]	which	is	then
used	to	compute	the	forecast	of	\(Y_{T+h}\)	based	on	observations	through	period	\(T\).	For	example,	to	obtain	two-quarter-ahead	forecasts	of	GDP	growth	and	the	term	spread	we	first	estimate	the	equations	\[\begin{align*}	GDPGR_t	=&	\,	\beta_{10}	+	\beta_{11}	GDPGR_{t-2}	+	\beta_{12}	GDPGR_{t-3}	+	\gamma_{11}	TSpread_{t-2}	+
\gamma_{12}	TSpread_{t-3}	+	u_{1t},	\\	TSpread_t	=&	\,	\beta_{20}	+	\beta_{21}	GDPGR_{t-2}	+	\beta_{22}	GDPGR_{t-3}	+	\gamma_{21}	TSpread_{t-2}	+	\gamma_{22}	TSpread_{t-3}	+	u_{2t}	\end{align*}\]	and	then	substitute	the	values	of	\(GDPGR_{2012:Q4}\),	\(GDPGR_{2012:Q3}\),	\(TSpread_{2012:Q4}\)	and	\(TSpread_{2012:Q3}\)	into
both	equations.	This	is	easily	done	manually.	#	estimate	models	for	direct	two-quarter-ahead	forecasts	VAR_EQ1_direct	[1,]	2.439497	coef(VAR_EQ2_direct)	%*%	c(1,	#	intercept	window(GDPGrowth,	start	=	c(2012,	3),	end	=	c(2012,	4)),	window(TSpread,	start	=	c(2012,	3),	end	=	c(2012,	4)))	#>	[,1]	#>	[1,]	1.66578	Applied	economists	often	use	the
iterated	method	since	this	forecasts	are	more	reliable	in	terms	of	\(MSFE\),	provided	that	the	one-period-ahead	model	is	correctly	specified.	If	this	is	not	the	case,	for	example	because	one	equation	in	a	VAR	is	believed	to	be	misspecified,	it	can	be	beneficial	to	use	direct	forecasts	since	the	iterated	method	will	then	be	biased	and	thus	have	a	higher	\
(MSFE\)	than	the	direct	method.	See	Chapter	16.2	for	a	more	detailed	discussion	on	advantages	and	disadvantages	of	both	methods.	Stock,	J.	H.,	and	M.	W.	Watson.	2015.	Introduction	to	Econometrics,	Third	Update,	Global	Edition.	Pearson	Education	Limited.	Page	13	This	book	is	in	Open	Review.	We	want	your	feedback	to	make	the	book	better	for
you	and	other	students.	You	may	annotate	some	text	by	selecting	it	with	the	cursor	and	then	click	"Annotate"	in	the	pop-up	menu.	You	can	also	see	the	annotations	of	others:	click	the	arrow	in	the	upper	right	hand	corner	of	the	page	Some	economic	time	series	have	smoother	trends	than	variables	that	can	be	described	by	random	walk	models.	A	way
to	model	these	time	series	is	\[\Delta	Y_t	=	\beta_0	+	\Delta	Y_{t-1}	+	u_t,\]	where	\(u_t\)	is	a	serially	uncorrelated	error	term.	This	model	states	that	the	first	difference	of	a	series	is	a	random	walk.	Consequently,	the	series	of	second	differences	of	\(Y_t\)	is	stationary.	Key	Concept	16.4	summarizes	the	notation.	When	a	time	series	\(Y_t\)	has	a	unit
autoregressive	root,	\(Y_t\)	is	integrated	of	order	one.	This	is	often	denoted	by	\(Y_t	\sim	I(1)\).	We	simply	say	that	\(Y_t\)	is	\(I(1)\).	If	\(Y_t\)	is	\(I(1)\),	its	first	difference	\(\Delta	Y_t\)	is	stationary.	\(Y_t\)	is	\(I(2)\)	when	\(Y_t\)	needs	to	be	differenced	twice	in	order	to	obtain	a	stationary	series.	Using	the	notation	introduced	here,	if	\(Y_t\)	is	\(I(2)\),	its
first	difference	\(\Delta	Y_t\)	is	\(I(1)\)	and	its	second	difference	\(\Delta^2	Y_t\)	is	stationary.	\(Y_t\)	is	\(I(d)\)	when	\(Y_t\)	must	be	differenced	\(d\)	times	to	obtain	a	stationary	series.	When	\(Y_t\)	is	stationary,	it	is	integrated	of	order	\(0\)	so	\(Y_t\)	is	\(I(0)\).	It	is	fairly	easy	to	obtain	differences	of	time	series	in	R.	For	example,	the	function	diff()	returns
suitably	lagged	and	iterated	differences	of	numeric	vectors,	matrices	and	time	series	objects	of	the	class	ts.	Following	the	book,	we	take	the	price	level	of	the	U.S.	measured	by	the	Personal	Consumption	Expenditures	Price	Index	as	an	example.	#	define	ts	object	of	the	U.S.	PCE	Price	Index	PCECTPI	#>
