
	

https://fazuworo.maxudijuz.com/29468314385194593523620999129801335703111?fozivitofimavitumuwopibinutamavumoladesorevodamiwaxexoxatopanopovuzezujivozenizojozananekonebexub=kivejivevowabediratutumobatudexemijabamofamovamowonezenafalafulumezokemozipijidavopijamikiporifijogogejejijixumaxuwiponafinuzevumasebifulukasupojokovexedumugebodukigalapanajonukitobabemozunumuxurejakupo&utm_kwd=how+to+open+vba+in+excel+2021&duvadakamirolitavumofewuromesesagoxukenumozagutuvenexosozufunekiwir=wusuvufexeferewenepiwigaxaviputofeposasabowavefaduvopojevupipuxurokopowuvemulexavizixofikemawetalavemurezolumugofejitelodawinutilometutapel
























This	is	a	short	step-by-step	tutorial	for	beginners	showing	how	to	add	VBA	code	(Visual	Basic	for	Applications	code)	to	your	Excel	workbook	and	run	this	macro	to	solve	your	spreadsheet	tasks.Most	people	like	me	and	you	are	not	real	Microsoft	Office	gurus.	So,	we	may	not	know	all	specificities	of	calling	this	or	that	option,	and	we	cannot	tell	the
difference	between	VBA	execution	speed	in	different	Excel	versions.	We	use	Excel	as	a	tool	for	processing	our	applied	data.Suppose	you	need	to	change	your	data	in	some	way.	You	googled	a	lot	and	found	a	VBA	macro	that	solves	your	task.	However,	your	knowledge	of	VBA	leaves	much	to	be	desired.	Feel	free	to	study	this	step-by-step	guide	to	be
able	to	use	the	code	you	found:	For	this	example,	we	are	going	to	use	a	VBA	macro	to	remove	line	breaks	from	the	current	worksheet.Open	your	workbook	in	Excel.Press	Alt	+	F11	to	open	Visual	Basic	Editor	(VBE).Right-click	on	your	workbook	name	in	the	"Project-VBAProject"	pane	(at	the	top	left	corner	of	the	editor	window)	and	select	Insert	->
Module	from	the	context	menu.Copy	the	VBA	code	(from	a	web-page	etc.)	and	paste	it	to	the	right	pane	of	the	VBA	editor	("Module1"	window).Tip:	Speed	up	macro	executionIf	the	code	of	your	VBA	macro	does	not	contain	the	following	lines	in	the	beginning:Application.ScreenUpdating	=	False	Application.Calculation	=	xlCalculationManualThen	add
the	following	lines	to	get	your	macro	to	work	faster	(see	the	screenshots	above):To	the	very	beginning	of	the	code,	after	all	code	lines	that	start	with	Dim	(if	there	are	no	"Dim"	lines,	then	add	them	right	after	the	Sub	line):	Application.ScreenUpdating	=	False	Application.Calculation	=	xlCalculationManualTo	the	very	of	the	code,	before	End	Sub:
Application.ScreenUpdating	=	True	Application.Calculation	=	xlCalculationAutomatic	These	lines,	as	their	names	suggest,	turn	off	screen	refresh	and	recalculating	the	workbook's	formulas	before	running	the	macro.After	the	code	is	executed,	everything	is	turned	back	on.	As	a	result,	the	performance	is	increased	from	10%	to	500%	(aha,	the	macro
works	5	times	faster	if	it	continuously	manipulates	the	cells'	contents).Save	your	workbook	as	"Excel	macro-enabled	workbook".Press	Crl	+	S,	then	click	the	"No"	button	in	the	"The	following	features	cannot	be	saved	in	macro-free	workbook"	warning	dialog.The	"Save	as"	dialog	will	open.	Choose	"Excel	macro-enabled	workbook"	from	the	"Save	as
type"	drop-down	list	and	click	the	Save	button.Press	Alt	+	Q	to	close	the	Editor	window	and	switch	back	to	your	workbook.	When	you	want	to	run	the	VBA	code	that	you	added	as	described	in	the	section	above:	press	Alt+F8	to	open	the	"Macro"	dialog.Then	select	the	wanted	macro	from	the	"Macro	Name"	list	and	click	the	"Run"	button.	Excel	is	pretty
powerful	out-of-the-box	with	plenty	of	options,	functions,	and	formulas.	However,	what	if	you	want	more?	In	that	case,	you	can	code	your	own	using	VBA	or	import	VBA	scripts	made	by	others.	However,	the	VBA	editor	is	hidden	by	default.	To	use	it,	you	must	know	how	to	open	VBA	in	Excel.	There	are	multiple	ways	to	do	it.	In	this	tutorial,	well	show
you	three	easy	methods	to	open	the	VBA	editor	in	Excel.	Lets	get	started.You	can	open	the	Visual	Basic	editor	in	Excel	in	three	ways.	They	are	using	the	keyboard	shortcut,	from	the	Developer	tab,	and	from	the	Run	dialog	box.	Use	the	one	you	like.The	shortcut	key	to	open	the	VBA	Editor	in	Excel	is	Alt	+	F11.	Heres	how	to	use	it.First,	open	an	Excel
document.	Next,	hold	down	the	Alt	on	your	keyboard	and	press	the	F11	key.	On	pressing	the	shortcut,	the	Visual	Basic	Editor	window	will	be	opened	in	Excel.	From	there,	you	can	add,	modify,	or	create	new	modules	(Insert	->	Module)	for	your	scripts.You	can	open	the	VBA	Editor	by	clicking	the	Visual	Basic	option	under	the	Developer	tab.	The
problem	is	that	the	Developer	tab	is	hidden	by	default.	You	have	to	first	enable	the	Developer	menu	to	open	VBA	Editor	from	there.	Heres	how.First,	open	the	Excel	file.	You	can	do	that	by	double-clicking	on	the	Excel	file.In	the	Excel	window,	click	on	the	File	option	and	then	click	on	Options	on	the	sidebar.	This	action	will	open	the	Excel	settings
window.In	the	options	window,	select	the	Customize	Ribbon	tab	on	the	sidebar.Now,	select	the	Developer	checkbox	under	the	Main	Tabs	section.	After	selecting	the	checkbox,	click	OK	to	save	the	changes.In	the	main	window,	you	will	see	a	new	tab	called	Developer	on	the	Ribbon.	Click	on	it	and	then	click	on	the	Visual	Basic	option	to	open	the	VBA
editor.Press	Windows	key	+	R	to	open	the	Run	dialog.Type	excel.exe	/e	in	the	blank	field	of	the	Run	dialog	and	click	OK.Once	the	Excel	opens,	press	Alt	+	F11	to	open	the	VBA	editor.And	there	you	have	it!	These	are	the	three	methods	you	can	use	to	open	VBA	in	Excel.	If	you	have	questions,	comment	below	and	well	answer.	In	the	meantime,	if	you
work	with	a	lot	of	links	in	Excel,	learning	how	to	open	multiple	links	in	Excel	at	once	is	quite	helpful.	Check	out	the	linked	article.If	you	like	this	article,	check	out	how	to	open	multiple	links	at	once	in	Excel	using	a	simple	VB	script.	The	first	step	to	working	with	VBA	in	Excel	is	to	get	yourself	familiarized	with	the	Visual	Basic	Editor	(also	called	the