###############################################	#>	#	Elliot,	Rothenberg	and	Stock	Unit	Root	Test	#	#>	###############################################	#>	#>	Test	of	type	DF-GLS	#>	detrending	of	series	with	intercept	and	trend	#>	#>	#>	Call:	#>	lm(formula	=	dfgls.form,	data	=
data.dfgls)	#>	#>	Residuals:	#>	Min	1Q	Median	3Q	Max	#>	-0.025739	-0.004054	0.000017	0.004619	0.033620	#>	#>	Coefficients:	#>	Estimate	Std.	Error	t	value	Pr(>|t|)	#>	yd.lag	-0.01213	0.01012	-1.199	0.23207	#>	yd.diff.lag1	0.28583	0.07002	4.082	6.47e-05	***	#>	yd.diff.lag2	0.19320	0.07058	2.737	0.00676	**	#>	---	#>	Signif.	codes:	0	'***'
0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	#>	#>	Residual	standard	error:	0.007807	on	198	degrees	of	freedom	#>	Multiple	R-squared:	0.1504,	Adjusted	R-squared:	0.1376	#>	F-statistic:	11.69	on	3	and	198	DF,	p-value:	4.392e-07	#>	#>	#>	Value	of	test-statistic	is:	-1.1987	#>	#>	Critical	values	of	DF-GLS	are:	#>	1pct	5pct	10pct	#>	critical	values	-3.48
-2.89	-2.57	The	summary	of	the	test	shows	that	the	test	statistic	is	about	\(-1.2\).	The	\(10\%\)	critical	value	for	the	DF-GLS	test	is	\(-2.57\).	This	is,	however,	not	the	appropriate	critical	value	for	the	ADF	test	when	an	intercept	and	a	time	trend	are	included	in	the	Dickey-Fuller	regression:	the	asymptotic	distributions	of	both	test	statistics	differ	and	so
do	their	critical	values!	The	test	is	left-sided	so	we	cannot	reject	the	null	hypothesis	that	U.S.	inflation	is	nonstationary,	using	the	DF-GLS	test.	Elliott,	Graham,	Thomas	J	Rothenberg,	and	James	H	Stock.	1996.	“Efficient	Tests	for	an	Autoregressive	Unit	Root.”	Econometrica	64	(4):	813–36.	Page	14	This	book	is	in	Open	Review.	We	want	your	feedback
to	make	the	book	better	for	you	and	other	students.	You	may	annotate	some	text	by	selecting	it	with	the	cursor	and	then	click	"Annotate"	in	the	pop-up	menu.	You	can	also	see	the	annotations	of	others:	click	the	arrow	in	the	upper	right	hand	corner	of	the	page	When	\(X_t\)	and	\(Y_t\)	are	\(I(1)\)	and	if	there	is	a	\(\theta\)	such	that	\(Y_t	-	\theta	X_t\)	is	\
(I(0)\),	\(X_t\)	and	\(Y_t\)	are	cointegrated.	Put	differently,	cointegration	of	\(X_t\)	and	\(Y_t\)	means	that	\(X_t\)	and	\(Y_t\)	have	the	same	or	a	common	stochastic	trend	and	that	this	trend	can	be	eliminated	by	taking	a	specific	difference	of	the	series	such	that	the	resulting	series	is	stationary.	R	functions	for	cointegration	analysis	are	implemented	in	the
package	urca.	As	an	example,	reconsider	the	relation	between	short-term	and	long-term	interest	rates	in	the	example	of	U.S.	3-month	treasury	bills,	U.S.	10-years	treasury	bonds	and	the	spread	in	their	interest	rates	which	have	been	introduced	in	Chapter	14.4.	The	next	code	chunk	shows	how	to	reproduce	Figure	16.2	of	the	book.	#	reproduce	Figure
16.2	of	the	book	#	plot	both	interest	series	plot(merge(as.zoo(TB3MS),	as.zoo(TB10YS)),	plot.type	=	"single",	lty	=	c(2,	1),	lwd	=	2,	xlab	=	"Date",	ylab	=	"Percent	per	annum",	ylim	=	c(-5,	17),	main	=	"Interest	Rates")	#	add	the	term	spread	series	lines(as.zoo(TSpread),	col	=	"steelblue",	lwd	=	2,	xlab	=	"Date",	ylab	=	"Percent	per	annum",	main	=
"Term	Spread")	#	shade	the	term	spread	polygon(c(time(TB3MS),	rev(time(TB3MS))),	c(TB10YS,	rev(TB3MS)),	col	=	alpha("steelblue",	alpha	=	0.3),	border	=	NA)	#	add	horizontal	line	at	0	abline(0,	0)	#	add	a	legend	legend("topright",	legend	=	c("TB3MS",	"TB10YS",	"Term	Spread"),	col	=	c("black",	"black",	"steelblue"),	lwd	=	c(2,	2,	2),	lty	=	c(2,	1,