VBA	Editor	or	VB	Editor).In	this	tutorial,	I	will	cover	all	there	is	to	know	about	the	VBA	Editor	and	some	useful	options	that	you	should	know	when	coding	in	Excel	VBA.	What	is	Visual	Basic	Editor	in	Excel?Visual	Basic	Editor	is	a	separate	application	that	is	a	part	of	Excel	and	opens	whenever	you	open	an	Excel	workbook.	By	default,	its	hidden	and	to
access	it,	you	need	to	activate	it.VB	Editor	is	the	place	where	you	keep	the	VB	code.There	are	multiple	ways	you	get	the	code	in	the	VB	Editor:When	you	record	a	macro,	it	automatically	creates	a	new	module	in	the	VB	Editor	and	inserts	the	code	in	that	module.You	can	manually	type	VB	code	in	the	VB	editor.You	can	copy	a	code	from	some	other
workbook	or	from	the	internet	and	paste	it	in	the	VB	Editor.Opening	the	VB	EditorThere	are	various	ways	to	open	the	Visual	Basic	Editor	in	Excel:Using	a	Keyboard	Shortcut	(easiest	and	fastest)Using	the	Developer	Tab.Using	the	Worksheet	Tabs.Lets	go	through	each	of	these	quickly.Keyboard	Shortcut	to	Open	the	Visual	Basic	EditorThe	easiest	way
to	open	the	Visual	Basic	editor	is	to	use	the	keyboard	shortcut	ALT	+	F11	(hold	the	ALT	key	and	press	the	F11	key).As	soon	as	you	do	this,	it	will	open	a	separate	window	for	the	Visual	Basic	editor.This	shortcut	works	as	a	toggle,	so	when	you	use	it	again,	it	will	take	you	back	to	the	Excel	application	(without	closing	the	VB	Editor).The	shortcut	for	the
Mac	version	is	Opt	+	F11	or	Fn	+	Opt	+	F11Using	the	Developer	TabTo	open	the	Visual	Basic	Editor	from	the	ribbon:Click	the	Developer	tab	(if	you	dont	see	a	developer	tab,	read	this	on	how	to	get	it).In	the	Code	group,	click	on	Visual	Basic.Using	the	Worksheet	TabThis	is	a	less	used	method	to	open	the	Vb	Editor.Go	to	any	of	the	worksheet	tabs,
right-click,	andselect	View	Code.This	method	wouldnt	just	open	the	VB	Editor,	it	will	also	take	you	to	the	code	window	for	that	worksheet	object.This	is	useful	when	you	want	to	write	code	that	works	only	for	a	specific	worksheet.	This	is	usually	the	case	with	worksheet	events.Anatomy	of	the	Visual	Basic	Editor	in	ExcelWhen	you	open	the	VB	Editor	for
the	first	time,	it	may	look	a	bit	overwhelming.There	are	different	options	and	sections	that	may	seem	completely	new	at	first.Also,	it	still	has	an	old	Excel	97	days	look.	While	Excel	has	improved	tremendously	in	design	and	usability	over	the	years,	the	VB	Editor	has	not	seen	any	change	in	the	way	it	looks.In	this	section,	I	will	take	you	through	the
different	parts	of	the	Visual	Basic	Editor	application.Note:	When	I	started	using	VBA	years	ago,	I	was	quite	overwhelmed	with	all	these	new	options	and	windows.	But	as	you	get	used	to	working	with	VBA,	you	would	get	comfortable	with	most	of	these.	And	most	of	the	time,	youll	not	be	required	to	use	all	the	options,	only	a	hand	full.Below	is	an	image
of	the	different	components	of	the	VB	Editor.	These	are	then	described	in	detail	in	the	below	sections	of	this	tutorial.Now	lets	quickly	go	through	each	of	these	components	and	understand	what	it	does:Menu	BarThis	is	where	you	have	all	the	options	that	you	can	use	in	the	VB	Editor.	It	is	similar	to	the	Excel	ribbon	where	you	have	tabs	and	options
with	each	tab.You	can	explore	the	available	options	by	clicking	on	each	of	the	menu	element.You	will	notice	that	most	of	the	options	in	VB	Editor	have	keyboard	shortcuts	mentioned	next	to	it.	Once	you	get	used	to	a	few	keyboard	shortcuts,	working	with	the	VB	Editor	becomes	really	easy.Tool	BarBy	default,	there	is	a	toolbar	in	the	VB	Editor	which
has	some	useful	options	that	youre	likely	to	need	most	often.	This	is	just	like	the	Quick	Access	Toolbar	in	Excel.	It	gives	you	quick	access	to	some	of	the	useful	options.You	can	customize	it	a	little	by	removing	or	adding	options	to	it	(by	clicking	on	the	small	downward	pointing	arrow	at	the	end	of	the	toolbar).In	most	cases,	the	default	toolbar	is	all	you
need	when	working	with	the	VB	Editor.You	can	move	the	toolbar	above	the	menu	bar	by	clicking	on	the	three	gray	dots	(at	the	beginning	of	the	toolbar)	and	dragging	it	above	the	menu	bar.Note:	There	are	four	toolbars	in	the	VB	Editor	Standard,	Debug,	Edit,	and	User	form.	What	you	see	in	the	image	above	(which	is	also	the	default)	is	the	standard
toolbar.	You	can	access	other	toolbars	by	going	to	the	View	option	and	hovering	the	cursor	on	the	Toolbars	option.	You	can	add	one	or	more	toolbars	to	the	VB	Editor	if	you	want.Project	ExplorerProject	Explorer	is	a	window	on	the	left	that	shows	all	the	objects	currently	open	in	Excel.When	youre	working	with	Excel,	every	workbook	or	add-in	that	is
open	is	a	project.	And	each	of	these	projects	can	have	a	collection	of	objects	in	it.For	example,	in	the	below	image,	the	Project	Explorer	shows	the	two	workbooks	that	are	open	(Book1	and	Book2)	and	the	objects	in	each	workbook	(worksheets,	ThisWorkbook,	and	Module	in	Book1).There	is	a	plus	icon	to	the	left	of	objects	that	you	can	use	to	collapse
the	list	of	objects	or	expand	and	see	the	complete	list	of	objects.The	following	objects	can	be	a	part	of	the	Project	Explorer:All	open	Workbooks	within	each	workbook	(which	is	also	called	a	project),	you	can	have	the	following	objects:Worksheet	object	for	each	worksheet	in	the	workbookThisWorkbook	object	which	represents	the	workbook
itselfChartsheetobject	for	each	chart	sheet	(these	are	not	as	common	as	worksheets)Modules	This	is	where	the	code	that	is	generated	with	a	macro	recorder	goes.	You	can	also	write	or	copy-paste	VBA	code	here.All	open	Add-insConsider	the	Project	Explorer	as	a	place	that	outlines	all	the	objects	open	in	Excel	at	the	given	time.The	keyboard	shortcut
to	open	the	Project	Explorer	is	Control	+	R	(hold	the	control	key	and	then	press	R).	To	close	it,	simply	click	the	close	icon	at	the	top	right	of	the	Project	Explorer	window.Note:	For	every	object	in	Project	Explorer,	there	is	a	code	window	in	which	you	can	write	the	code	(or	copy	and	paste	it	from	somewhere).	The	code	window	appears	when	you	double
click	on	the	object.Properties	WindowProperties	window	is	where	you	get	to	see	the	properties	of	the	select	object.	If	you	dont	have	the	Properties	window	already,	you	can	get	it	by	using	the	keyboard	shortcut	F4	(or	go	to	the	View	tab	and	click	Properties	window).Properties	window	is	a	floating	window	which	you	can	dock	in	the	VB	Editor.	In	the
below	example,	I	have	docked	it	just	below	the	Project	Explorer.Properties	window	allows	us	to	change	the	properties	of	a	selected	object.	For	example,	if	I	want	to	make	a	worksheet	hidden	(or	very	hidden),	I	can	do	that	by	changing	the	Visible	Property	of	the	selected	worksheet	object.Related:	Hiding	a	Worksheet	in	Excel	(that	can	not	be	un-hidden
easily)Code	WindowThere	is	a	code	window	for	each	object	that	is	listed	in	the	Project	Explorer.	You	can	open	the	code	window	for	an	object	by	double-clicking	on	it	in	the	Project	Explorer	area.Code	window	is	where	youll	write	your	code	or	copy	paste	a	code	from	somewhere	else.When	you	record	a	macro,	the	code	for	it	goes	into	the	code	window	of
a	module.	Excel	automatically	inserts	a	module	to	place	the	code	in	it	when	recording	a	macro.Related:	How	to	Run	a	Macro	(VBA	Code)	in	Excel.Immediate	WindowThe	Immediate	window	is	mostly	used	when	debugging	code.	One	way	I	use	the	Immediate	window	is	by	using	a	Print.Debug	statement	within	the	code	and	then	run	the	code.It	helps	me
to	debug	the	code	and	determine	where	my	code	gets	stuck.	If	I	get	the	result	of	Print.Debug	in	the	immediate	window,	I	know	the	code	worked	at	least	till	that	line.If	youre	new	to	VBA	coding,	it	may	take	you	some	time	to	be	able	to	use	the	immediate	window	for	debugging.By	default,	the	immediate	window	is	not	visible	in	the	VB	Editor.	You	can	get
it	by	using	the	keyboard	shortcut	Control	+	G	(or	can	go	to	the	View	tab	and	click	on	Immediate	Window).Where	to	Add	Code	in	the	VB	EditorI	hope	you	now	have	a	basic	understanding	of	what	VB	Editor	is	and	what	all	parts	it	has.In	this	section	of	this	tutorial,	I	will	show	you	where	to	add	a	VBA	code	in	the	Visual	Basic	Editor.There	are	two	places
where	you	can	add	the	VBA	code	in	Excel:The	code	window	for	an	object.	These	objects	can	be	a	workbook,	worksheet,	User	Form,	etc.The	code	window	of	a	module.Module	Code	Window	Vs	Object	Code	WindowLet	me	first	quickly	clear	the	difference	between	adding	a	code	in	a	module	vs	adding	a	code	in	an	object	code	window.When	you	add	a
code	to	any	of	the	objects,	its	dependent	on	some	action	of	that	object	that	will	trigger	that	code.	For	example,	if	you	want	to	unhide	all	the	worksheets	in	a	workbook	as	soon	as	you	open	that	workbook,	then	the	code	would	go	in	the	ThisWorkbook	object	(which	represents	the	workbook).The	trigger,	in	this	case,	is	opening	the	workbook.Similarly,	if
you	want	to	protect	a	worksheet	as	soon	as	some	other	worksheet	is	activated,	the	code	for	that	would	go	in	the	worksheet	code	window.These	triggers	are	called	events	and	you	can	associate	a	code	to	be	executed	when	an	event	occurs.Related:	Learn	more	about	Events	in	VBA.On	the	contrary,	the	code	in	the	module	needs	to	be	executed	either
manually	(or	it	can	be	called	from	other	subroutines	as	well).When	you	record	a	macro,	Excel	automatically	creates	a	module	and	inserts	the	recorded	macro	code	in	it.	Now	if	you	have	to	run	this	code,	you	need	to	manually	execute	the	macro.Adding	VBA	Code	in	ModuleWhile	recording	a	macro	automatically	creates	a	module	and	inserts	the	code	in
it,	there	are	some	limitations	when	using	a	macro	recorder.	For	example,	it	can	not	use	loops	or	If	Then	Else	conditions.In	such	cases,	its	better	to	either	copy	and	paste	the	code	manually	or	write	the	code	yourself.A	module	can	be	used	to	hold	the	following	types	of	VBA	codes:Declarations:	You	can	declare	variables	in	a	module.	Declaring	variables
allows	you	to	specify	what	type	of	data	a	variable	can	hold.	You	can	declare	a	variable	for	a	sub-routine	only	or	for	all	sub-routines	in	the	module	(or	all	modules)Subroutines	(Procedures):	This	is	the	code	that	has	the	steps	you	want	VBA	to	perform.Function	Procedures:	This	is	a	code	that	returns	a	single	value	and	you	can	use	it	to	create	custom
functions	(also	called	User	Defined	Functions	or	UDFsin	VBA)By	default,	a	module	is	not	a	part	of	the	workbook.	You	need	to	insert	it	first	before	using	it.Adding	a	Module	in	the	VB	EditorBelow	are	the	steps	to	add	a	module:Right-click	on	any	object	of	the	workbook	(in	which	you	want	the	module).Hover	the	cursor	on	the	Insert	option.Click	on
Module.This	would	instantly	create	a	folder	called	Module	and	insert	an	object	called	Module	1.	If	you	already	have	a	module	inserted,	the	above	steps	would	insert	another	module.Once	the	module	is	inserted,	you	can	double	click	on	the	module	object	in	the	Project	Explorer	and	it	will	open	the	code	window	for	it.Now	you	can	copy-paste	the	code	or
write	it	yourself.Removing	the	ModuleBelow	are	the	steps	to	remove	a	module	in	Excel	VBA:Right-click	on	the	module	that	you	want	to	remove.Click	on	Remove	Module	option.In	the	dialog	box	that	opens,	click	on	No.Note:	You	can	export	a	module	before	removing	it.	It	gets	saved	as	a	.bas	file	and	you	can	import	it	in	some	other	project.	To	export	a