1))	The	plot	suggests	that	long-term	and	short-term	interest	rates	are	cointegrated:	both	interest	series	seem	to	have	the	same	long-run	behavior.	They	share	a	common	stochastic	trend.	The	term	spread,	which	is	obtained	by	taking	the	difference	between	long-term	and	short-term	interest	rates,	seems	to	be	stationary.	In	fact,	the	expectations	theory
of	the	term	structure	suggests	the	cointegrating	coefficient	\(\theta\)	to	be	1.	This	is	consistent	with	the	visual	result.	Following	Key	Concept	16.5,	it	seems	natural	to	construct	a	test	for	cointegration	of	two	series	in	the	following	manner:	if	two	series	\(X_t\)	and	\(Y_t\)	are	cointegrated,	the	series	obtained	by	taking	the	difference	\(Y_t	-	\theta	X_t\)
must	be	stationary.	If	the	series	are	not	cointegrated,	\(Y_t	-	\theta	X_t\)	is	nonstationary.	This	is	an	assumption	that	can	be	tested	using	a	unit	root	test.	We	have	to	distinguish	between	two	cases:	\(\theta\)	is	known.	Knowledge	of	\(\theta\)	enables	us	to	compute	differences	\(z_t	=	Y_t	-	\theta	X_t\)	so	that	Dickey-Fuller	and	DF-GLS	unit	root	tests	can
be	applied	to	\(z_t\).	For	these	tests,	the	critical	values	are	the	critical	values	of	the	ADF	or	DF-GLS	test.	\(\theta\)	is	unknown.	If	\(\theta\)	is	unknown,	it	must	be	estimated	before	the	unit	root	test	can	be	applied.	This	is	done	by	estimating	the	regression	\[Y_t	=	\alpha	+	\theta	X_t	+	z_t\]	using	OLS	(this	is	refered	to	as	the	first-stage	regression).	Then,
a	Dickey-Fuller	test	is	used	for	testing	the	hypothesis	that	\(z_t\)	is	a	nonstationary	series.	This	is	known	as	the	Engle-Granger	Augmented	Dickey-Fuller	test	for	cointegration	(or	EG-ADF	test)	after	Engle	and	Granger	(1987).	The	critical	values	for	this	test	are	special	as	the	associated	null	distribution	is	nonnormal	and	depends	on	the	number	of	\
(I(1)\)	variables	used	as	regressors	in	the	first	stage	regression.	You	may	look	them	up	in	Table	16.2	of	the	book.	When	there	are	only	two	presumably	cointegrated	variables	(and	thus	a	single	\(I(1)\)	variable	is	used	in	the	first	stage	OLS	regression)	the	critical	values	for	the	levels	\(10\%\),	\(5\%\)	and	\(1\%\)	are	\(-3.12\),	\(-3.41\)	and	\(-3.96\).	As	has
been	mentioned	above,	the	theory	of	the	term	structure	suggests	that	long-term	and	short-term	interest	rates	are	cointegrated	with	a	cointegration	coefficient	of	\(\theta	=	1\).	In	the	previous	section	we	have	seen	that	there	is	visual	evidence	for	this	conjecture	since	the	spread	of	10-year	and	3-month	interest	rates	looks	stationary.	We	continue	by
using	formal	tests	(the	ADF	and	the	DF-GLS	test)	to	see	whether	the	individual	interest	rate	series	are	integrated	and	if	their	difference	is	stationary	(for	now,	we	assume	that	\(\theta	=	1\)	is	known).	Both	is	conveniently	done	by	using	the	functions	ur.df()	for	computation	of	the	ADF	test	and	ur.ers	for	conducting	the	DF-GLS	test.	Following	the	book
we	use	data	from	1962:Q1	to	2012:Q4	and	employ	models	that	include	a	drift	term.	We	set	the	maximum	lag	order	to	\(6\)	and	use	the	\(AIC\)	for	selection	of	the	optimal	lag	length.	#	test	for	nonstationarity	of	3-month	treasury	bills	using	ADF	test	ur.df(window(TB3MS,	c(1962,	1),	c(2012,	4)),	lags	=	6,	selectlags	=	"AIC",	type	=	"drift")	#>	#>
###############################################################	#>	#	Augmented	Dickey-Fuller	Test	Unit	Root	/	Cointegration	Test	#	#>	###############################################################	#>	#>	The	value	of	the	test	statistic	is:	-2.1004	2.2385	#	test	for