module,	right-click	on	the	module	and	click	on	Export	file.Adding	Code	to	the	Object	Code	WindowTo	open	the	code	window	for	an	object,	simply	double-click	on	it.When	it	opens,	you	can	enter	the	code	manually	or	copy-paste	the	code	from	other	modules	or	from	the	internet.Note	that	some	of	the	objects	allow	you	to	choose	the	event	for	which	you
want	to	write	the	code.For	example,	if	you	want	to	write	a	code	for	something	to	happen	when	selection	is	changed	in	the	worksheet,	you	need	to	first	select	worksheets	from	the	drop-down	at	the	top	left	of	the	code	window	and	then	select	the	change	event	from	the	drop-down	on	the	right.Note:	These	events	are	specific	to	the	object.	When	you	open
the	code	window	for	a	workbook,	you	will	see	the	events	related	to	the	workbook	object.	When	you	open	the	code	window	for	a	worksheet,	you	will	see	the	events	related	to	the	worksheet	object.Customizing	the	VB	EditorWhile	the	default	settings	of	the	Visual	Basic	Editor	are	good	enough	for	most	users,	it	does	allow	you	to	further	customize	the
interface	and	a	few	functionalities.In	this	section	of	the	tutorial,	I	will	show	you	all	the	options	you	have	when	customizing	the	VB	Editor.To	customize	the	VB	Editor	environment,	click	Tools	in	the	menu	bar	and	then	click	on	Options.This	would	open	the	Options	dialog	box	which	will	give	you	all	the	customization	options	in	the	VB	Editor.	The	Options
dialog	box	has	four	tabs	(as	shown	below)	that	have	various	customizations	options	for	the	Visual	Basic	Editor.Lets	quickly	go	through	each	of	these	tabs	and	the	important	options	in	each.Editor	TabWhile	the	inbuilt	settings	work	fine	in	most	cases,	let	me	still	go	through	the	options	in	this	tab.As	you	get	more	proficient	working	with	VBA	in	Excel,
you	may	want	to	customize	the	VB	Editor	using	some	of	these	options.Auto	Syntax	CheckWhen	working	with	VBA	in	Excel,	as	soon	as	you	make	a	syntax	error,	you	will	be	greeted	by	a	pop-up	dialog	box	(with	some	description	about	the	error).	Something	as	shown	below:If	you	disable	this	option,	this	pop-up	box	will	not	appear	even	when	you	make	a
syntax	error.	However,	there	would	be	a	change	in	color	in	the	code	text	to	indicate	that	there	is	an	error.If	youre	a	beginner,	I	recommend	you	keep	this	option	enabled.	As	you	get	more	experienced	with	coding,	you	may	start	finding	these	pop-up	boxes	irritating,	and	then	you	can	disable	this	option.Require	Variable	DeclarationThis	is	one	option	I
recommend	enabling.When	youre	working	with	VBA,	you	would	be	using	variables	to	hold	different	data	types	and	objects.When	you	enable	this	option,	it	automatically	inserts	the	Option	Explicit	statement	at	the	top	of	the	code	window.	This	forces	you	to	declare	all	the	variables	that	youre	using	in	your	code.	If	you	dont	declare	a	variable	and	try	to
execute	the	code,	it	will	show	an	error	(as	shown	below).In	the	above	case,	I	used	the	variable	Var,	but	I	didnt	declare	it.	So	when	I	try	to	run	the	code,	it	shows	an	error.This	option	is	quite	useful	when	you	have	a	lot	of	variables.	It	often	helps	me	find	misspelled	variables	names	as	they	are	considered	as	undeclared	and	an	error	is	shown.Note:	When
you	enable	this	option,	it	does	not	impact	the	existing	modules.Auto	List	MemberThis	option	is	quite	useful	as	it	helps	you	get	a	list	of	properties	of	methods	for	an	object.For	example,	if	I	want	to	delete	a	worksheet(Sheet1),	I	need	to	use	theline	Sheet1.Delete.While	I	am	typing	the	code,	as	soon	as	I	type	the	dot,	it	will	show	me	all	the	methods	and
properties	associated	with	the	Worksheet	object	(as	shown	below).Auto	list	feature	is	great	as	it	allows	you	to:Quickly	select	the	property	and	method	from	the	list	and	saves	timeShows	you	all	the	properties	and	methods	which	you	may	not	be	aware	ofAvoid	making	spelling	errorsThis	option	is	enabled	by	default	and	I	recommend	keeping	it	that
way.Auto	Quick	Info	OptionsWhen	you	type	a	function	in	Excel	worksheet,	it	shows	you	some	information	about	the	function	such	as	the	arguments	it	takes.Similarly,	when	you	type	a	function	in	VBA,	it	shows	you	some	information	(as	shown	below).	But	for	that	to	happen,	you	need	to	make	sure	the	Auto	Quick	Info	option	is	enabled	(which	it	is	by
default).Auto	Data	Tips	OptionsWhen	youre	going	through	your	code	line	by	line	and	place	your	cursor	above	a	variable	name,	it	will	show	you	the	value	of	the	variable.I	find	it	quite	useful	when	debugging	the	code	or	going	through	the	code	line	by	line	which	has	loops	in	it.In	the	above	example,	as	soon	as	I	put	the	cursor	over	the	variable	(var),	it
shows	the	value	it	holds.This	option	is	enabled	by	default	and	I	recommend	you	keep	it	that	way.Auto	IndentSince	VBA	codes	can	get	long	and	messy,	using	indentation	increases	the	readability	of	the	code.When	writing	code,	you	can	indent	using	the	tab	key.This	option	ensures	that	when	you	are	done	with	the	indented	line	and	hit	enter,	the	next	line
doesnt	start	from	the	very	beginning,	but	has	the	same	indentation	as	the	previous	line.In	the	above	example,	after	I	write	the	Debug.Print	line	and	hit	enter,	it	will	start	right	below	it	(with	the	same	indentation	level).I	find	this	option	useful	and	turning	this	off	would	mean	manually	indenting	each	line	in	a	block	of	code	that	I	want	indented.You	can
change	the	indentation	value	if	you	want.	I	keep	it	at	the	default	value.Drag	and	Drop	Text	EditingWhen	this	option	is	enabled,	it	allows	you	to	select	a	block	of	code	and	drag	and	drop	it.It	saves	time	as	you	dont	have	to	first	cut	and	then	paste	it.	You	can	simply	select	and	drag	it.This	option	is	enabled	by	default	and	I	recommend	you	keep	it	that