nonstationarity	of	10-years	treasury	bonds	using	ADF	test	ur.df(window(TB10YS,	c(1962,	1),	c(2012,	4)),	lags	=	6,	selectlags	=	"AIC",	type	=	"drift")	#>	#>	###############################################################	#>	#	Augmented	Dickey-Fuller	Test	Unit	Root	/	Cointegration	Test	#	#>
###############################################################	#>	#>	The	value	of	the	test	statistic	is:	-1.0079	0.5501	#	test	for	nonstationarity	of	3-month	treasury	bills	using	DF-GLS	test	ur.ers(window(TB3MS,	c(1962,	1),	c(2012,	4)),	model	=	"constant",	lag.max	=	6)	#>	#>



###############################################################	#>	#	Elliot,	Rothenberg	and	Stock	Unit	Root	/	Cointegration	Test	#	#>	###############################################################	#>	#>	The	value	of	the	test	statistic	is:	-1.8042	#	test	for
nonstationarity	of	10-years	treasury	bonds	using	DF-GLS	test	ur.ers(window(TB10YS,	c(1962,	1),	c(2012,	4)),	model	=	"constant",	lag.max	=	6)	#>	#>	###############################################################	#>	#	Elliot,	Rothenberg	and	Stock	Unit	Root	/	Cointegration	Test	#	#>
###############################################################	#>	#>	The	value	of	the	test	statistic	is:	-0.942	The	corresponding	\(10\%\)	critical	value	for	both	tests	is	\(-2.57\)	so	we	cannot	reject	the	null	hypotheses	of	nonstationary	for	either	series,	even	at	the	\(10\%\)	level	of	significance.12	We	conclude
that	it	is	plausible	to	model	both	interest	rate	series	as	\(I(1)\).	Next,	we	apply	the	ADF	and	the	DF-GLS	test	to	test	for	nonstationarity	of	the	term	spread	series,	which	means	we	test	for	non-cointegration	of	long-	and	short-term	interest	rates.	#	test	if	term	spread	is	stationary	(cointegration	of	interest	rates)	using	ADF	ur.df(window(TB10YS,	c(1962,
1),	c(2012,	4))	-	window(TB3MS,	c(1962,	1),	c(2012	,4)),	lags	=	6,	selectlags	=	"AIC",	type	=	"drift")	#>	#>	###############################################################	#>	#	Augmented	Dickey-Fuller	Test	Unit	Root	/	Cointegration	Test	#	#>
###############################################################	#>	#>	The	value	of	the	test	statistic	is:	-3.9308	7.7362	#	test	if	term	spread	is	stationary	(cointegration	of	interest	rates)	using	DF-GLS	ur.ers(window(TB10YS,	c(1962,	1),	c(2012,	4))	-	window(TB3MS,	c(1962,	1),c(2012,	4)),	model	=	"constant",
lag.max	=	6)	#>	#>	###############################################################	#>	#	Elliot,	Rothenberg	and	Stock	Unit	Root	/	Cointegration	Test	#	#>	###############################################################	#>	#>	The	value	of	the	test	statistic	is:	-3.8576
Table	16.1	summarizes	the	results.	Table	16.1:	ADF	and	DF-GLS	Test	Statistics	for	Interest	Rate	Series	TB3MS	\(-2.10\)	\(-1.80\)	TB10YS	\(-1.01\)	\(-0.94\)	TB10YS	-	TB3MS	\(-3.93\)	\(-3.86\)	Both	tests	reject	the	hypothesis	of	nonstationarity	of	the	term	spread	series	at	the	\(1\%\)	level	of	significance,	which	is	strong	evidence	in	favor	of	the	hypothesis
that	the	term	spread	is	stationary,	implying	cointegration	of	long-	and	short-term	interest	rates.	Since	theory	suggests	that	\(\theta=1\),	there	is	no	need	to	estimate	\(\theta\)	so	it	is	not	necessary	to	use	the	EG-ADF	test	which	allows	\(\theta\)	to	be	unknown.	However,	since	it	is	instructive	to	do	so,	we	follow	the	book	and	compute	this	test	statistic.