way.Default	to	Full	Module	ViewWhen	this	option	is	enabled,	you	will	be	able	to	see	all	the	procedures	in	a	module	in	one	single	scrollable	list.If	you	disable	this	option,	you	will	only	be	able	to	see	one	module	at	a	time.	You	will	have	to	make	a	selection	of	the	module	you	want	to	see	from	the	drop-down	at	the	top	right	of	the	code	window.This	option	is
enabled	by	default	and	I	recommend	keeping	it	that	way.One	reason	you	may	want	to	disable	it	when	you	have	multiple	procedures	that	are	huge	and	scrolling	across	these	is	taking	time,	or	when	you	have	a	lot	of	procedures	and	you	want	to	quickly	find	it	instead	of	wasting	time	in	scrolling.Procedure	SeparatorWhen	this	option	is	enabled,	you	will
see	a	line	(a	kind	of	divider)	between	two	procedures.I	find	this	useful	as	it	visually	shows	when	one	procedure	ends	and	the	other	one	starts.Its	enabled	by	default	and	I	recommend	keeping	it	that	way.Editor	Format	TabWith	the	options	in	the	Editor	Format	tab,	you	can	customize	the	way	your	code	looks	in	the	code	window.Personally,	I	keep	all	the
default	options	as	I	am	fine	with	it.	If	you	want,	you	can	tweak	this	based	on	your	preference.To	make	a	change,	you	need	to	first	select	an	option	in	the	Code	Colors	box.	Once	an	option	is	selected,	you	can	modify	the	foreground,	background,	and	indicator	color	for	it.The	font	type	and	font	size	can	also	be	set	in	this	tab.	Its	recommended	to	use	a
fixed-width	font	such	as	Courier	New,	as	it	makes	the	code	more	readable.Note	that	the	font	type	and	size	setting	will	remain	the	same	for	all	code	types	(i.e.,	all	the	code	types	shown	in	the	code	color	box).Below	is	an	image	where	I	have	selected	Breakpoint,	and	I	can	change	the	formattingof	it.Note:	The	Margin	Indicator	Bar	option	when	enabled
shows	a	little	margin	bar	to	the	left	of	the	code.	Its	helpful	as	it	shows	useful	indicators	when	executing	the	code.	In	the	above	example,	when	you	set	a	breakpoint,	it	will	automatically	show	a	red	dot	to	the	left	of	the	line	in	the	margin	bar.	Alternatively,	to	set	a	breakpoint,	you	can	simply	click	on	the	margin	bar	on	the	left	of	the	code	line	that	you
want	as	the	breakpoint.By	default,	Margin	Indicator	Bar	is	enabled	and	I	recommend	keeping	it	that	way.One	of	my	VBA	course	students	found	this	customization	options	useful	and	she	was	color	blind.	Using	the	options	here,	she	was	able	to	set	the	color	and	formats	that	made	it	easy	for	her	to	work	with	VBA.General	TabThe	General	tab	has	many
options	but	you	dont	need	to	change	any	of	it.I	recommend	you	keep	all	the	options	as	is.One	important	option	to	know	about	in	this	tab	is	Error	Handling.By	default,	Break	on	Unhandled	Errors	is	selected	and	I	recommend	keeping	it	that	way.This	option	means	that	if	your	code	encounters	an	error,	and	you	have	not	handled	that	error	in	your	code
already,	then	it	will	break	and	stop.	But	if	you	have	addressed	the	error	(such	as	by	using	On	Error	Resume	Next	or	On	Error	Goto	options),	then	it	will	not	break	(as	the	errors	are	not	unhandled).Docking	TabIn	this	tab,	you	can	specify	which	windows	you	want	to	get	docked.Docking	means	that	you	can	fix	the	position	of	a	window	(such	as	project
explorer	or	the	Properties	window)	so	that	it	doesnt	float	around	and	you	can	view	all	the	different	windows	at	the	same	time.If	you	dont	dock,	you	will	be	able	to	view	one	window	at	a	time	in	full-screen	mode	and	will	have	to	switch	to	the	other	one.I	recommend	keeping	the	default	settings.Other	Excel	tutorials	you	may	like:	How	to	Enable	VBA	in
ExcelEnabling	VBA	(Visual	Basic	for	Applications)	in	Excel	is	a	straightforward	process	that	lets	you	create	macros	to	automate	repetitious	tasks,	making	your	work	more	efficient.	To	do	this,	youll	need	to	access	the	Developer	tab	in	Excel.	With	a	few	simple	steps,	you	will	be	ready	to	start	writing	and	running	VBA	code.How	to	Enable	VBA	in	ExcelIn
this	section,	youll	get	a	step-by-step	guide	to	enable	VBA	in	Excel,	opening	up	powerful	automation	possibilities	for	your	spreadsheets.Step	1:	Open	ExcelThe	first	step	is	to	launch	Microsoft	Excel	on	your	computer.Make	sure	you	have	a	version	that	supports	VBA,	such	as	Excel	2010	or	later.	Once	Excel	is	open,	youll	be	ready	to	access	the	necessary
menus.Step	2:	Access	Excel	OptionsGo	to	the	"File"	menu	and	select	"Options."This	will	open	the	Excel	Options	dialog	box,	where	you	can	customize	various	settings	to	suit	your	needs.Step	3:	Select	the	Customize	Ribbon	TabIn	the	Excel	Options	dialog	box,	navigate	to	the	"Customize	Ribbon"	tab.This	section	allows	you	to	customize	the	ribbon	by
adding	or	removing	tabs	and	commands.	Youll	find	various	checkboxes	here.Step	4:	Enable	the	Developer	TabCheck	the	box	next	to	"Developer"	in	the	right	pane.This	will	add	the	Developer	tab	to	your	Excel	ribbon.	The	Developer	tab	contains	all	the	tools	you	need	to	write	and	run	VBA	code.Step	5:	Click	OKClick	"OK"	to	save	your	changes	and	close
the	Excel	Options	dialog	box.Now,	the	Developer	tab	should	appear	in	your	Excel	ribbon.	You	can	click	on	it	to	access	VBA	options.After	completing	these	steps,	the	Developer	tab	will	be	available	in	your	Excel	ribbon,	allowing	you	to	write,	edit,	and	run	VBA	code.Tips	for	Enabling	VBA	in	ExcelCheck	Excel	Version:	Ensure	youre	using	Excel	2010	or
later,	as	older	versions	may	not	support	VBA.Backup	Your	Work:	Before	running	VBA	scripts,	always	back	up	your	Excel	files	to	prevent	data	loss.Explore	Developer	Tab:	Familiarize	yourself	with	the	Developer	tab	options,	such	as	Macros,	Visual	Basic,	and	Add-Ins.Use	Help	Resources:	Make	use	of	online	tutorials	and	forums	for	additional	guidance
on	VBA	scripting.Test	in	Sandbox:	Run	VBA	scripts	in	a	test	environment	to	ensure	they	work	correctly	before	applying	them	to	important	datasets.Frequently	Asked	QuestionsWhat	is	VBA	in	Excel?VBA	stands	for	Visual	Basic	for	Applications.	It	is	a	programming	language	that	allows	you	to	automate	tasks	in	Microsoft	Office	applications.Where	can	I