The	first-stage	OLS	regression	is	\[TB10YS_t	=	\beta_0	+	\beta_1	TB3MS_t	+	z_t.\]	#	estimate	first-stage	regression	of	EG-ADF	test	FS_EGADF	#>	Time	series	regression	with	"ts"	data:	#>	Start	=	1962(1),	End	=	2012(4)	#>	#>	Call:	#>	dynlm(formula	=	window(TB10YS,	c(1962,	1),	c(2012,	4))	~	window(TB3MS,	#>	c(1962,	1),	c(2012,	4)))	#>	#>
Coefficients:	#>	(Intercept)	window(TB3MS,	c(1962,	1),	c(2012,	4))	#>	2.4642	0.8147	Thus	we	have	\[\begin{align*}	\widehat{TB10YS}_t	=	2.46	+	0.81	\cdot	TB3MS_t,	\end{align*}\]	where	\(\widehat{\theta}	=	0.81\).	Next,	we	take	the	residual	series	\(\{\widehat{z_t}\}\)	and	compute	the	ADF	test	statistic.	#	compute	the	residuals	z_hat	#>
###############################################################	#>	#	Augmented	Dickey-Fuller	Test	Unit	Root	/	Cointegration	Test	#	#>	###############################################################	#>	#>	The	value	of	the	test	statistic	is:	-3.1935	The	test	statistic	is	\
(-3.19\)	which	is	smaller	than	the	\(10\%\)	critical	value	but	larger	than	the	\(5\%\)	critical	value	(see	Table	16.2	of	the	book).	Thus,	the	null	hypothesis	of	no	cointegration	can	be	rejected	at	the	\(10\%\)	level	but	not	at	the	\(5\%\)	level.	This	indicates	lower	power	of	the	EG-ADF	test	due	to	the	estimation	of	\(\theta\):	when	\(\theta=1\)	is	the	correct
value,	we	expect	the	power	of	the	ADF	test	for	a	unit	root	in	the	residuals	series	\(\widehat{z}	=	TB10YS	-	TB3MS\)	to	be	higher	than	when	some	estimate	\(\widehat{\theta}\)	is	used.	If	two	\(I(1)\)	time	series	\(X_t\)	and	\(Y_t\)	are	cointegrated,	their	differences	are	stationary	and	can	be	modeled	in	a	VAR	which	is	augmented	by	the	regressor	\(Y_{t-1}
-	\theta	X_{t-1}\).	This	is	called	a	vector	error	correction	model	(VECM)	and	\(Y_{t}	-	\theta	X_{t}\)	is	called	the	error	correction	term.	Lagged	values	of	the	error	correction	term	are	useful	for	predicting	\(\Delta	X_t\)	and/or	\(\Delta	Y_t\).	A	VECM	can	be	used	to	model	the	two	interest	rates	considered	in	the	previous	sections.	Following	the	book	we
specify	the	VECM	to	include	two	lags	of	both	series	as	regressors	and	choose	\(\theta	=	1\),	as	theory	suggests	(see	above).	TB10YS	D_TB3MS_l1	-0.0016601	0.0727060	-0.0228	0.981807	#>	D_TB3MS_l2	-0.0680845	0.0435059	-1.5649	0.119216	#>	D_TB10YS_l1	0.2264878	0.0957071	2.3665	0.018939	*	#>	D_TB10YS_l2	-0.0734486	0.0703476
-1.0441	0.297740	#>	ect_l1	-0.0878871	0.0285644	-3.0768	0.002393	**	#>	---	#>	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	coeftest(VECM_EQ2,	vcov.	=	NeweyWest(VECM_EQ2,	prewhite	=	F,	adjust	=	T))	#>	#>	t	test	of	coefficients:	#>	#>	Estimate	Std.	Error	t	value	Pr(>|t|)	#>	Intercept	-0.060746	0.107937	-0.5628	0.57422	#>
D_TB3MS_l1	0.240003	0.111611	2.1504	0.03276	*	#>	D_TB3MS_l2	-0.155883	0.153845	-1.0132	0.31220	#>	D_TB10YS_l1	0.113740	0.125571	0.9058	0.36617	#>	D_TB10YS_l2	-0.147519	0.112630	-1.3098	0.19182	#>	ect_l1	0.031506	0.050519	0.6236	0.53359	#>	---	#>	Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	Thus	the	two	estimated