find	the	Developer	tab	in	Excel?The	Developer	tab	appears	in	the	Excel	ribbon	after	you	enable	it	through	the	Excel	Options	dialog	box.Can	I	enable	VBA	in	Excel	for	Mac?Yes,	VBA	can	be	enabled	in	Excel	for	Mac,	but	the	steps	might	slightly	differ	from	the	Windows	version.Is	VBA	difficult	to	learn?VBA	can	be	challenging	at	first,	but	there	are	many
resources	available	to	help	you	learn,	including	tutorials,	forums,	and	books.What	can	I	do	with	VBA	in	Excel?With	VBA,	you	can	automate	repetitive	tasks,	create	custom	functions,	and	develop	complex	applications	within	Excel.SummaryOpen	ExcelAccess	Excel	OptionsSelect	the	Customize	Ribbon	TabEnable	the	Developer	TabClick
OKConclusionEnabling	VBA	in	Excel	is	a	simple	yet	powerful	way	to	enhance	your	spreadsheet	tasks.	Once	youve	enabled	the	Developer	tab,	a	whole	new	world	of	automation	and	functionality	opens	up	for	you.	Whether	youre	looking	to	automate	your	data	entry,	create	complex	financial	models,	or	simply	make	your	workflow	more	efficient,	learning
VBA	can	be	a	game-changer.If	youre	new	to	VBA,	dont	be	intimidated.	Start	with	small	scripts	and	gradually	tackle	more	complex	projects	as	you	gain	confidence.	There	are	plenty	of	online	tutorials	and	communities	ready	to	help	you	along	the	way.So,	go	ahead	and	unlock	the	potential	of	Excel	by	enabling	VBA	today.	Happy	coding!Matt	Jacobs	has
been	working	as	an	IT	consultant	for	small	businesses	since	receiving	his	Masters	degree	in	2003.	While	he	still	does	some	consulting	work,	his	primary	focus	now	is	on	creating	technology	support	content	for	SupportYourTech.com.His	work	can	be	found	on	many	websites	and	focuses	on	topics	such	as	Microsoft	Office,	Apple	devices,	Android
devices,	Photoshop,	and	more.	In	this	blog	post,	we	will	show	you	how	to	open	the	VBA	editor.The	above	image	is	the	VBA	Editor	with	three	areas	highlighted;	the	Project	Explorer,	Code	Window	and	Immediate	Window.	This	is	what	is	known	as	an	Integrated	Development	Environment	(which	means	everything	you	need	to	write	programs	and	code
are	all	in	this	one	window).There	are	a	couple	of	different	ways	to	open	the	editor.The	VBA	Editor	through	the	RibbonUsing	the	ribbon,	select	the	Create	tab	and	on	the	far	right	you	will	see	the	Macros	&	Code	group;	select	Module.	This	will	open	the	VBA	editor.The	VBA	Editor	through	the	Form	DesignerWhen	in	the	form	designer	you	can	click	the
VBA	Editor	Button	under	Tools	to	bring	up	the	IDE.The	VBA	Editor	through	the	Form	Designer	Properties	WindowWhen	in	a	Form	or	Report	in	Design	view,	if	you	open	the	property	window	(F4)	and	click	the	Events	tab,	any	of	the	ellipses	()	will	open	the	VBA	editor.There	are	several	different	ways	to	open	up	the	VBA	Editor	that	we	have	covered	in
this	post.Related	PostsBasic	Tools	for	Writing	Code	Visual	Basic	EditorCompilation	Explained	Visual	Basic	EditorDebugging	Visual	Basic	EditorImmediate	Window	Visual	Basic	EditorThe	VBA	Editor	Explained	Visual	Basic	EditorVisual	Basic	Editor	Options	Visual	Basic	Editor	Tags	Kasper	Langmann2024-08-30T12:50:04+00:00	This	tutorial	will	show
you	how	to	open	and	program	in	the	Visual	Basic	Editor	in	VBA.Opening	the	Visual	Basic	EditorThere	are	a	few	ways	to	access	the	Visual	Basic	Editor	(VBE)	in	Excel.Press	Alt	+	F11	on	your	keyboard.ORClick	View	>	Macros	>	View	Macros.	From	here	you	can	Edit	an	existing	macro	or	Create	a	new	one.	Either	option	opens	up	the	VB
Editor.ORDeveloper	>	Visual	Basic	Note:	If	you	dont	see	the	Developer	Ribbon,	youll	need	to	enable	it.To	enable	the	Developer	RibbonClick	on	the	File	tab	in	the	Ribbon,	and	go	down	to	Options.	In	the	Customize	Ribbon	options,	tick	the	Developer	check	box.	This	is	switched	off	by	default	so	you	will	need	to	switch	it	on	to	see	the	tab	on	the
ribbon.Click	OK.The	Developer	tab	will	appear	on	the	main	ribbon.	Click	on	Visual	Basic	at	the	start	of	the	ribbon	to	access	the	Visual	Basic	Editor.Understanding	the	VBE	ScreenThe	VBE	Screen	is	shown	in	the	graphic	below.	The	Project	ExplorerThe	Project	Explorer	enables	you	to	see	how	the	Project	in	which	you	are	working	is	organized.	You	can
see	how	many	modules	and	forms	are	stored	in	the	project,	and	can	navigate	between	these	modules	and	forms.	A	module	is	where	the	code	in	your	workbook	is	stored,	when	you	record	a	macro,	it	will	be	stored	in	a	standard	module	which	will	by	default	be	named	Module1.Each	of	the	worksheets	in	your	Excel	file	also	has	module	behind	it,	as	does
the	workbook	itself.	When	you	insert	a	new	sheet	into	the	workbook	via	the	main	Excel	screen,	you	will	see	an	additional	sheet	module	appear	in	the	Project	Explorer.Double-click	on	a	module	to	move	to	the	code	for	that	module.You	can	also	click	on	the	Window	menu	on	the	toolbar	and	select	the	module	there	to	move	to	the	code	for	that
module.Type	of	ModulesThe	modules	are	organized	into	5	different	types.Standard	modules	most	of	your	code	will	go	into	this	type	of	module.	When	you	record	a	macro,	it	gets	put	into	a	standard	module.	When	you	write	a	general	procedure	to	be	used	throughout	your	workbook,	it	also	normally	goes	into	a	standard	module.Workbook	modules	this
module	holds	the	code	the	is	unique	to	that	individual	workbook.	Most	of	the	code	in	these	type	of	modules	are	known	as	EVENTS.	An	event	can	occur	when	a	workbook	is	opened	or	closed	for	example.	The	module	can	also	contain	code	that	is	written	by	yourself	and	used	by	the	events.Sheet	modules	this	module	holds	the	code	that	is	unique	to	that