equations	of	the	VECM	are	\[\begin{align*}	\widehat{\Delta	TB3MS}_t	=&	\,	-\underset{(0.11)}{0.06}	+	\underset{(0.11)}{0.24}	\Delta	TB3MS_{t-1}	-\underset{(0.15)}{0.16}	\Delta	TB3MS_{t-2}	\\	&+	\underset{(0.13)}{0.11}	\Delta	TB10YS_{t-1}	-\underset{(0.11)}{0.15}	\Delta	TB10YS_{t-2}	+	\underset{(0.05)}{0.03}	ECT_{t-1},	and,	\\
\widehat{\Delta	TB10YS}_t	=&	\,	\underset{(0.06)}{0.12}	-\underset{(0.07)}{0.00}	\Delta	TB3MS_{t-1}	-\underset{(0.04)}{0.07}	\Delta	TB3MS_{t-2}	\\	&+	\underset{(0.10)}{0.23}	\Delta	TB10YS_{t-1}	-\underset{(0.07)}{0.07}	\Delta	TB10YS_{t-2}	-\underset{(0.03)}{0.09}	ECT_{t-1}.	\end{align*}\]	The	output	produced	by	coeftest()	shows	that
there	is	little	evidence	that	lagged	values	of	the	differenced	interest	series	are	useful	for	prediction.	This	finding	is	more	pronounced	for	the	equation	of	the	differenced	series	of	the	3-month	treasury	bill	rate,	where	the	error	correction	term	(the	lagged	term	spread)	is	not	significantly	different	from	zero	at	any	common	level	of	significance.	However,
for	the	differenced	10-years	treasury	bonds	rate	the	error	correction	term	is	statistically	significant	at	\(1\%\)	with	an	estimate	of	\(-0.09\).	This	can	be	interpreted	as	follows:	although	both	interest	rates	are	nonstationary,	their	conintegrating	relationship	allows	to	predict	the	change	in	the	10-years	treasury	bonds	rate	using	the	VECM.	In	particular,
the	negative	estimate	of	the	coefficient	on	the	error	correction	term	indicates	that	there	will	be	a	negative	change	in	the	next	period’s	10-years	treasury	bonds	rate	when	the	10-years	treasury	bonds	rate	is	unusually	high	relative	to	the	3-month	treasury	bill	rate	in	the	current	period.	Engle,	Robert,	and	Clive	Granger.	1987.	“Co-integration	and	Error
Correction:	Representation,	Estimation	and	Testing.”	Econometrica	55	(2):	251–76.	Page	15	This	book	is	in	Open	Review.	We	want	your	feedback	to	make	the	book	better	for	you	and	other	students.	You	may	annotate	some	text	by	selecting	it	with	the	cursor	and	then	click	"Annotate"	in	the	pop-up	menu.	You	can	also	see	the	annotations	of	others:
click	the	arrow	in	the	upper	right	hand	corner	of	the	page	Financial	time	series	often	exhibit	a	behavior	that	is	known	as	volatility	clustering:	the	volatility	changes	over	time	and	its	degree	shows	a	tendency	to	persist,	i.e.,	there	are	periods	of	low	volatility	and	periods	where	volatility	is	high.	Econometricians	call	this	autoregressive	conditional
heteroskedasticity.	Conditional	heteroskedasticity	is	an	interesting	property	because	it	can	be	exploited	for	forecasting	the	variance	of	future	periods.	As	an	example,	we	consider	daily	changes	in	the	Whilshire	5000	stock	index.	The	data	is	available	for	download	at	the	Federal	Reserve	Economic	Data	Base.	For	consistency	with	the	book	we	download
data	from	1989-29-12	to	2013-12-31	(choosing	this	somewhat	larger	time	span	is	necessary	since	later	on	we	will	be	working	with	daily	changes	of	the	series).	The	following	code	chunk	shows	how	to	format	the	data	and	how	to	reproduce	Figure	16.3	of	the	book.	#	import	data	on	the	Wilshire	5000	index	W5000