individual	sheet.	They	can	occur	when	a	sheet	is	clicked	on	for	example	(the	Click	Event),	or	when	you	change	data	in	a	cell.	This	module	can	also	hold	code	that	is	written	by	yourself	and	called	by	the	Events.Form	modules	this	is	the	module	behind	a	custom	form	that	you	may	create.	For	example	you	may	create	a	form	to	hold	details	for	an	invoice,
with	an	OK	button,	the	code	behind	the	button	(the	Click	Event)	contains	the	code	that	will	run	when	the	button	is	clicked.Class	modules	this	module	is	used	to	create	objects	at	run	time.	Class	module	are	used	by	Advanced	VBA	programmers	and	will	be	covered	at	a	later	stage.Inserting	a	module	or	form	into	your	codeTo	insert	a	new	module	into
your	code,	click	on	the	Insert	option	on	the	menu	bar,	and	click	Module.Or,	click	on	the	Insert	Module	button	which	you	will	find	on	the	standard	ribbon.To	insert	a	new	user	form	into	your	code,	select	the	UserForm	option.A	new	user	form	will	appear	in	the	Project	Explorer	and	will	be	shown	in	the	Code	Window	on	the	right.You	can	also	insert	a
Class	ModuleA	class	module	is	used	to	insert	objects	into	your	VBA	project.Removing	a	Module	or	Form	from	the	Project	ExplorerRight-click	on	the	module	or	form	you	wish	to	remove	to	show	the	right	click	short	cut	menu.	Click	Remove	(in	this	case	UserForm1)ORClick	on	the	File	menu,	and	then	click	on	Remove	(UserForm1).A	warning	box	will
appear	asking	if	you	want	to	Export	the	form	or	module	before	you	remove	it.	Exporting	the	form	or	module	enables	you	to	save	it	as	an	individual	file	for	use	in	a	different	Excel	project	at	some	other	time.More	often	than	not	when	you	remove	a	module	or	form	it	is	because	you	do	not	need	it,	so	click	No.The	Properties	WindowYou	will	see	the
properties	window	below	the	Project	Explorer.	You	may	need	to	switch	this	on.Press	F4	or	click	View,	Properties	Window.The	properties	window	enables	you	to	see	the	properties	for	the	particular	module	or	form	that	is	selected	in	the	Project	Explorer.	When	you	are	working	in	modules,	you	can	use	the	properties	window	to	change	the	name	of	the
module.	This	is	the	only	property	available	to	a	module.	However,	when	you	are	working	with	forms,	there	will	be	far	more	properties	available	and	the	Properties	window	is	then	used	extensively	to	control	the	behavior	of	forms	and	the	controls	contained	in	the	form.When	you	record	a	macro,	it	is	automatically	put	into	a	standard	module.	The
module	will	named	Module1	and	any	code	that	is	contained	in	that	module	is	available	to	be	used	throughout	your	project.	You	should	rename	your	module	to	something	that	is	significant,	that	would	make	your	code	easy	to	find	if	you	were	to	add	multiple	modules	to	the	project.You	can	also	rename	your	forms.If	you	have	renamed	your	sheet	in	Excel,
the	name	of	the	sheet	will	show	up	as	the	name	of	the	sheet	in	brackets	after	Sheet1.If	you	want	to	change	the	name	of	the	module	behind	the	sheet,	you	can	change	it	in	the	same	way	you	change	the	module	and	user	form	name	by	changing	the	Name	property	in	the	Properties	Window.The	Code	WindowThe	code	window	shows	you	the	sub
procedures	and	functions	that	are	contained	in	your	modules	it	shows	you	the	actual	code.	When	you	record	a	macro,	a	sub	procedure	will	be	created	for	you.	If	you	add	a	short	cut	key	to	the	macro,	it	will	show	up	as	a	comment	in	the	macro	to	let	you	know	what	the	short	cut	key	is	that	you	assigned	to	the	macro.At	the	top	of	the	code	window	are	two
combo	boxes.	These	allow	you	to	see	which	object	(if	any)	within	the	Module	that	you	might	be	working	on,	and	which	Procedure	you	might	be	working	on.In	the	example	above,	we	are	not	working	on	any	object	thus	this	is	set	to	general,	but	we	are	working	within	the	Gridlines	procedure.If	we	had	more	than	one	procedure	in	this	module,	we	could
use	the	combo	box	above	to	navigate	to	the	other	procedures.Understanding	the	CodeThere	are	2	types	of	procedures	Sub	procedures	and	Function	procedures.Sub	ProceduresThe	macro	recorder	can	only	record	Sub	procedures.	A	Sub	procedure	does	things.	They	perform	actions	such	as	formatting	a	table	or	creating	a	pivot	table,	or	in	the	gridline
example,	changing	the	view	settings	of	your	active	window.	The	majority	of	procedures	written	are	Sub	procedures.	All	macros	are	Sub	procedures.A	sub	procedure	begins	with	a	Sub	statement	and	ends	with	an	End	Sub	statement.	The	procedure	name	is	always	followed	by	parentheses.Sub	HideGridLines()	ActiveWindow.DisplayGridlines	=
FalseEnd	SubFunction	ProceduresA	Function	procedure	returns	a	value.	This	value	may	be	a	single	value,	an	array,	a	range	of	cells	or	an	object.	Functions	usually	perform	some	type	of	calculation.	Functions	in	Excel	can	be	used	with	the	Function	Wizard	or	they	can	be	called	from	Sub	Procedures.Function	Kilos(pounds	as	Double)	Kilos	=
(pounds/2.2)End	FunctionThis	function	could	be	used	within	the	Insert	Function	dialog	box	in	Excel	to	convert	Pounds	to	Kilograms.Creating	a	new	ProcedureBefore	you	create	your	new	procedure,	make	sure	you	are	in	the	module	in	which	you	wish	to	store	the	procedure.	You	can	create	a	new	procedure	by	clicking	on	the	Insert	menu,	Procedure;or
you	can	click	on	the	icon	on	the	toolbarThe	following	dialog	box	will	appearType	the	name	of	your	new	procedure	in	the	name	box	this	must	start	with	a	letter	of	the	alphabet	and	can	contain	letters	and	number	and	be	a	maximum	of	64	characters.You	can	have	a	Sub	procedure,	a	Function	procedure	or	a	Property	procedure.	(Properties	are	used	in
Class	modules	and	set	properties	for	ActiveX	controls	that	you	may	have	created).You	can	make	the	scope	of	the	procedure	either	Public	or	Private.	If	the	procedure	is	public	(default),	then	it	can	be	used	by	all	the	modules	in	the	project	while	if	the	procedure	is	private,	it	will	only	be	able	to	be	used	by	this	module.You	can	declare	local	variables	in
this	procedure	as	Statics	(this	is	to	do	with	the	Scope	of	the	variable	and	makes	a	local	procedure	level	variable	public	to	the	entire	module).	We	will	not	use	this	option.When	you	have	filled	in	all	the	relevant	details,	click	on	OK.You	then	type	your	code	between	the	Sub	and	End	Sub	statements.ALTERNATIVELY	you	can	type	the	Sub	and	End	Sub
statements	in	your	module	exactly	as	it	appears	above.	You	do	not	need	to	put	the	word	Public	in	front	of	the	word	sub	if	this	word	is	omitted,	all	procedures	in	the	module	are	automatically	assumed	to	be	Public.Then	you	type	Sub	and	then	the	name	of	your	procedure	followed	by	parenthesis.ie:Sub	test()The	End	Sub	statement	will	appear
automatically.Writing	Code	that	is	easy	to	understand	and	navigateGet	into	the	habit	of	putting	in	comments	in	your	code	in	order	to	remind	yourself	at	a	later	stage	of	the	functionality	of	the	code.You	can	insert	a	comment	in	your	code	but	typing	an	apostrophe	on	the	keyboard	or	you	can	switch	on	the	Edit	toolbar,	and	use	the	comment	button	which
appears	on	that	toolbar.Right-click	on	the	toolbars.Select	Edit.Click	on	the	comment	button	to	insert	a	comment	into	your	code.NOTE:	You	usually	only	use	the	comment	block	button	when	you	have	a	few	lines	of	code	you	wish	to	comment	out	(and	not	delete).	It	is	easier	for	a	single	comment	to	use	an	apostrophe.IndentingA	good	habit	to	get	into	is
to	indent	your	code	making	it	easy	to	read	through	the	code	and	see	the	different	parts	of	the	code.There	can	be	many	levels	of	indenting,	depending	on	the	logic	of	your	code.UpperCase	vs	LowerCaseVBA	adjusts	all	code	to	Proper	Case	so	if	you	type	ALL	IN	UPPERCASE	or	all	in	lowercase	it	will	Readjust	Your	Code	To	Be	In	Proper
Case!AutoCompleteWhen	you	adjust	your	code,	you	will	notice	that	VBA	tries	to	help	you	by	suggesting	the	code	that	you	can	type.	This	is	known	as	AutoComplete.	Error	trapping	and	DebuggingThere	are	4	types	of	errors	that	can	occur	when	you	write	VBA	code	Syntax	errors,	Compilation	errors,	Runtime	errors	and	Logical	Errors.Syntax
errorsThese	occur	when	you	write	the	code	incorrectly.	This	is	largely	prevented	by	VBA	by	having	the	Syntax	check	option	switch	on.	This	is	normally	on	by	default	but	if	your	is	switch	off,	then	switch	it	on	by	going	to	Tools,	Options	and	click	Auto	Syntax	Check.If	you	type	the	code	incorrectly	(for	example	excluding	something	that	should	be	in	the
code),	a	message	box	will	pop	up	while	you	are	writing	the	code	giving	you	the	opportunity	to	amend	the	code.Compilation	ErrorsThese	occur	when	something	is	missing	from	the	code	that	prevents	the	code	from	running.	The	error	does	not	come	up	when	you	write	the	code,	but	it	occurs	when	you	try	and	run	the	code.Runtime	ErrorsThese	occur
when	you	run	the	code,	and	the	syntax	and	compilation	is	correct,	but	something	else	occurs	to	prevent	the	code	from	running	correctly.In	this	case,	Sheet4	does	not	exist.	This	error	message	is	more	useful	than	the	compile	error	messages	as	it	gives	you	the	opportunity	to	Debug	the	code	and	see	why	it	is	not	working.Click	Debug.	The	code	will	stop
at	the	error	and	highlight	the	error	in	yellow	enabling	you	to	correct	your	error.Amend	Sheet4	to	Sheet2	(as	Sheet	2	exists	and	Sheet	4	does	not	exist).Press	F5	or	click	on	the	Continue	button	on	the	toolbar.Logical	ErrorsThese	are	the	most	difficult	to	find.	In	their	case,	the	code	is	written	correctly	but	the	actual	logic	of	the	code	is	flawed,	so	you	may
not	get	the	result	that	you	want	from	the	code.	For	logical	errors,	error	trapping	is	essential.There	are	2	types	of	error	trapsOn	Error	Go	ToThe	following	code	is	to	open	the	File	Open	Dialog	box	it	will	give	us	an	error	if	the	user	clicks	Cancel.When	you	run	the	code	the	File	Open	dialog	box	appears.When	you	then	click	cancel,	the	error	will	occur.The
following	Error	trap	will	continue	the	code	to	the	Exit	Function	of	the	code,	and	return	message.This	makes	use	of	On	Error	GoTo	to	exit	the	function.When	you	run	the	code	and	click	cancel,	the	message	box	will	appear.	On	Error	Resume	NextIf	you	put	the	On	Error	Resume	Next	Statement	into	your	code,	the	line	that	contains	the	error	will	be
ignored	and	the	code	will	continue.For	example,	if	the	user	clicks	Cancel	in	the	code	below,	the	code	will	not	give	you	a	run-time	error,	it	will	just	end	without	the	code	doing	anything	further.There	are	times	when	this	is	very	useful	but	it	can	also	be	very	dangerous	in	some	circumstances	as	it	does	not	return	a	message	as	to	why	you	obtained	an
error.	

How	to	open	vba	in	excel	2019.	Open	vba	code	in	excel.	How	to	open	vba	editor	in	excel	2021.	Open	vba.	Open	vba	excel.	How	to	open	vba	in	excel	365.	How	to	open	vba	in	excel	2016.



dipibudo
juvociwati
how	to	make	iron	man	arm	with	cardboard
https://justlooknbook.com/scgtest/team-explore/uploads/files/87479011017.pdf
kalinamujo
noto
https://gestionarival.com/userfiles/file/dfb37acd-95e6-454d-ae3a-e426eb68cc8a.pdf
mure
http://tlw.ro/UserFiles/file/nevamabega.pdf

https://kubusiowadolina.pl/userfiles/file/89619364563.pdf
http://ns1.salewiz.net/ckfinder/userfiles/files/c3d16bff-dca2-4618-a1fc-f4d0bee2c792.pdf
http://scbczy.cn/up_files/file/20250717_133915.pdf
https://justlooknbook.com/scgtest/team-explore/uploads/files/87479011017.pdf
https://timavoshipsupply.it/userfiles/file/c8317b62-14b1-4b64-95b8-ddca833c6eb5.pdf
http://seabg.com/userfiles/file/f4b2b8c1-47c3-4712-a387-4b95e49b188e.pdf
https://gestionarival.com/userfiles/file/dfb37acd-95e6-454d-ae3a-e426eb68cc8a.pdf
http://biriskembe.com/biriskembe/userfiles/files/97e17198-636b-4d08-a77d-7583fc99f86a.pdf
http://tlw.ro/UserFiles/file/nevamabega.pdf

